Unveiling the Impact of Rapeseed Meal on Feeding Behavior and Anorexigenic Endocrine in Litopenaeus vannamei
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diet Design and Preparation
2.2. Aquaculture and Sample Processing
2.3. Feeding Behavior Indicator Statistics
2.4. Transcriptome Analysis
2.5. Statistics and Analysis
3. Results
3.1. Effects of Rapeseed Meal Replacing Soybean Meal on Appetite
3.2. Differential Genes Response to Rapeseed Meal Diet
3.3. Annotation and Enrichment of Differential Genes in Response to Rapeseed Meal
3.4. Potential Neuropeptides in Response to Rapeseed Meal Diet
3.5. Neuropeptides in Response to Rapeseed Meal Diet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, P.; Mallik, A.; Sarang, N.; Lingam, S.S. A review on alternative plant protein sources available for future sustainable aqua feed production. Int. J. Chem. Stud. 2019, 7, 1399–1404. [Google Scholar]
- Lim, C.; Lee, C.-S.; Webster, C.D. Alternative Protein Sources in Aquaculture Diets; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Gyan, W.R.; Ayiku, S.; Yang, Q. Effects of replacing fishmeal with soybean products in fish and crustaceans performance. J. Aquac. Res. Dev. 2019, 10, 1–7. [Google Scholar]
- Friedt, W.; Tu, J.; Fu, T. Academic and economic importance of Brassica napus rapeseed. In The Brassica napus Genome; Springer: Cham, Switzerland, 2018; pp. 1–20. [Google Scholar]
- Kaiser, F.; Harbach, H.; Schulz, C. Rapeseed proteins as fishmeal alternatives: A review. Rev. Aquac. 2022, 14, 1887–1911. [Google Scholar] [CrossRef]
- Von Danwitz, A.; Schulz, C. Effects of dietary rapeseed glucosinolates, sinapic acid and phytic acid on feed intake, growth performance and fish health in turbot (Psetta maxima L.). Aquaculture 2020, 516, 734624. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Beszterda, M.; Nogala-Kałucka, M. Current research developments on the processing and improvement of the nutritional quality of rapeseed (Brassica napus L.). Eur. J. Lipid Sci. Technol. 2019, 121, 1800045. [Google Scholar] [CrossRef]
- Wilding, J. Neuropeptides and appetite control. Diabetic Med. 2002, 19, 619–627. [Google Scholar] [CrossRef]
- Arora, S. Role of neuropeptides in appetite regulation and obesity—A review. Neuropeptides 2006, 40, 375–401. [Google Scholar] [CrossRef]
- Fadda, M.; Hasakiogullari, I.; Temmerman, L.; Beets, I.; Zels, S.; Schoofs, L. Regulation of feeding and metabolism by neuropeptide F and short neuropeptide F in invertebrates. Front. Endocrinol. 2019, 10, 64. [Google Scholar] [CrossRef]
- Kaiser, F.; Harloff, H.J.; Tressel, R.P.; Kock, T.; Schulz, C. Effects of highly purified rapeseed protein isolate as fishmeal alternative on nutrient digestibility and growth performance in diets fed to rainbow trout (Oncorhynchus mykiss). Aquacult. Nutr. 2021, 27, 1352–1362. [Google Scholar] [CrossRef]
- Jiang, J.; Shi, D.; Zhou, X.Q.; Feng, L.; Liu, Y.; Jiang, W.D.; Wu, P.; Tang, L.; Wang, Y.; Zhao, Y. Effects of lysine and methionine supplementation on growth, body composition and digestive function of grass carp (Ctenopharyngodon idella) fed plant protein diets using high-level canola meal. Aquacult. Nutr. 2016, 22, 1126–1133. [Google Scholar] [CrossRef]
