A Randomized Controlled Trial to Evaluate the Impact of a Novel Probiotic and Nutraceutical Supplement on Pruritic Dermatitis and the Gut Microbiota in Privately Owned Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Supplement Interventions and Study Design
2.3. Health Survey
2.4. Fecal Collection and DNA Sequencing
2.5. Gut Microbiome Shotgun Metagenomic Sequencing and Taxonomy and Functional Annotation
2.6. Statistical Analysis
2.6.1. Analysis of Pruritus and Health Outcomes
2.6.2. Gut Microbiome Analysis
3. Results
3.1. Cohort Description
3.2. Health Outcomes
3.2.1. Canine Pruritus Severity Scale (Digital PVAS10)
3.2.2. Owner Assessed-Skin Allergy Severity Index (OA-SASI)
3.2.3. Heterogeneity of Treatment Effect and Exploratory Subgroup Analyses
3.2.4. Additional Health Outcomes
3.3. Gut Microbiome
3.3.1. Gut Microbiome Diversity
3.3.2. Gut Microbiome Abundance
3.3.3. Gut Microbiome Changes and Pruritus Improvement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hensel, P.; Santoro, D.; Favrot, C.; Hill, P.; Griffin, C. Canine Atopic Dermatitis: Detailed Guidelines for Diagnosis and Allergen Identification. BMC Vet. Res. 2015, 11, 196. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, D.J.; Hillier, A. The ACVD Task Force on Canine Atopic Dermatitis (XV): Fundamental Concepts in Clinical Diagnosis. Vet. Immunol. Immunopathol. 2001, 81, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Marsella, R. Atopic Dermatitis in Domestic Animals: What Our Current Understanding Is and How This Applies to Clinical Practice. Vet. Sci. 2021, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Nagle, T.M.; Torres, S.M.; Horne, K.L.; Grover, R.; Stevens, M.T. A Randomized, Double-Blind, Placebo-Controlled Trial to Investigate the Efficacy and Safety of a Chinese Herbal Product (P07P) for the Treatment of Canine Atopic Dermatitis. Vet. Dermatol. 2001, 12, 265–274. [Google Scholar] [CrossRef]
- Santoro, D. Therapies in Canine Atopic Dermatitis: An Update. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Hillier, A.; Griffin, C.E. The ACVD Task Force on Canine Atopic Dermatitis (I): Incidence and Prevalence. Vet. Immunol. Immunopathol. 2001, 81, 147–151. [Google Scholar] [CrossRef]
- Griffin, C.E.; DeBoer, D.J. The ACVD Task Force on Canine Atopic Dermatitis (XIV): Clinical Manifestations of Canine Atopic Dermatitis. Vet. Immunol. Immunopathol. 2001, 81, 255–269. [Google Scholar] [CrossRef]
- Hightower, K.; Marsella, R.; Flynn-Lurie, A. Effects of Age and Allergen Exposure on Transepidermal Water Loss in a House Dust Mite-Sensitized Beagle Model of Atopic Dermatitis. Vet. Dermatol. 2010, 21, 88–95. [Google Scholar] [CrossRef]
- Halliwell, R. Revised Nomenclature for Veterinary Allergy. Vet. Immunol. Immunopathol. 2006, 114, 207–208. [Google Scholar] [CrossRef]
- Bhagya, B.K.; Kamran, C.A.; Rao, B.M.V. Estimation of Total Serum IgE Levels in Atopic Pugs. Pharma Innov. J. 2023, 12, 2917–2918. [Google Scholar]
- Gedon, N.K.Y.; Mueller, R.S. Atopic Dermatitis in Cats and Dogs: A Difficult Disease for Animals and Owners. Clin. Transl. Allergy 2018, 8, 41. [Google Scholar] [CrossRef]
- Bizikova, P.; Pucheu-Haston, C.M.; Eisenschenk, M.N.C.; Marsella, R.; Nuttall, T.; Santoro, D. Review: Role of Genetics and the Environment in the Pathogenesis of Canine Atopic Dermatitis. Vet. Dermatol. 2015, 26, 95-e26. [Google Scholar] [CrossRef]
- Hakanen, E.; Lehtimäki, J.; Salmela, E.; Tiira, K.; Anturaniemi, J.; Hielm-Björkman, A.; Ruokolainen, L.; Lohi, H. Urban Environment Predisposes Dogs and Their Owners to Allergic Symptoms. Sci. Rep. 2018, 8, 1585. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.D.; Shaw, S.C.; Craigon, P.J.; Blott, S.C.; England, G.C.W. Environmental Risk Factors for Canine Atopic Dermatitis: A Retrospective Large-Scale Study in Labrador and Golden Retrievers. Vet. Dermatol. 2019, 30, 396-e119. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, D.J.; Marsella, R. The ACVD Task Force on Canine Atopic Dermatitis (XII): The Relationship of Cutaneous Infections to the Pathogenesis and Clinical Course of Canine Atopic Dermatitis. Vet. Immunol. Immunopathol. 2001, 81, 239–249. [Google Scholar] [CrossRef]
- Kapun, A.P.; Salobir, J.; Levart, A.; Kotnik, T.; Svete, A.N. Oxidative Stress Markers in Canine Atopic Dermatitis. Res. Vet. Sci. 2012, 92, 469–470. [Google Scholar] [CrossRef]
- Pucheu-Haston, C.M.; Santoro, D.; Bizikova, P.; Eisenschenk, M.N.C.; Marsella, R.; Nuttall, T. Review: Innate Immunity, Lipid Metabolism and Nutrition in Canine Atopic Dermatitis. Vet. Dermatol. 2015, 26, 104-e28. [Google Scholar] [CrossRef] [PubMed]
- Jassies-van der Lee, A.; Rutten, V.P.M.G.; Bruijn, J.; Willemse, T.; Broere, F. CD4+ and CD8+ Skin-Associated T Lymphocytes in Canine Atopic Dermatitis Produce Interleukin-13, Interleukin-22 and Interferon-γ and Contain a CD25+ FoxP3+ Subset. Vet. Dermatol. 2014, 25, 456-e72. [Google Scholar] [CrossRef]
- Craig, J.M. Atopic Dermatitis and the Intestinal Microbiota in Humans and Dogs. Vet. Med. Sci. 2016, 2, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Rostaher, A.; Morsy, Y.; Favrot, C.; Unterer, S.; Schnyder, M.; Scharl, M.; Fischer, N.M. Comparison of the Gut Microbiome between Atopic and Healthy Dogs-Preliminary Data. Animals 2022, 12, 2377. [Google Scholar] [CrossRef]
- van Beeck, F.L.; Watson, A.; Bos, M.; Biourge, V.; Willemse, T. The Effect of Long-Term Feeding of Skin Barrier-Fortified Diets on the Owner-Assessed Incidence of Atopic Dermatitis Symptoms in Labrador Retrievers. J. Nutr. Sci. 2015, 4, e5. [Google Scholar] [CrossRef]
- Santoro, D.; Marsella, R.; Pucheu-Haston, C.M.; Eisenschenk, M.N.C.; Nuttall, T.; Bizikova, P. Review: Pathogenesis of Canine Atopic Dermatitis: Skin Barrier and Host-Micro-Organism Interaction. Vet. Dermatol. 2015, 26, 84-e25. [Google Scholar] [CrossRef]
- Marsella, R.; Olivry, T.; Carlotti, D.-N.; International Task Force on Canine Atopic Dermatitis. Current Evidence of Skin Barrier Dysfunction in Human and Canine Atopic Dermatitis. Vet. Dermatol. 2011, 22, 239–248. [Google Scholar] [CrossRef]
- Marsella, R. Advances in Our Understanding of Canine Atopic Dermatitis. Vet. Dermatol. 2021, 32, 547-e151. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.L.; Fray, T.R.; Bailey, J.; Baker, C.B.; Beyer, S.A.; Markwell, P.J. Dietary Constituents Are Able to Play a Beneficial Role in Canine Epidermal Barrier Function. Exp. Dermatol. 2006, 15, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Schumann, J.; Basiouni, S.; Gück, T.; Fuhrmann, H. Treating Canine Atopic Dermatitis with Unsaturated Fatty Acids: The Role of Mast Cells and Potential Mechanisms of Action. J. Anim. Physiol. Anim. Nutr. 2014, 98, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Abba, C.; Mussa, P.P.; Vercelli, A.; Raviri, G. Essential Fatty Acids Supplementation in Different-Stage Atopic Dogs Fed on a Controlled Diet. J. Anim. Physiol. Anim. Nutr. 2005, 89, 203–207. [Google Scholar] [CrossRef]
- Boehm, T.M.S.A.; Klinger, C.J.; Udraite-Vovk, L.; Navarro, C.; Mueller, R.S. Clinical Effects of 2 Commercially Available Diets on Canine Atopic Dermatitis. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2021, 49, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Plevnik Kapun, A.; Salobir, J.; Levart, A.; Tavčar Kalcher, G.; Nemec Svete, A.; Kotnik, T. Vitamin E Supplementation in Canine Atopic Dermatitis: Improvement of Clinical Signs and Effects on Oxidative Stress Markers. Vet. Rec. 2014, 175, 560. [Google Scholar] [CrossRef] [PubMed]
- Marchegiani, A.; Fruganti, A.; Spaterna, A.; Dalle Vedove, E.; Bachetti, B.; Massimini, M.; Di Pierro, F.; Gavazza, A.; Cerquetella, M. Impact of Nutritional Supplementation on Canine Dermatological Disorders. Vet. Sci. 2020, 7, 38. [Google Scholar] [CrossRef]
- Beigh, S.A.; Soodan, J.S.; Singh, R.; Khan, A.M.; Dar, M.A. Evaluation of Trace Elements, Oxidant/antioxidant Status, Vitamin C and β-Carotene in Dogs with Dermatophytosis. Mycoses 2014, 57, 358–365. [Google Scholar] [CrossRef]
- Witzel-Rollins, A.; Murphy, M.; Becvarova, I.; Werre, S.R.; Cadiergues, M.-C.; Meyer, H. Non-Controlled, Open-Label Clinical Trial to Assess the Effectiveness of a Dietetic Food on Pruritus and Dermatologic Scoring in Atopic Dogs. BMC Vet. Res. 2019, 15, 220. [Google Scholar] [CrossRef]
- Watson, T.D. Diet and Skin Disease in Dogs and Cats. J. Nutr. 1998, 128, 2783S–2789S. [Google Scholar] [CrossRef]
- Plevnik Kapun, A.; Salobir, J.; Levart, A.; Tavčar Kalcher, G.; Nemec Svete, A.; Kotnik, T. Plasma and Skin Vitamin E Concentrations in Canine Atopic Dermatitis. Vet. Q. 2013, 33, 2–6. [Google Scholar] [CrossRef]
- Baskin, C.R.; Hinchcliff, K.W.; DiSilvestro, R.A.; Reinhart, G.A.; Hayek, M.G.; Chew, B.P.; Burr, J.R.; Swenson, R.A. Effects of Dietary Antioxidant Supplementation on Oxidative Damage and Resistance to Oxidative Damage during Prolonged Exercise in Sled Dogs. Am. J. Vet. Res. 2000, 61, 886–891. [Google Scholar] [CrossRef]
- González, S.; Astner, S.; An, W.; Goukassian, D.; Pathak, M.A. Dietary Lutein/zeaxanthin Decreases Ultraviolet B-Induced Epidermal Hyperproliferation and Acute Inflammation in Hairless Mice. J. Investig. Dermatol. 2003, 121, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Chew, B.P.; Wong, T.S.; Park, J.S.; Weng, B.B.; Byrne, K.M.; Hayek, M.G.; Reinhart, G.A. Dietary Lutein Stimulates Immune Response in the Canine. Vet. Immunol. Immunopathol. 2000, 74, 315–327. [Google Scholar] [CrossRef]
- Chew, B.P.; Mathison, B.D.; Hayek, M.G.; Massimino, S.; Reinhart, G.A.; Park, J.S. Dietary Astaxanthin Enhances Immune Response in Dogs. Vet. Immunol. Immunopathol. 2011, 140, 199–206. [Google Scholar] [CrossRef]
- Chew, B.P.; Park, J.S.; Wong, T.S.; Kim, H.W.; Weng, B.B.C.; Byrne, K.M.; Hayek, M.G.; Reinhart, G.A. Dietary β-Carotene Stimulates Cell-Mediated and Humoral Immune Response in Dogs. J. Nutr. 2000, 130, 1910–1913. [Google Scholar] [CrossRef]
- Massimino, S.; Kearns, R.J.; Loos, K.M.; Burr, J.; Park, J.S.; Chew, B.; Adams, S.; Hayek, M.G. Effects of Age and Dietary β-Carotene on Immunological Variables in Dogs. J. Vet. Intern. Med. 2003, 17, 835–842. [Google Scholar]
- Evans, M.; Reeves, S.; Robinson, L.E. A Dried Yeast Fermentate Prevents and Reduces Inflammation in Two Separate Experimental Immune Models. Evid. Based Complement. Altern. Med. 2012, 2012, 973041. [Google Scholar] [CrossRef]
- Moyad, M.A.; Robinson, L.E.; Kittelsrud, J.M.; Reeves, S.G.; Weaver, S.E.; Guzman, A.I.; Bubak, M.E. Immunogenic Yeast-Based Fermentation Product Reduces Allergic Rhinitis-Induced Nasal Congestion: A Randomized, Double-Blind, Placebo-Controlled Trial. Adv. Ther. 2009, 26, 795–804. [Google Scholar] [CrossRef]
- Palić, D.; Rowe, E.W.; Kimura, K.; Roth, J.A.; Noxon, J.; May, E.; Madson, D. Effect of EpiCo® Fermentate on Immune Response, Safety, and Welfare of Dogs; Iowa State University College of Veterinary Medicine, 2011. Available online: https://www.embriahealth.com/products/epicor-for-pets (accessed on 29 July 2020).
- Olsson, M.; Frankowiack, M.; Tengvall, K.; Roosje, P.; Fall, T.; Ivansson, E.; Bergvall, K.; Hansson-Hamlin, H.; Sundberg, K.; Hedhammar, A.; et al. The Dog as a Genetic Model for Immunoglobulin A (IgA) Deficiency: Identification of Several Breeds with Low Serum IgA Concentrations. Vet. Immunol. Immunopathol. 2014, 160, 255–259. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Alexander, C.; Steelman, A.J.; Warzecha, C.M.; de Godoy, M.R.C.; Swanson, K.S. Effects of a Saccharomyces Cerevisiae Fermentation Product on Fecal Characteristics, Nutrient Digestibility, Fecal Fermentative End-Products, Fecal Microbial Populations, Immune Function, and Diet Palatability in Adult dogs. J. Anim. Sci. 2019, 97, 1586–1599. [Google Scholar] [CrossRef]
- Wilson, S.M.; Oba, P.M.; Koziol, S.A.; Applegate, C.C.; Soto-Diaz, K.; Steelman, A.J.; Panasevich, M.R.; Norton, S.A.; Swanson, K.S. Effects of a Saccharomyces Cerevisiae Fermentation Product-Supplemented Diet on Circulating Immune Cells and Oxidative Stress Markers of Dogs. J. Anim. Sci. 2022, 100, skac245. [Google Scholar] [CrossRef] [PubMed]
- Tizard, I.R.; Jones, S.W. The Microbiota Regulates Immunity and Immunologic Diseases in Dogs and Cats. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.I.; Ephraim, E.; Badri, D.V.; MacLeay, J.M.; Jewell, D.E.; Suchodolski, J.S. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front. Microbiol. 2020, 11, 1266. [Google Scholar] [CrossRef] [PubMed]
- Guidi, E.E.A.; Gramenzi, A.; Persico, P.; Di Prinzio, R.; Di Simone, D.; Cornegliani, L. Effects of Feeding a Hypoallergenic Diet with a Nutraceutical on Fecal Dysbiosis Index and Clinical Manifestations of Canine Atopic Dermatitis. Animals 2021, 11, 2985. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Narisawa, Y.; Arase, S.; Okamatsu, H.; Ikenaga, T.; Tajiri, Y.; Kumemura, M. Differences in Fecal Microflora between Patients with Atopic Dermatitis and Healthy Control Subjects. J. Allergy Clin. Immunol. 2003, 111, 587–591. [Google Scholar] [CrossRef]
- Ye, S.; Yan, F.; Wang, H.; Mo, X.; Liu, J.; Zhang, Y.; Li, H.; Chen, D. Diversity Analysis of Gut Microbiota between Healthy Controls and Those with Atopic Dermatitis in a Chinese Population. J. Dermatol. 2021, 48, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, J.; Osumi, T.; Mizukami, K.; Fukuyama, T.; Shima, A.; Unno, A.; Takemura-Uchiyama, I.; Une, Y.; Murakami, H.; Sakaguchi, M. Characterization of the Oral and Faecal Microbiota Associated with Atopic Dermatitis in Dogs Selected from a Purebred Shiba Inu Colony. Lett. Appl. Microbiol. 2022, 75, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Tanprasertsuk, J.; Jha, A.R.; Shmalberg, J.; Jones, R.B.; Perry, L.M.; Maughan, H.; Honaker, R.W. The Microbiota of Healthy Dogs Demonstrates Individualized Responses to Synbiotic Supplementation in a Randomized Controlled Trial. Anim. Microbiome 2021, 3, 36. [Google Scholar] [CrossRef] [PubMed]
- Verlinden, A.; Hesta, M.; Hermans, J.M.; Janssens, G.P.J. The Effects of Inulin Supplementation of Diets with or without Hydrolysed Protein Sources on Digestibility, Faecal Characteristics, Haematology and Immunoglobulins in Dogs. Br. J. Nutr. 2006, 96, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Berni Canani, R.; Paparo, L.; Nocerino, R.; Di Scala, C.; Della Gatta, G.; Maddalena, Y.; Buono, A.; Bruno, C.; Voto, L.; Ercolini, D. Gut Microbiome as Target for Innovative Strategies Against Food Allergy. Front. Immunol. 2019, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Toh, Z.Q.; Anzela, A.; Tang, M.L.K.; Licciardi, P.V. Probiotic Therapy as a Novel Approach for Allergic Disease. Front. Pharmacol. 2012, 3, 171. [Google Scholar] [CrossRef] [PubMed]
- Grześkowiak, Ł.; Endo, A.; Beasley, S.; Salminen, S. Microbiota and Probiotics in Canine and Feline Welfare. Anaerobe 2015, 34, 14–23. [Google Scholar] [CrossRef]
- Gourbeyre, P.; Denery, S.; Bodinier, M. Probiotics, Prebiotics, and Synbiotics: Impact on the Gut Immune System and Allergic Reactions. J. Leukoc. Biol. 2011, 89, 685–695. [Google Scholar] [CrossRef]
- Rather, I.A.; Bajpai, V.K.; Kumar, S.; Lim, J.; Paek, W.K.; Park, Y.-H. Probiotics and Atopic Dermatitis: An Overview. Front. Microbiol. 2016, 7, 507. [Google Scholar] [CrossRef]
- Marsella, R. Evaluation of Lactobacillus rhamnosus Strain GG for the Prevention of Atopic Dermatitis in Dogs. Am. J. Vet. Res. 2009, 70, 735–740. [Google Scholar] [CrossRef]
- Marsella, R.; Santoro, D.; Ahrens, K. Early Exposure to Probiotics in a Canine Model of Atopic Dermatitis Has Long-Term Clinical and Immunological Effects. Vet. Immunol. Immunopathol. 2012, 146, 185–189. [Google Scholar] [CrossRef]