- Kissil, G.W.; Lupatsch, I.; Higgs, D.; Hardy, R. Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream Sparus aurata L. Aquacult. Res. 2000, 31, 595–601. [Google Scholar] [CrossRef]
- Hanström, B. Neurosecretory pathways in the head of crustaceans, insects and vertebrates. Nature 1953, 171, 72–73. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.; Pan, L.; Zhang, X.; Li, Y. Neuroendocrine-immune regulation mechanism in crustaceans: A review. Rev. Aquac. 2022, 14, 378–398. [Google Scholar] [CrossRef]
- Chen, R.; Ma, M.; Hui, L.; Zhang, J.; Li, L. Measurement of neuropeptides in crustacean hemolymph via MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 2009, 20, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Phetsanthad, A.; Vu, N.Q.; Yu, Q.; Buchberger, A.R.; Chen, Z.; Keller, C.; Li, L. Recent advances in mass spectrometry analysis of neuropeptides. Mass Spectrom. Rev. 2023, 42, 706–750. [Google Scholar] [CrossRef] [PubMed]
- Phetsanthad, A.; Roycroft, C.; Li, L. Enrichment and fragmentation approaches for enhanced detection and characterization of endogenous glycosylated neuropeptides. Proteomics 2023, 23, 2100375. [Google Scholar] [CrossRef]
- Buchberger, A.R.; Sauer, C.S.; Vu, N.Q.; DeLaney, K.; Li, L. Temporal study of the perturbation of crustacean neuropeptides due to severe hypoxia using 4-plex reductive dimethylation. J. Proteome Res. 2020, 19, 1548–1555. [Google Scholar] [CrossRef]
- Buchberger, A.R.; Vu, N.Q.; Johnson, J.; DeLaney, K.; Li, L. A simple and effective sample preparation strategy for MALDI-MS imaging of neuropeptide changes in the crustacean brain due to hypoxia and hypercapnia stress. J. Am. Soc. Mass Spectrom. 2020, 31, 1058–1065. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Ryan, L.W.; Nocillado, J.; Le Groumellec, M.; Elizur, A.; Ventura, T. Transcriptomic changes across vitellogenesis in the black tiger prawn (Penaeus monodon), neuropeptides and G protein-coupled receptors repertoire curation. Gen. Comp. Endocrinol. 2020, 298, 113585. [Google Scholar] [CrossRef]
- DeLaney, K.; Hu, M.; Hellenbrand, T.; Dickinson, P.S.; Nusbaum, M.P.; Li, L. Mass spectrometry quantification, localization, and discovery of feeding-related neuropeptides in Cancer borealis. ACS Chem. Neurosci. 2021, 12, 782–798. [Google Scholar] [CrossRef]
- Dickinson, P.S.; Powell, D.J. Diversity of neuropeptidergic modulation in decapod crustacean cardiac and feeding systems. Curr. Opin. Neurobiol. 2023, 83, 102802. [Google Scholar] [CrossRef]
- Christie, A.E.; Stemmler, E.A.; Dickinson, P.S. Crustacean neuropeptides. Cell Mol. Life Sci. 2010, 67, 4135–4169. [Google Scholar] [CrossRef]
- Ma, M.; Gard, A.L.; Xiang, F.; Wang, J.; Davoodian, N.; Lenz, P.H.; Malecha, S.R.; Christie, A.E.; Li, L. Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides 2010, 31, 27–43. [Google Scholar] [CrossRef]
- Bu, X.Y.; Wang, Y.Y.; Chen, F.Y.; Tang, B.B.; Luo, C.Z.; Wang, Y.; Ge, X.P.; Yang, Y.H. An evaluation of replacing fishmeal with rapeseed meal in the diet of Pseudobagrus ussuriensis: Growth, feed utilization, nonspecific immunity, and growth-related gene expression. J. World Aquacult. Soc. 2018, 49, 1068–1080. [Google Scholar] [CrossRef]