- Kim, H.; Rather, I.A.; Kim, H.; Kim, S.; Kim, T.; Jang, J.; Seo, J.; Lim, J.; Park, Y.-H. A Double-Blind, Placebo Controlled-Trial of a Probiotic Strain Lactobacillus Sakei Probio-65 for the Prevention of Canine Atopic Dermatitis. J. Microbiol. Biotechnol. 2015, 25, 1966–1969. [Google Scholar] [CrossRef]
- Ohshima-Terada, Y.; Higuchi, Y.; Kumagai, T.; Hagihara, A.; Nagata, M. Complementary Effect of Oral Administration of Lactobacillus paracasei K71 on Canine Atopic Dermatitis. Vet. Dermatol. 2015, 26, 350-e75. [Google Scholar] [CrossRef]
- Osumi, T.; Shimada, T.; Sakaguchi, M.; Tsujimoto, H. A Double-Blind, Placebo-Controlled Evaluation of Orally Administered Heat-Killed Enterococcus Faecalis FK-23 Preparation in Atopic Dogs. Vet. Dermatol. 2019, 30, 127-e36. [Google Scholar] [CrossRef]
- Kawano, K.; Iyori, K.; Kondo, N.; Yamakawa, S.; Fujii, T.; Funasaka, K.; Hirooka, Y.; Tochio, T. Clinical Effects of Combined Lactobacillus paracasei and Kestose on Canine Atopic Dermatitis. Pol. J. Vet. Sci. 2023, 26, 131–136. [Google Scholar] [CrossRef]
- Swanson, K.S.; Grieshop, C.M.; Flickinger, E.A.; Healy, H.P.; Dawson, K.A.; Merchen, N.R.; Fahey, G.C., Jr. Effects of Supplemental Fructooligosaccharides plus Mannanoligosaccharides on Immune Function and Ileal and Fecal Microbial Populations in Adult Dogs. Arch. Tierernahr. 2002, 56, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Grieshop, C.M.; Flickinger, E.A.; Bauer, L.L.; Healy, H.-P.; Dawson, K.A.; Merchen, N.R.; Fahey, G.C. Supplemental Fructooligosaccharides and Mannanoligosaccharides Influence Immune Function, Ileal and Total Tract Nutrient Digestibilities, Microbial Populations and Concentrations of Protein Catabolites in the Large Bowel of Dogs. J. Nutr. 2002, 132, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Field, C.J.; McBurney, M.I.; Massimino, S.; Hayek, M.G.; Sunvold, G.D. The Fermentable Fiber Content of the Diet Alters the Function and Composition of Canine Gut Associated Lymphoid Tissue. Vet. Immunol. Immunopathol. 1999, 72, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Grieshop, C.M.; Flickinger, E.A.; Bruce, K.J.; Patil, A.R.; Czarnecki-Maulden, G.L.; Fahey, G.C., Jr. Gastrointestinal and Immunological Responses of Senior Dogs to Chicory and Mannan-Oligosaccharides. Arch. Anim. Nutr. 2004, 58, 483–493. [Google Scholar] [CrossRef]
- Laflamme, D. Development and Validation of a Body Condition Score System for Dogs. Canine Pract. 1997, 22, 10–15. [Google Scholar]
- Tanprasertsuk, J.; Shmalberg, J.; Maughan, H.; Tate, D.E.; Perry, L.M.; Jha, A.R.; Honaker, R.W. Heterogeneity of Gut Microbial Responses in Healthy Household Dogs Transitioning from an Extruded to a Mildly Cooked Diet. PeerJ 2021, 9, e11648. [Google Scholar] [CrossRef]
- Tanprasertsuk, J.; Perry, L.M.; Tate, D.E.; Honaker, R.W.; Shmalberg, J. Apparent Total Tract Nutrient Digestibility and Metabolizable Energy Estimation in Commercial Fresh and Extruded Dry Kibble Dog Foods. Transl. Anim. Sci. 2021, 5, txab071. [Google Scholar] [CrossRef]
- Jha, A.R.; Shmalberg, J.; Tanprasertsuk, J.; Perry, L.; Massey, D.; Honaker, R.W. Characterization of Gut Microbiomes of Household Pets in the United States Using a Direct-to-Consumer Approach. PLoS ONE 2020, 15, e0227289. [Google Scholar] [CrossRef]
- Hill, P.B.; Lau, P.; Rybnicek, J. Development of an Owner-Assessed Scale to Measure the Severity of Pruritus in Dogs. Vet. Dermatol. 2007, 18, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Rybnícek, J.; Lau-Gillard, P.J.; Harvey, R.; Hill, P.B. Further Validation of a Pruritus Severity Scale for Use in Dogs. Vet. Dermatol. 2009, 20, 115–122. [Google Scholar] [CrossRef]
- Olivry, T.; Bensignor, E.; Favrot, C.; Griffin, C.E.; Hill, P.B.; Mueller, R.S.; Plant, J.D.; Williams, H.C.; International Committee of Allergic Diseases of Animals (ICADA). Development of a Core Outcome Set for Therapeutic Clinical Trials Enrolling Dogs with Atopic Dermatitis (COSCAD’18). BMC Vet. Res. 2018, 14, 238. [Google Scholar] [CrossRef]
- Olivry, T.; Saridomichelakis, M.; Nuttall, T.; Bensignor, E.; Griffin, C.E.; Hill, P.B.; International Committe on Allergic Diseases of Animals (ICADA). Validation of the Canine Atopic Dermatitis Extent and Severity Index (CADESI)-4, a Simplified Severity Scale for Assessing Skin Lesions of Atopic Dermatitis in Dogs. Vet. Dermatol. 2014, 25, 77-e25. [Google Scholar] [CrossRef]
- Johnson, A.J.; Vangay, P.; Al-Ghalith, G.A.; Hillmann, B.M.; Ward, T.L.; Shields-Cutler, R.R.; Kim, A.D.; Shmagel, A.K.; Syed, A.N.; Personalized Microbiome Class Students; et al. Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host Microbe 2019, 25, 789–802.e5. [Google Scholar] [CrossRef]
- Al-Ghalith, G.A.; Hillmann, B.; Ang, K.; Shields-Cutler, R.; Knights, D. SHI7 Is a Self-Learning Pipeline for Multipurpose Short-Read DNA Quality Control. mSystems 2018, 3, e00202-17. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghalith, G.; Knights, D. BURST Enables Mathematically Optimal Short-Read Alignment for Big Data. bioRxiv 2020. [Google Scholar] [CrossRef]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A Toolkit to Classify Genomes with the Genome Taxonomy Database. Bioinformatics 2019, 36, 1925–1927. [Google Scholar] [CrossRef] [PubMed]
- Varadhan, R.; Seeger, J.D. Estimation and Reporting of Heterogeneity of Treatment Effects. In Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide; Velentgas, P., Dreyer, N.A., Nourjah, P., Smith, S., Torchia, M., Eds.; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2013; Chapter 3. [Google Scholar]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2022. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 29 July 2020).
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating Viruses and Cellular Organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Favrot, C.; Steffan, J.; Seewald, W.; Picco, F. A Prospective Study on the Clinical Features of Chronic Canine Atopic Dermatitis and Its Diagnosis. Vet. Dermatol. 2010, 21, 23–31. [Google Scholar] [CrossRef]
- Marsella, R.; Ahrens, K.; Wilkes, R.; Trujillo, A.; Dorr, M. Comparison of Various Treatment Options for Canine Atopic Dermatitis: A Blinded, Randomized, Controlled Study in a Colony of Research Atopic Beagle Dogs. Vet. Dermatol. 2020, 31, 284-e69. [Google Scholar] [CrossRef]
- Müller, M.R.; Linek, M.; Löwenstein, C.; Röthig, A.; Doucette, K.; Thorstensen, K.; Mueller, R.S. Evaluation of Cyclosporine-Sparing Effects of Polyunsaturated Fatty Acids in the Treatment of Canine Atopic Dermatitis. Vet. J. 2016, 210, 77–81. [Google Scholar] [CrossRef]
- Saevik, B.K.; Bergvall, K.; Holm, B.R.; Saijonmaa-Koulumies, L.E.; Hedhammar, A.; Larsen, S.; Kristensen, F. A Randomized, Controlled Study to Evaluate the Steroid Sparing Effect of Essential Fatty Acid Supplementation in the Treatment of Canine Atopic Dermatitis. Vet. Dermatol. 2004, 15, 137–145. [Google Scholar] [CrossRef]
- de Santiago, M.S.; Arribas, J.L.G.; Llamas, Y.M.; Becvarova, I.; Meyer, H. Randomized, Double-Blind, Placebo-Controlled Clinical Trial Measuring the Effect of a Dietetic Food on Dermatologic Scoring and Pruritus in Dogs with Atopic Dermatitis. BMC Vet. Res. 2021, 17, 354. [Google Scholar] [CrossRef] [PubMed]
- Alarça, L.G.; Murakami, F.Y.; Félix, A.P.; Krabbe, E.L.; de Oliveira, S.G.; da Silva, S.A.B. Dietary Lutein Supplementation on Diet Digestibility and Blood Parameters of Dogs. Cienc. Rural 2016, 46, 2195–2201. [Google Scholar] [CrossRef]
- Young, A.J.; Torres, S.M.F.; Koch, S.N.; Eisenschenk, M.N.C.; Rendahl, A.K. Canine Pruritus Visual Analog Scale: How Does It Capture Owners’ Perception of Their Pet’s Itching Level? Vet. Dermatol. 2019, 30, 377-e111. [Google Scholar] [CrossRef]
- McFadden, R.A.; Heinrich, N.A.; Haarstad, A.C.; Tomlinson, D.J. A Double-Blinded, Randomized, Controlled, Crossover Evaluation of a Zinc Methionine Supplement as an Adjunctive Treatment for Canine Atopic Dermatitis. Vet. Dermatol. 2017, 28, 569-e138. [Google Scholar] [CrossRef]
- Loewinger, M.; Wakshlag, J.J.; Bowden, D.; Peters-Kennedy, J.; Rosenberg, A. The Effect of a Mixed Cannabidiol and Cannabidiolic Acid Based Oil on Client-Owned Dogs with Atopic Dermatitis. Vet. Dermatol. 2022, 33, 329-e77. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.P.; Rosychuk, R.A.W.; Contreras, E.T.; Schissler, J.R.; Simpson, A.C. A Retrospective Analysis of the Use of Lokivetmab in the Management of Allergic Pruritus in a Referral Population of 135 Dogs in the Western USA. Vet. Dermatol. 2018, 29, 489-e164. [Google Scholar] [CrossRef]
- Olivry, T.; Lokianskiene, V.; Blanco, A.; Mestre, P.D.; Bergvall, K.; Beco, L. A Randomised Controlled Trial Testing the Rebound-Preventing Benefit of Four Days of Prednisolone during the Induction of Oclacitinib Therapy in Dogs with Atopic Dermatitis. Vet. Dermatol. 2022, 34, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Santoro, D.; Fagman, L.; Zhang, Y.; Fahong, Y. Clinical Efficacy of Spray-Based Heat-Treated Lactobacilli in Canine Atopic Dermatitis: A Preliminary, Open-Label, Uncontrolled Study. Vet. Dermatol. 2021, 32, 114-e23. [Google Scholar] [CrossRef]
- Dryden, M.W.; Canfield, M.S.; Herrin, B.H.; Bocon, C.; Bress, T.S.; Hickert, A.; Kollasch, T.M.; Phan, L.; Rumschlag, A.J.; Ryan, W.G.; et al. In-Home Assessment of Flea Control and Dermatologic Lesions in Dogs Provided by Lotilaner (Credelio®) and Spinosad (Comfortis®) in West Central Florida. Vet. Parasitol. X 2019, 1, 100009. [Google Scholar] [CrossRef] [PubMed]
- Plant, J.D. Repeatability and Reproducibility of Numerical Rating Scales and Visual Analogue Scales for Canine Pruritus Severity Scoring. Vet. Dermatol. 2007, 18, 294–300. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Nam, E.-H.; Park, S.-H.; Han, S.-H.; Hwang, C.-Y. Clinical Use of a Ceramide-Based Moisturizer for Treating Dogs with Atopic Dermatitis. J. Vet. Sci. 2013, 14, 199–205. [Google Scholar] [CrossRef]
- Nam, E.-H.; Park, S.-H.; Jung, J.-Y.; Han, S.-H.; Youn, H.-Y.; Chae, J.-S.; Hwang, C.-Y. Evaluation of the Effect of a 0.0584% Hydrocortisone Aceponate Spray on Clinical Signs and Skin Barrier Function in Dogs with Atopic Dermatitis. J. Vet. Sci. 2012, 13, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Horvath-Ungerboeck, C.; Thoday, K.L.; Shaw, D.J.; van den Broek, A.H.M. Tepoxalin Reduces Pruritus and Modified CADESI-01 Scores in Dogs with Atopic Dermatitis: A Prospective, Randomized, Double-Blinded, Placebo-Controlled, Cross-over Study. Vet. Dermatol. 2009, 20, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Colombo, S.; Hill, P.B.; Shaw, D.J.; Thoday, K.L. Effectiveness of Low Dose Immunotherapy in the Treatment of Canine Atopic Dermatitis: A Prospective, Double-Blinded, Clinical Study. Vet. Dermatol. 2005, 16, 162–170. [Google Scholar] [CrossRef]
- Devriendt, N.; Rodrigues, T.C.N.; Vandenabeele, S.; Favril, S.; Biscop, A.; Marynissen, S.; Broeckx, B.J.G.; Hofstra, I.; Mortier, F.; De Bakker, E.; et al. Validation of a Skin and Coat Scoring Protocol in Dogs. Vlaams Diergeneeskd. Tijdschr. 2021, 90, 227–230. [Google Scholar] [CrossRef]
- Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front. Microbiol. 2018, 9, 1459. [Google Scholar] [CrossRef] [PubMed]
- Moeser, C.F. Trial of Fecal Microbial Transplantation for the Prevention of Canine Atopic Dermatitis. Int. J. Anim. Vet. Adv. 2021, 15, 100–105. [Google Scholar]
- Ural, K. Fecal Microbiota Transplantation Capsule Therapy via Oral Route for Combatting Atopic Dermatitis in Dogs. Vet. Fak. Derg. 2022, 69, 211–219. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Markel, M.E.; Garcia-Mazcorro, J.F.; Unterer, S.; Heilmann, R.M.; Dowd, S.E.; Kachroo, P.; Ivanov, I.; Minamoto, Y.; Dillman, E.M.; et al. The Fecal Microbiome in Dogs with Acute Diarrhea and Idiopathic Inflammatory Bowel Disease. PLoS ONE 2012, 7, e51907. [Google Scholar] [CrossRef]
- Wang, M.; Karlsson, C.; Olsson, C.; Adlerberth, I.; Wold, A.E.; Strachan, D.P.; Martricardi, P.M.; Aberg, N.; Perkin, M.R.; Tripodi, S.; et al. Reduced Diversity in the Early Fecal Microbiota of Infants with Atopic Eczema. J. Allergy Clin. Immunol. 2008, 121, 129–134. [Google Scholar] [CrossRef]
- Abrahamsson, T.R.; Jakobsson, H.E.; Andersson, A.F.; Björkstén, B.; Engstrand, L.; Jenmalm, M.C. Low Diversity of the Gut Microbiota in Infants with Atopic Eczema. J. Allergy Clin. Immunol. 2012, 129, 434–440.e2. [Google Scholar] [CrossRef]
- Maiga, M.A.; Morin, S.; Bernard, H.; Rabot, S.; Adel-Patient, K.; Hazebrouck, S. Neonatal Mono-Colonization of Germ-Free Mice with Lactobacillus Casei Enhances Casein Immunogenicity after Oral Sensitization to Cow’s Milk. Mol. Nutr. Food Res. 2017, 61, 1600862. [Google Scholar] [CrossRef]
- Liu, M.-Y.; Yang, Z.-Y.; Dai, W.-K.; Huang, J.-Q.; Li, Y.-H.; Zhang, J.; Qiu, C.-Z.; Wei, C.; Zhou, Q.; Sun, X.; et al. Protective Effect of Bifidobacterium infantis CGMCC313-2 on Ovalbumin-Induced Airway Asthma and β-Lactoglobulin-Induced Intestinal Food Allergy Mouse Models. World J. Gastroenterol. 2017, 23, 2149–2158. [Google Scholar] [CrossRef]
- Marques, C.; Belas, A.; Aboim, C.; Trigueiro, G.; Cavaco-Silva, P.; Gama, L.T.; Pomba, C. Clonal Relatedness of Proteus Mirabilis Strains Causing Urinary Tract Infections in Companion Animals and Humans. Vet. Microbiol. 2019, 228, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Galarneau, J.-R.; Fortin, M.; Lapointe, J.-M.; Girard, C. Citrobacter freundii Septicemia in Two Dogs. J. Vet. Diagn. Investig. 2003, 15, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Oh, J.Y.; Sum, S.; Park, H.M. Prevalence and Antimicrobial Resistance of Klebsiella Species Isolated from Clinically Ill Companion Animals. J. Vet. Sci. 2021, 22, e17. [Google Scholar] [CrossRef]
- Hajjar, R.; Ambaraghassi, G.; Sebajang, H.; Schwenter, F.; Su, S.-H. Raoultella Ornithinolytica: Emergence and Resistance. Infect. Drug Resist. 2020, 13, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.-C.; Cheng, C.-C.; Wang, H.-C.; Lee, W.-M.; Shyu, C.-L.; Lin, C.-C.; Chen, K.-S. Emphysematous Pyometra Secondary to Enterococcus avium Infection in a Dog. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2016, 44, 195–199. [Google Scholar] [CrossRef]
- Pilla, R.; Suchodolski, J.S. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front. Vet. Sci. 2019, 6, 498. [Google Scholar] [CrossRef]
- Espinoza-Monje, M.; Campos, J.; Alvarez Villamil, E.; Jerez, A.; Dentice Maidana, S.; Elean, M.; Salva, S.; Kitazawa, H.; Villena, J.; García-Cancino, A. Characterization of Weissella viridescens UCO-SMC3 as a Potential Probiotic for the Skin: Its Beneficial Role in the Pathogenesis of Acne Vulgaris. Microorganisms 2021, 9, 1486. [Google Scholar] [CrossRef]
- Lim, S.K.; Kwon, M.-S.; Lee, J.; Oh, Y.J.; Jang, J.-Y.; Lee, J.-H.; Park, H.W.; Nam, Y.-D.; Seo, M.-J.; Roh, S.W.; et al. Weissella Cibaria WIKIM28 Ameliorates Atopic Dermatitis-like Skin Lesions by Inducing Tolerogenic Dendritic Cells and Regulatory T Cells in BALB/c Mice. Sci. Rep. 2017, 7, 40040. [Google Scholar] [CrossRef]
- Moon, C.D.; Young, W.; Maclean, P.H.; Cookson, A.L.; Bermingham, E.N. Metagenomic Insights into the Roles of Proteobacteria in the Gastrointestinal Microbiomes of Healthy Dogs and Cats. MicrobiologyOpen 2018, 7, e00677. [Google Scholar] [CrossRef]
- Sugita, K.; Shima, A.; Takahashi, K.; Ishihara, G.; Kawano, K.; Ohmori, K. Pilot Evaluation of a Single Oral Fecal Microbiota Transplantation for Canine Atopic Dermatitis. Sci. Rep. 2023, 13, 8824. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.; Künstner, A.; Wohlers, I.; Olbrich, M.; Lenfers, T.; Osumi, T.; Shimazaki, Y.; Nishifuji, K.; Ibrahim, S.M.; Watson, A.; et al. A Comprehensive Analysis of Gut and Skin Microbiota in Canine Atopic Dermatitis in Shiba Inu Dogs. Microbiome 2023, 11, 232. [Google Scholar] [CrossRef]
- Harvey, A.; Watson, C.; Angell, B.; Aulik, N.; Clarke, L. Corynebacterium Mustelae Endocarditis in a Dog. J. Comp. Pathol. 2021, 185, 82–86. [Google Scholar] [CrossRef]
- Wang, S.; Ma, M.; Liang, Z.; Zhu, X.; Yao, H.; Wang, L.; Wu, Z. Pathogenic Investigations of Streptococcus pasteurianus, an Underreported Zoonotic Pathogen, Isolated from a Diseased Piglet with Meningitis. Transbound. Emerg. Dis. 2021, 69, 2609–2620. [Google Scholar] [CrossRef]
- Pelle, G.; Makrai, L.; Fodor, L.; Dobos-Kovács, M. Actinomycosis of Dogs Caused by Actinomyces hordeovulneris. J. Comp. Pathol. 2000, 123, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Karlin, E.T.; Rush, J.E.; Freeman, L.M. A Pilot Study Investigating Circulating Trimethylamine N-Oxide and Its Precursors in Dogs with Degenerative Mitral Valve Disease with or without Congestive Heart Failure. J. Vet. Intern. Med. 2019, 33, 46–53. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Camacho, J.; Steiner, J.M. Analysis of Bacterial Diversity in the Canine Duodenum, Jejunum, Ileum, and Colon by Comparative 16S rRNA Gene Analysis. FEMS Microbiol. Ecol. 2008, 66, 567–578. [Google Scholar] [CrossRef]
- Huang, R.; Ning, H.; Shen, M.; Li, J.; Zhang, J.; Chen, X. Probiotics for the Treatment of Atopic Dermatitis in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Cell. Infect. Microbiol. 2017, 7, 392. [Google Scholar] [CrossRef]
- Zheng, H.; Liang, H.; Wang, Y.; Miao, M.; Shi, T.; Yang, F.; Liu, E.; Yuan, W.; Ji, Z.-S.; Li, D.-K. Altered Gut Microbiota Composition Associated with Eczema in Infants. PLoS ONE 2016, 11, e0166026. [Google Scholar] [CrossRef]
- Reddel, S.; Del Chierico, F.; Quagliariello, A.; Giancristoforo, S.; Vernocchi, P.; Russo, A.; Fiocchi, A.; Rossi, P.; Putignani, L.; El Hachem, M. Gut Microbiota Profile in Children Affected by Atopic Dermatitis and Evaluation of Intestinal Persistence of a Probiotic Mixture. Sci. Rep. 2019, 9, 4996. [Google Scholar] [CrossRef]
- Chun, J.L.; Ji, S.Y.; Lee, S.D.; Lee, Y.K.; Kim, B.; Kim, K.H. Difference of Gut Microbiota Composition Based on the Body Condition Scores in Dogs. Hanguk Tongmul Chawon Kwahakhoe Chi 2020, 62, 239–246. [Google Scholar] [CrossRef]
- Cintio, M.; Scarsella, E.; Sgorlon, S.; Sandri, M.; Stefanon, B. Gut Microbiome of Healthy and Arthritic Dogs. Vet. Sci. 2020, 7, 92. [Google Scholar] [CrossRef]
- Li, Q.; Larouche-Lebel, É.; Loughran, K.A.; Huh, T.P.; Suchodolski, J.S.; Oyama, M.A. Gut Dysbiosis and Its Associations with Gut Microbiota-Derived Metabolites in Dogs with Myxomatous Mitral Valve Disease. mSystems 2021, 6, e00111-21. [Google Scholar] [CrossRef]
- Zmora, N.; Zilberman-Schapira, G.; Suez, J.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Kotler, E.; Zur, M.; Regev-Lehavi, D.; Brik, R.B.-Z.; et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 2018, 174, 1388–1405.e21. [Google Scholar] [CrossRef]
- Jaeger, G.T.; Larsen, S.; Moe, L. Stratification, Blinding and Placebo Effect in a Randomized, Double Blind Placebo-Controlled Clinical Trial of Gold Bead Implantation in Dogs with Hip Dysplasia. Acta Vet. Scand. 2005, 46, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Muñana, K.R.; Zhang, D.; Patterson, E.E. Placebo Effect in Canine Epilepsy Trials. J. Vet. Intern. Med. 2010, 24, 166–170. [Google Scholar] [CrossRef]
- Gruen, M.E.; Dorman, D.C.; Lascelles, B.D.X. Caregiver Placebo Effect in Analgesic Clinical Trials for Cats with Naturally Occurring Degenerative Joint Disease-Associated Pain. Vet. Rec. 2017, 180, 473. [Google Scholar] [CrossRef]
- Halliwell, R.E.W. Allergic Skin Diseases in Dogs and Cats: An Introduction. Eur. J. Companion Anim. Pract. 2009, 19, 209–211. [Google Scholar]
- Almutairi, R.; Basson, A.R.; Wearsh, P.; Cominelli, F.; Rodriguez-Palacios, A. Validity of Food Additive Maltodextrin as Placebo and Effects on Human Gut Physiology: Systematic Review of Placebo-Controlled Clinical Trials. Eur. J. Nutr. 2022, 61, 2853–2871. [Google Scholar] [CrossRef]
- Calgaro, M.; Pandolfo, M.; Salvetti, E.; Marotta, A.; Larini, I.; Pane, M.; Amoruso, A.; Del Casale, A.; Vitulo, N.; Fiorio, M.; et al. Metabarcoding Analysis of Gut Microbiota of Healthy Individuals Reveals Impact of Probiotic and Maltodextrin Consumption. Benef. Microbes 2021, 12, 121–136. [Google Scholar] [CrossRef]
- Marsella, R.; De Benedetto, A. Atopic Dermatitis in Animals and People: An Update and Comparative Review. Vet. Sci. 2017, 4, 37. [Google Scholar] [CrossRef]
- Willemse, T. BSAVA EDUCATION COMMITTEE COMMISSIONED ARTICLE: Atopic Skin Disease: A Review and a Reconsideration of Diagnostic Criteria. J. Small Anim. Pract. 1986, 27, 771–778. [Google Scholar] [CrossRef]
- Prélaud, P.; Guaguere, E.; Alhaidari, Z.; Faivre, N.; Heripret, D.; Gayerie, A. Reevaluation of Diagnostic Criteria of Canine Atopic Dermatitis. Rev. Med. Vet. 1998, 149, 1057–1064. [Google Scholar]
- Brément, T.; Laly, M.J.; Combarros, D.; Guillemaille, D.; Bourdeau, P.J.; Bruet, V. Reliability of Different Sets of Criteria in Diagnosing Canine Atopic Dermatitis Applied to a Population of 250 Dogs Seen in a Veterinary Teaching Hospital. Vet. Dermatol. 2019, 30, 188-e59. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.D.; Shaw, S.C.; Blott, S.C.; Vàzquez-Diosdado, J.A.; England, G.C.W. Development and Validation of a New Standardised Data Collection Tool to Aid in the Diagnosis of Canine Skin Allergies. Sci. Rep. 2019, 9, 3039. [Google Scholar] [CrossRef] [PubMed]
- Linek, M.; Favrot, C. Impact of Canine Atopic Dermatitis on the Health-Related Quality of Life of Affected Dogs and Quality of Life of Their Owners. Vet. Dermatol. 2010, 21, 456–462. [Google Scholar] [CrossRef]
- Noli, C. Assessing Quality of Life for Pets with Dermatologic Disease and Their Owners. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 83–93. [Google Scholar] [CrossRef]
- Bradley, C.W.; Morris, D.O.; Rankin, S.C.; Cain, C.L.; Misic, A.M.; Houser, T.; Mauldin, E.A.; Grice, E.A. Longitudinal Evaluation of the Skin Microbiome and Association with Microenvironment and Treatment in Canine Atopic Dermatitis. J. Investig. Dermatol. 2016, 136, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Pierezan, F.; Olivry, T.; Paps, J.S.; Lawhon, S.D.; Wu, J.; Steiner, J.M.; Suchodolski, J.S.; Rodrigues Hoffmann, A. The Skin Microbiome in Allergen-Induced Canine Atopic Dermatitis. Vet. Dermatol. 2016, 27, 332-e82. [Google Scholar] [CrossRef]
- Rodrigues Hoffmann, A.; Patterson, A.P.; Diesel, A.; Lawhon, S.D.; Ly, H.J.; Elkins Stephenson, C.; Mansell, J.; Steiner, J.M.; Dowd, S.E.; Olivry, T.; et al. The Skin Microbiome in Healthy and Allergic Dogs. PLoS ONE 2014, 9, e83197. [Google Scholar] [CrossRef] [PubMed]
- Chermprapai, S.; Ederveen, T.H.A.; Broere, F.; Broens, E.M.; Schlotter, Y.M.; van Schalkwijk, S.; Boekhorst, J.; van Hijum, S.A.F.T.; Rutten, V.P.M.G. The Bacterial and Fungal Microbiome of the Skin of Healthy Dogs and Dogs with Atopic Dermatitis and the Impact of Topical Antimicrobial Therapy, an Exploratory Study. Vet. Microbiol. 2019, 229, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Hill, P.B.; DeBoer, D.J. The ACVD Task Force on Canine Atopic Dermatitis (IV): Environmental Allergens. Vet. Immunol. Immunopathol. 2001, 81, 169–186. [Google Scholar] [CrossRef]
- Nødtvedt, A.; Guitian, J.; Egenvall, A.; Emanuelson, U.; Pfeiffer, D.U. The Spatial Distribution of Atopic Dermatitis Cases in a Population of Insured Swedish Dogs. Prev. Vet. Med. 2007, 78, 210–222. [Google Scholar] [CrossRef]
- Olivry, T.; DeBoer, D.J.; Favrot, C.; Jackson, H.A.; Mueller, R.S.; Nuttall, T.; Prélaud, P.; International Committee on Allergic Diseases of Animals. Treatment of Canine Atopic Dermatitis: 2015 Updated Guidelines from the International Committee on Allergic Diseases of Animals (ICADA). BMC Vet. Res. 2015, 11, 210. [Google Scholar] [CrossRef]
PBO (n = 29) | PNB (n = 33) | p Value * | |
---|---|---|---|
Age (years) | 7.60 ± 3.5 | 7.51 ± 3.3 | 0.882 |
Female | 16 (55%) | 16 (48%) | 0.621 |
Spayed or neutered | 29 (100%) | 32 (97%) | 1.000 |
BCS a | 1.000 | ||
4–5 | 25 (86%) | 28 (85%) | |
6 | 4 (14%) | 5 (15%) | |
Current body weight (kg) | 10.0 ± 6.5 | 8.9 ± 5.5 | 0.507 |
Hours Outside (per day) | 0.038 | ||
≤1 h | 13 (45%) | 24 (73%) | |
>1 h | 16 (55%) | 9 (27%) | |
Fecal Score b | 3.0 ± 0.8 | 2.9 ± 1.0 | 0.622 |
Coat Style | 0.667 | ||
Short-coated | 11 (38%) | 12 (36%) | |
Long-coated | 3 (10%) | 4 (12%) | |
Curly-coated | 4 (14%) | 9 (27%) | |
Medium-coated | 10 (34%) | 7 (21%) | |
Wire-coated | 1 (4%) | 1 (4%) | |
Current US Region c | 0.646 | ||
North | 4 (14%) | 8 (24%) | |
South | 11 (38%) | 12 (36%) | |
West | 10 (34%) | 11 (33%) | |
Midwest | 4 (14%) | 2 (7%) | |
Uses Allergy specific medication d | 18 (62%) | 21 (64%) | 1.000 |
Uses Flea medication | 16 (55%) | 17 (52%) | 0.804 |
Allergy Description | |||
Associated with diarrhea | 1 (4%) | 0 (0%) | 0.468 |
Associated with food | 2 (7%) | 3 (9%) | 1.000 |
Mostly involves back | 2 (7%) | 5 (15%) | 0.433 |
Mostly involves belly/armpits | 11 (38%) | 12 (36%) | 1.000 |
Mostly involves face | 8 (28%) | 7 (21%) | 0.767 |
Mostly involves ears | 11 (38%) | 8 (24%) | 0.280 |
Mostly involves feet | 18 (62%) | 20 (61%) | 1.000 |
Occurs all over body | 4 (14%) | 2 (6%) | 0.405 |
Seasonal symptoms | 11 (38%) | 7 (21%) | 0.171 |
Severe | Moderate | Mild | Normal | p Value * | ||
---|---|---|---|---|---|---|
Digital PVAS10: ≥5.6 | Digital PVAS10: 3.6–5.5 | Digital PVAS10: 2–3.5 | Digital PVAS10-N: <2 | |||
Week 0 | PBO (n = 29) | 24 (83%) | 5 (17%) | 0 (0%) | 0 (0%) | 1.000 |
PNB (n = 33) | 26 (79%) | 5 (15%) | 1 (3%) | 1 (3%) | ||
Week 2 | PBO (n = 29) | 18 (62%) | 8 (28%) | 1 (3%) | 2 (7%) | 0.264 |
PNB (n = 33) | 12 (36.5%) | 12 (36.5%) | 3 (9%) | 6 (18%) | ||
Week 4 | PBO (n = 29) | 10 (34.5%) | 12 (41.5%) | 3 (10%) | 4 (14%) | 0.519 |
PNB (n = 33) | 13 (39.5%) | 8 (24.5%) | 5 (15%) | 7 (21%) | ||
Week 7 | PBO (n = 29) | 10 (34.5%) | 9 (31%) | 2 (6.5%) | 8 (28%) | 1.000 |
PNB (n = 33) | 11 (34%) | 7 (21%) | 5 (15%) | 10 (30%) | ||
Week 10 | PBO (n = 29) | 10 (34.5%) | 10 (34.5%) | 3 (10%) | 6 (21%) | 0.562 |
PNB (n = 33) | 12 (36.5%) | 8 (24.5%) | 3 (9%) | 10 (30%) |
Phylum | Class | Order | Family | Genus | Species | Relative Abundance (%) Median [IQR] | Week 10 vs. Baseline | ||
---|---|---|---|---|---|---|---|---|---|
Baseline | Week 10 | Log2 FC Mean ± SE | Adjusted p-Value 1 | ||||||
Increased at week 10 (15 species) | |||||||||
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Leuconostoc | kimchii | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 11.89 ± 3.96 | 2.57 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lacticaseibacillus | rhamnosus | 0.00 × 10+0 [0.00 × 10+0–1.19 × 10−6] | 3.40 × 10−6 [4.57 × 10−7–2.69 × 10−3] | 9.07 ± 0.99 | 4.32 × 10−17 |
Actinobacteriota | Actinomycetia | Actinomycetales | Bifidobacteriaceae | Bifidobacterium | animalis | 0.00 × 10+0 [0.00 × 10+0–1.02 × 10−7] | 0.00 × 10+0 [0.00 × 10+0–8.49 × 10−4] | 8.45 ± 2.40 | 8.54 × 10−3 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Leuconostoc | carnosum | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 0.00 × 10+0 [0.00 × 10+0–1.41 × 10−6] | 8.04 ± 2.75 | 3.07 × 10−2 |
Actinobacteriota | Actinomycetia | Actinomycetales | Bifidobacteriaceae | Bifidobacterium | unknown | 0.00 × 10+0 [0.00 × 10+0–1.34 × 10−7] | 4.09 × 10−7 [0.00 × 10+0–4.28 × 10−5] | 7.56 ± 2.11 | 8.16 × 10−3 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Weissella | cibaria | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 1.87 × 10−7 [0.00 × 10+0–7.83 × 10−6] | 7.12 ± 1.32 | 1.90 × 10−5 |
Actinobacteriota | Actinomycetia | Actinomycetales | Bifidobacteriaceae | Bifidobacterium | longum | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 4.09 × 10−7 [0.00 × 10+0–3.54 × 10−6] | 7.08 ± 2.00 | 8.31 × 10−3 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lactobacillus | unknown | 0.00 × 10+0 [0.00 × 10+0–7.78 × 10−8] | 0.00 × 10+0 [0.00 × 10+0–8.45 × 10−6] | 6.05 ± 1.31 | 2.52 × 10−4 |
Firmicutes_A | Clostridia | Oscillospirales | Oscillospiraceae | Flavonifractor | unknown | 0.00 × 10+0 [0.00 × 10+0–1.40 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–8.78 × 10−5] | 5.34 ± 1.88 | 3.57 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lacticaseibacillus | unknown | 0.00 × 10+0 [0.00 × 10+0–7.78 × 10−7] | 3.74 × 10−6 [1.95 × 10−7–1.12 × 10−4] | 5.09 ± 1.06 | 1.53 × 10−4 |
Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Lactococcus | garvieae | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 0.00 × 10+0 [0.00 × 10+0–3.28 × 10−6] | 4.59 ± 1.17 | 2.80 × 10−3 |
Actinobacteriota | Coriobacteriia | Coriobacteriales | Coriobacteriaceae | Collinsella | phocaeensis | 0.00 × 10+0 [0.00 × 10+0–1.76 × 10−5] | 0.00 × 10+0 [0.00 × 10+0–1.56 × 10−4] | 4.02 ± 1.40 | 3.45 × 10−2 |
Firmicutes_A | Clostridia | Lachnospirales | Lachnospiraceae | Blautia_A | sp000433815 | 2.65 × 10−6 [3.99 × 10−7–6.95 × 10−5] | 4.59 × 10−5 [7.21 × 10−6–4.53 × 10−4] | 2.54 ± 0.62 | 1.73 × 10−3 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lactobacillus | acidophilus | 1.55 × 10−6 [4.27 × 10−7–3.29 × 10−6] | 5.05 × 10−6 [8.73 × 10−7–3.89 × 10−4] | 2.30 ± 0.70 | 1.31 × 10−2 |
Firmicutes_A | Clostridia | Lachnospirales | Lachnospiraceae | Ruminococcus_A | sp000432335 | 1.35 × 10−5 [1.34 × 10−6–6.17 × 10−5] | 5.09 × 10−5 [7.29 × 10−6–3.15 × 10−4] | 2.05 ± 0.60 | 1.04 × 10−2 |
Decreased at week 10 (38 species) | |||||||||
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Kosakonia | cowanii | 0.00 × 10+0 [0.00 × 10+0–9.15 × 10−7] | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | −7.84 ± 2.30 | 1.11 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Kluyvera | cryocrescens | 2.43 × 10−7 [0.00 × 10+0–1.06 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–9.36 × 10−8] | −5.55 ± 1.40 | 2.77 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Providencia | rettgeri_D | 2.66 × 10−7 [0.00 × 10+0–3.05 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–8.66 × 10−7] | −5.49 ± 1.94 | 3.57 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Vagococcaceae | Vagococcus | fluvialis_A | 0.00 × 10+0 [0.00 × 10+0–3.99 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–3.44 × 10−7] | −4.87 ± 1.72 | 3.57 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Proteus | unknown | 2.67 × 10−6 [0.00 × 10+0–8.42 × 10−5] | 0.00 × 10+0 [0.00 × 10+0–7.36 × 10−5] | −4.82 ± 1.73 | 3.74 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Proteus | mirabilis | 3.24 × 10−4 [7.18 × 10−6–1.01 × 10−2] | 5.01 × 10−6 [3.69 × 10−7–4.25 × 10−3] | −4.27 ± 0.84 | 6.96 × 10−5 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Kluyvera | ascorbata | 0.00 × 10+0 [0.00 × 10+0–5.80 × 10−7] | 0.00 × 10+0 [0.00 × 10+0–2.35 × 10−7] | −3.93 ± 1.29 | 2.24 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Enterococcaceae | Enterococcus_A | avium | 8.57 × 10−4 [3.54 × 10−6–7.50 × 10−3] | 1.90 × 10−5 [8.49 × 10−7–5.11 × 10−4] | −3.71 ± 0.76 | 1.20 × 10−4 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Klebsiella | quasivariicola | 2.43 × 10−7 [0.00 × 10+0–5.51 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–1.09 × 10−6] | −3.62 ± 1.13 | 1.53 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Streptococcus | equi | 0.00 × 10+0 [0.00 × 10+0–1.71 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–6.14 × 10−7] | −3.29 ± 1.15 | 3.48 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Cronobacter | malonaticus | 2.25 × 10−6 [0.00 × 10+0–6.97 × 10−6] | 2.88 × 10−7 [0.00 × 10+0–3.07 × 10−6] | −3.27 ± 0.83 | 2.80 × 10−3 |
Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Streptococcus | orisratti | 0.00 × 10+0 [0.00 × 10+0–4.27 × 10−7] | 0.00 × 10+0 [0.00 × 10+0–4.55 × 10−7] | −3.19 ± 1.14 | 3.74 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | hormaechei | 5.52 × 10−7 [0.00 × 10+0–2.20 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–7.67 × 10−7] | −3.14 ± 0.97 | 1.43 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Phytobacter | diazotrophicus | 0.00 × 10+0 [0.00 × 10+0–1.62 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–1.05 × 10−6] | −3.12 ± 1.16 | 4.41 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Yersinia | pestis | 7.18 × 10−5 [1.17 × 10−5–1.37 × 10−4] | 9.73 × 10−6 [1.70 × 10−6–1.14 × 10−4] | −3.11 ± 0.67 | 2.52 × 10−4 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Klebsiella_A | unknown | 2.14 × 10−6 [2.68 × 10−7–8.37 × 10−6] | 6.82 × 10−7 [0.00 × 10+0–3.53 × 10−6] | −2.88 ± 0.81 | 8.31 × 10−3 |
Firmicutes | Bacilli | Haloplasmatales | Turicibacteraceae | Turicibacter | sp001543345 | 1.44 × 10−5 [1.46 × 10−6–2.72 × 10−4] | 1.05 × 10−5 [4.88 × 10−7–3.32 × 10−5] | −2.68 ± 0.63 | 1.05 × 10−3 |
Firmicutes_A | Clostridia | Clostridiales | Clostridiaceae | Clostridium | saudiense | 1.06 × 10−5 [1.11 × 10−6–5.82 × 10−5] | 3.07 × 10−6 [1.63 × 10−7–1.42 × 10−5] | −2.66 ± 0.64 | 1.73 × 10−3 |
Firmicutes_A | Clostridia | Clostridiales | Clostridiaceae | Clostridium | sp000753455 | 1.55 × 10−6 [1.79 × 10−7–2.01 × 10−5] | 5.34 × 10−7 [0.00 × 10+0–1.94 × 10−6] | −2.64 ± 0.66 | 2.54 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Citrobacter_A | rodentium | 1.58 × 10−5 [1.33 × 10−6–5.33 × 10−5] | 6.79 × 10−6 [1.09 × 10−6–1.46 × 10−5] | −2.64 ± 0.69 | 3.78 × 10−3 |
Proteobacteria | unknown | unknown | unknown | unknown | unknown | 8.51 × 10−6 [4.13 × 10−6–2.41 × 10−5] | 5.34 × 10−6 [1.26 × 10−6–1.36 × 10−5] | −2.61 ± 0.56 | 2.52 × 10−4 |
Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Lactococcus | piscium_C | 6.28 × 10−7 [0.00 × 10+0–1.86 × 10−6] | 1.88 × 10−7 [0.00 × 10+0–1.51 × 10−6] | −2.58 ± 0.72 | 8.16 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Klebsiella_A | grimontii | 2.17 × 10−5 [1.18 × 10−6–7.85 × 10−5] | 6.51 × 10−6 [2.19 × 10−7–2.63 × 10−5] | −2.53 ± 0.70 | 8.16 × 10−3 |
Firmicutes | Bacilli | Lactobacillales | Enterococcaceae | Enterococcus_A | gilvus | 2.96 × 10−6 [1.09 × 10−6–9.06 × 10−6] | 1.53 × 10−6 [0.00 × 10+0–5.57 × 10−6] | −2.41 ± 0.75 | 1.49 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | sichuanensis | 1.74 × 10−6 [0.00 × 10+0–6.17 × 10−6] | 4.04 × 10−7 [0.00 × 10+0–1.83 × 10−6] | −2.38 ± 0.78 | 2.24 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Citrobacter | freundii | 3.36 × 10−5 [1.12 × 10−5–7.62 × 10−5] | 3.99 × 10−5 [1.65 × 10−6–1.48 × 10−4] | −2.32 ± 0.69 | 1.11 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Klebsiella_A | michiganensis | 1.28 × 10−5 [2.62 × 10−6–3.94 × 10−5] | 2.83 × 10−6 [1.56 × 10−6–1.59 × 10−5] | −2.27 ± 0.68 | 1.31 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | cloacae_M | 1.55 × 10−6 [0.00 × 10+0–7.34 × 10−6] | 6.00 × 10−7 [8.80 × 10−8–5.20 × 10−6] | −2.22 ± 0.80 | 3.84 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Hafnia | paralvei | 2.19 × 10−5 [7.68 × 10−6–9.94 × 10−5] | 5.34 × 10−6 [3.11 × 10−6–2.76 × 10−5] | −2.21 ± 0.64 | 1.01 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Klebsiella | pneumoniae | 2.61 × 10−5 [5.86 × 10−6–1.50 × 10−4] | 1.98 × 10−5 [1.86 × 10−6–8.75 × 10−5] | −2.19 ± 0.67 | 1.43 × 10−2 |
Fusobacteriota | Fusobacteriia | Fusobacteriales | Leptotrichiaceae | Streptobacillus | moniliformis | 1.55 × 10−5 [5.45 × 10−6–2.77 × 10−5] | 7.22 × 10−6 [1.77 × 10−6–1.69 × 10−5] | −2.18 ± 0.60 | 7.95 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Citrobacter | unknown | 1.85 × 10−5 [6.14 × 10−6–1.06 × 10−4] | 1.12 × 10−5 [4.53 × 10−6–8.12 × 10−5] | −2.16 ± 0.72 | 2.59 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Citrobacter | werkmanii | 1.35 × 10−5 [4.14 × 10−6–6.91 × 10−5] | 6.90 × 10−6 [6.13 × 10−7–2.37 × 10−5] | −2.15 ± 0.64 | 1.24 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Escherichia | coli | 3.86 × 10−2 [5.42 × 10−3–1.90 × 10−1] | 1.84 × 10−2 [6.54 × 10−3–8.06 × 10−2] | −2.12 ± 0.60 | 8.37 × 10−3 |
Firmicutes | Bacilli | Lactobacillales | Enterococcaceae | Enterococcus_A | unknown | 2.01 × 10−5 [2.22 × 10−6–1.29 × 10−4] | 5.27 × 10−6 [5.40 × 10−7–4.47 × 10−5] | −2.12 ± 0.63 | 1.11 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | unknown | unknown | unknown | 3.76 × 10−5 [7.41 × 10−6–9.78 × 10−5] | 1.69 × 10−5 [3.98 × 10−6–7.56 × 10−5] | −2.10 ± 0.63 | 1.20 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Enterococcaceae | Enterococcus_D | unknown | 1.09 × 10−5 [2.82 × 10−6–3.41 × 10−4] | 4.86 × 10−6 [8.65 × 10−7–7.83 × 10−5] | −2.08 ± 0.74 | 3.72 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Salmonella | enterica | 1.68 × 10−4 [3.19 × 10−5–2.08 × 10−4] | 7.76 × 10−5 [3.43 × 10−5–1.43 × 10−4] | −2.05 ± 0.59 | 8.89 × 10−3 |
Phylum | Class | Order | Family | Genus | Species | Relative Abundance (%) Median [IQR] | Week 10 vs. Baseline | ||
---|---|---|---|---|---|---|---|---|---|
Baseline | Week 10 | Log2 FC Mean ± SE | Adjusted p-Value 1 | ||||||
Increased at week 10 (31 species) | |||||||||
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Yersinia | nurmii | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 14.81 ± 4.29 | 1.42 × 10−2 |
Firmicutes_A | Clostridia | Oscillospirales | Oscillospiraceae | Flavonifractor | unknown | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 0.00 × 10+0 [0.00 × 10+0–7.13 × 10−5] | 8.66 ± 2.04 | 1.39 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Lelliottia | amnigena_A | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 3.35 × 10−7 [0.00 × 10+0–2.66 × 10−6] | 8.22 ± 2.34 | 1.22 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Providencia | rettgeri_D | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 0.00 × 10+0 [0.00 × 10+0–3.67 × 10−6] | 7.15 ± 2.11 | 1.64 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Franconibacter | helveticus | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 0.00 × 10+0 [0.00 × 10+0–2.21 × 10−6] | 6.98 ± 2.37 | 4.34 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | cancerogenus | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | 6.41 × 10−7 [0.00 × 10+0–1.79 × 10−6] | 6.66 ± 1.76 | 5.25 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Citrobacter | gillenii | 0.00 × 10+0 [0.00 × 10+0–5.80 × 10−7] | 4.37 × 10−7 [0.00 × 10+0–1.40 × 10−6] | 5.89 ± 1.46 | 2.35 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Citrobacter | europaeus | 0.00 × 10+0 [0.00 × 10+0–4.77 × 10−6] | 2.17 × 10−6 [4.13 × 10−7–4.77 × 10−5] | 5.25 ± 0.96 | 1.12 × 10−5 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | roggenkampii | 0.00 × 10+0 [0.00 × 10+0–7.33 × 10−6] | 1.24 × 10−5 [1.06 × 10−6–4.26 × 10−5] | 5.15 ± 0.86 | 1.31 × 10−6 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Leclercia | adecarboxylata | 0.00 × 10+0 [0.00 × 10+0–2.03 × 10−7] | 5.17 × 10−7 [1.09 × 10−7–7.09 × 10−6] | 4.86 ± 1.17 | 1.89 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | cloacae_M | 1.15 × 10−7 [0.00 × 10+0–1.96 × 10−6] | 4.39 × 10−6 [2.72 × 10−7–2.77 × 10−5] | 4.48 ± 0.89 | 9.80 × 10−5 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Kluyvera | cryocrescens | 0.00 × 10+0 [0.00 × 10+0–4.02 × 10−7] | 2.68 × 10−7 [0.00 × 10+0–2.61 × 10−6] | 4.31 ± 1.50 | 4.75 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Klebsiella | quasivariicola | 0.00 × 10+0 [0.00 × 10+0–1.12 × 10−6] | 6.35 × 10−7 [0.00 × 10+0–8.16 × 10−6] | 3.97 ± 1.23 | 2.17 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Raoultella | ornithinolytica | 8.89 × 10−7 [6.73 × 10−8–1.83 × 10−6] | 8.91 × 10−6 [1.33 × 10−6–6.04 × 10−5] | 3.83 ± 0.83 | 3.79 × 10−4 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Pantoea | ananatis | 0.00 × 10+0 [0.00 × 10+0–9.54 × 10−7] | 5.68 × 10−7 [0.00 × 10+0–5.83 × 10−6] | 3.75 ± 1.15 | 2.15 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | ludwigii | 4.87 × 10−7 [0.00 × 10+0–2.60 × 10−6] | 7.27 × 10−6 [0.00 × 10+0–2.39 × 10−5] | 3.63 ± 0.92 | 3.39 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Pluralibacter | gergoviae | 2.17 × 10−7 [0.00 × 10+0–7.54 × 10−7] | 9.75 × 10−7 [0.00 × 10+0–9.11 × 10−6] | 3.57 ± 1.00 | 1.15 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | cloacae | 2.24 × 10−7 [0.00 × 10+0–2.76 × 10−6] | 3.36 × 10−6 [3.92 × 10−7–1.13 × 10−5] | 3.40 ± 0.96 | 1.22 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | kobei | 1.50 × 10−6 [3.01 × 10−7–1.19 × 10−5] | 1.81 × 10−5 [3.40 × 10−6–6.89 × 10−5] | 3.39 ± 0.70 | 1.34 × 10−4 |
Bacteroidota | Bacteroidia | Bacteroidales | Tannerellaceae | Parabacteroides | sp900155425 | 4.48 × 10−7 [0.00 × 10+0–2.11 × 10−6] | 5.68 × 10−7 [0.00 × 10+0–1.02 × 10−5] | 3.33 ± 1.15 | 4.50 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Raoultella | planticola | 0.00 × 10+0 [0.00 × 10+0–7.59 × 10−7] | 1.63 × 10−6 [0.00 × 10+0–2.39 × 10−5] | 3.27 ± 1.07 | 3.22 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Klebsiella | quasipneumoniae | 5.70 × 10−6 [0.00 × 10+0–1.90 × 10−5] | 1.71 × 10−5 [2.84 × 10−6–7.39 × 10−5] | 3.27 ± 0.74 | 8.03 × 10−4 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Citrobacter | unknown | 9.52 × 10−6 [4.92 × 10−6–1.97 × 10−5] | 8.82 × 10−5 [4.31 × 10−6–1.05 × 10−3] | 3.20 ± 0.78 | 2.13 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Klebsiella_A | oxytoca | 4.34 × 10−7 [0.00 × 10+0–2.05 × 10−5] | 8.55 × 10−6 [5.06 × 10−7–3.83 × 10−5] | 3.06 ± 0.93 | 2.09 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | unknown | 2.44 × 10−6 [8.35 × 10−7–6.91 × 10−6] | 1.66 × 10−5 [5.58 × 10−6–1.29 × 10−4] | 2.95 ± 0.67 | 8.03 × 10−4 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Cronobacter | malonaticus | 7.73 × 10−7 [0.00 × 10+0–3.08 × 10−6] | 3.97 × 10−6 [1.10 × 10−6–1.58 × 10−5] | 2.86 ± 0.88 | 2.17 × 10−2 |
Firmicutes_C | Negativicutes | Selenomonadales | Selenomonadaceae | Megamonas | funiformis | 7.02 × 10−7 [0.00 × 10+0–3.22 × 10−3] | 1.72 × 10−4 [4.76 × 10−7–6.68 × 10−3] | 2.82 ± 0.92 | 3.25 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Klebsiella | variicola | 3.05 × 10−6 [1.07 × 10−6–1.66 × 10−5] | 2.16 × 10−5 [8.05 × 10−6–5.52 × 10−5] | 2.73 ± 0.71 | 4.32 × 10−3 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Citrobacter | freundii | 2.50 × 10−5 [3.89 × 10−6–5.65 × 10−5] | 5.88 × 10−5 [6.85 × 10−6–5.12 × 10−4] | 2.17 ± 0.75 | 4.50 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Citrobacter | portucalensis | 7.48 × 10−5 [3.96 × 10−5–1.28 × 10−4] | 1.15 × 10−4 [1.58 × 10−5–1.35 × 10−3] | 2.15 ± 0.73 | 4.34 × 10−2 |
Proteobacteria | Gammaproteobacteria | Enterobacterales | Enterobacteriaceae | Enterobacter | sesami | 1.57 × 10−6 [0.00 × 10+0–4.34 × 10−6] | 1.01 × 10−5 [1.77 × 10−6–1.49 × 10−5] | 2.08 ± 0.71 | 4.34 × 10−2 |
Decreased at week 10 (17 species) | |||||||||
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lactiplantibacillus | unknown | 1.91 × 10−7 [0.00 × 10+0–2.24 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | −8.61 ± 2.11 | 2.13 × 10−3 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Loigolactobacillus | coryniformis | 2.24 × 10−7 [0.00 × 10+0–1.88 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | −7.92 ± 2.26 | 1.22 × 10−2 |
Actinobacteriota | Actinomycetia | Actinomycetales | Bifidobacteriaceae | Bifidobacterium | animalis | 0.00 × 10+0 [0.00 × 10+0–6.83 × 10−7] | 0.00 × 10+0 [0.00 × 10+0–0.00 × 10+0] | −7.52 ± 2.61 | 4.70 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Leuconostoc | lactis | 1.11 × 10−6 [0.00 × 10+0–1.51 × 10−5] | 0.00 × 10+0 [0.00 × 10+0–1.71 × 10−6] | −4.89 ± 1.27 | 4.32 × 10−3 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lactiplantibacillus | plantarum | 4.28 × 10−6 [1.19 × 10−6–1.77 × 10−5] | 3.25 × 10−7 [0.00 × 10+0–1.95 × 10−6] | −4.75 ± 0.96 | 1.14 × 10−4 |
Firmicutes | Bacilli | Lactobacillales | Brochotrichaceae | Barochoric | thermosphacta | 4.04 × 10−7 [0.00 × 10+0–2.41 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–2.46 × 10−7] | −4.72 ± 1.59 | 4.34 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Carnobacteriaceae | unknown | unknown | 0.00 × 10+0 [0.00 × 10+0–9.51 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–1.19 × 10−6] | −4.63 ± 1.39 | 2.00 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Weissella | cibaria | 7.63 × 10−7 [0.00 × 10+0–1.44 × 10−5] | 0.00 × 10+0 [0.00 × 10+0–1.83 × 10−6] | −4.50 ± 1.40 | 2.17 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lactobacillus | unknown | 4.87 × 10−7 [0.00 × 10+0–4.00 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–7.12 × 10−7] | −4.37 ± 1.40 | 2.82 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Latilactobacillus | sakei | 7.38 × 10−7 [9.78 × 10−8–4.16 × 10−5] | 1.82 × 10−7 [0.00 × 10+0–1.89 × 10−6] | −4.36 ± 1.28 | 1.64 × 10−2 |
Bacteroidota | Bacteroidia | Bacteroidales | Bacteroidaceae | Bacteroides | pyogenes_A | 2.58 × 10−7 [0.00 × 10+0–1.91 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–2.91 × 10−6] | −4.13 ± 1.32 | 2.77 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Levilactobacillus | brevis | 9.84 × 10−7 [0.00 × 10+0–2.92 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–3.41 × 10−7] | −3.96 ± 1.22 | 2.17 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Leuconostoc | unknown | 1.55 × 10−6 [9.54 × 10−8–9.30 × 10−6] | 0.00 × 10+0 [0.00 × 10+0–4.06 × 10−6] | −3.59 ± 1.14 | 2.57 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lacticaseibacillus | unknown | 8.65 × 10−7 [0.00 × 10+0–4.64 × 10−5] | 2.18 × 10−7 [0.00 × 10+0–5.34 × 10−6] | −3.32 ± 1.13 | 4.34 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lacticaseibacillus | paracasei | 7.36 × 10−6 [1.58 × 10−6–4.00 × 10−5] | 1.09 × 10−6 [9.21 × 10−8–2.47 × 10−5] | −2.81 ± 0.86 | 2.09 × 10−2 |
Bacteroidota | Bacteroidia | Bacteroidales | Bacteroidaceae | Bacteroides | xylanisolvens | 6.70 × 10−6 [1.61 × 10−6–4.65 × 10−4] | 5.40 × 10−6 [1.11 × 10−6–5.06 × 10−5] | −2.56 ± 0.79 | 2.17 × 10−2 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Leuconostoc | gelidum | 5.29 × 10−6 [7.32 × 10−7–1.75 × 10−5] | 1.37 × 10−6 [0.00 × 10+0–9.28 × 10−6] | −2.39 ± 0.82 | 4.36 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tate, D.E.; Tanprasertsuk, J.; Jones, R.B.; Maughan, H.; Chakrabarti, A.; Khafipour, E.; Norton, S.A.; Shmalberg, J.; Honaker, R.W. A Randomized Controlled Trial to Evaluate the Impact of a Novel Probiotic and Nutraceutical Supplement on Pruritic Dermatitis and the Gut Microbiota in Privately Owned Dogs. Animals 2024, 14, 453. https://doi.org/10.3390/ani14030453
Tate DE, Tanprasertsuk J, Jones RB, Maughan H, Chakrabarti A, Khafipour E, Norton SA, Shmalberg J, Honaker RW. A Randomized Controlled Trial to Evaluate the Impact of a Novel Probiotic and Nutraceutical Supplement on Pruritic Dermatitis and the Gut Microbiota in Privately Owned Dogs. Animals. 2024; 14(3):453. https://doi.org/10.3390/ani14030453
Chicago/Turabian StyleTate, Devon E., Jirayu Tanprasertsuk, Roshonda B. Jones, Heather Maughan, Anirikh Chakrabarti, Ehsan Khafipour, Sharon A. Norton, Justin Shmalberg, and Ryan W. Honaker. 2024. "A Randomized Controlled Trial to Evaluate the Impact of a Novel Probiotic and Nutraceutical Supplement on Pruritic Dermatitis and the Gut Microbiota in Privately Owned Dogs" Animals 14, no. 3: 453. https://doi.org/10.3390/ani14030453
APA StyleTate, D. E., Tanprasertsuk, J., Jones, R. B., Maughan, H., Chakrabarti, A., Khafipour, E., Norton, S. A., Shmalberg, J., & Honaker, R. W. (2024). A Randomized Controlled Trial to Evaluate the Impact of a Novel Probiotic and Nutraceutical Supplement on Pruritic Dermatitis and the Gut Microbiota in Privately Owned Dogs. Animals, 14(3), 453. https://doi.org/10.3390/ani14030453