- Luo, Y.; Ai, Q.; Mai, K.; Zhang, W.; Xu, W.; Zhang, Y. Effects of dietary rapeseed meal on growth performance, digestion and protein metabolism in relation to gene expression of juvenile cobia (Rachycentron canadum). Aquaculture 2012, 368, 109–116. [Google Scholar] [CrossRef]
- Hermann, B.; Reusch, T.B.; Hanel, R. Effects of dietary purified rapeseed protein concentrate on hepatic gene expression in juvenile turbot (Psetta maxima). Aquacult. Nutr. 2016, 22, 170–180. [Google Scholar] [CrossRef]
- Chen, R.; Hui, L.; Cape, S.S.; Wang, J.; Li, L. Comparative neuropeptidomic analysis of food intake via a multifaceted mass spectrometric approach. ACS Chem. Neurosci. 2010, 1, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Seligman, I. Bursicon. In Neurohormonal Techniques in Insects; Springer: Berlin/Heidelberg, Germany, 1980; pp. 137–153. [Google Scholar]
- Bauer, C. Bursicon: A novel regulator of intestinal homeostasis and systemic metabolism in adult Drosophila. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2017. [Google Scholar]
- Liu, J.; Liu, A.; Liu, F.; Huang, H.; Ye, H. Role of neuroparsin 1 in vitellogenesis in the mud crab, Scylla paramamosain. Gen. Comp. Endocrinol. 2020, 285, 113248. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ye, H.; Feng, B.; Huang, H. Insights into insulin-like peptide system in invertebrates from studies on IGF binding domain-containing proteins in the female mud crab, Scylla paramamosain. Mol. Cell Endocrinol. 2015, 416, 36–45. [Google Scholar] [CrossRef]
- Moreau, R.; Gourdoux, L.; Girardie, J. Neuroparsin: A new energetic neurohormone in the African locust. Arch. Insect Biochem. Physiol. 1988, 8, 135–145. [Google Scholar] [CrossRef]
- DeLaney, K.; Hu, M.; Wu, W.; Nusbaum, M.P.; Li, L. Mass spectrometry profiling and quantitation of changes in circulating hormones secreted over time in Cancer borealis hemolymph due to feeding behavior. Anal. Bioanal. Chem. 2022, 414, 533–543. [Google Scholar] [CrossRef] [PubMed]
Ingredients g·kg−1 | RSM0 | RSM50 |
---|---|---|
Fish meal (67% protein) | 150 | 150 |
Soybean meal (49.3% protein) | 396 | 198 |
Peanut meal (49.8% protein) | 120 | 120 |
Shrimp shell powder (49.7% protein) | 50 | 50 |
Fermented rapeseed meal (45.1% protein) | 0 | 216 |
Corn starch | 70 | 70 |
Methionine | 2.6 | 1.9 |
Lysine | 0 | 1.2 |
Fish oil | 12 | 12 |
Soybean oil | 13 | 16 |
Soy lecithin | 15 | 15 |
Cholesterol | 5 | 5 |
Calcium dihydrogen phosphate | 20 | 20 |
Composite multidimensional 1 | 20 | 20 |
Composite multi-mineral 2 | 20 | 20 |
Adhesive CMC | 30 | 30 |
Choline chloride | 5 | 5 |
Antioxidant BHT | 0.5 | 0.5 |
Chromium oxide | 0.5 | 0.5 |
Betaine | 10 | 10 |
Cellulose | 60.4 | 38.9 |
Total | 1000 | 1000 |
Approximate composition (%) | ||
Crude protein | 35.80 | 36.71 |
Crude fat | 8.64 | 8.35 |
Ash content | 11.26 | 11.69 |
Moisture | 10.54 | 10.47 |
Gene ID | CDS ID | Neuropeptide | Position |
---|---|---|---|
LOC113824994 | XM_027377778.1 | Neuroparsin | 27–99 |
LOC113819780 | XM_027371973.1 | Orcomyotropin | 78–88 |
Orcokinin1 | 106–118; 121–133; 136–148; 151–163; 166–178; 181–193; 196–208; 211–223; 226–238; 241–253; 256–268; 271–283; | ||
Orcokinin2 | 286–296 | ||
LOC113827917 | Gene.92714 | Bursicon β2 | 86–102 |
XM_027380862.1 | Bursicon β2 | 86–102 | |
LOC113811920 | XM_027363774.1 | Allatostatin B | 189–196 |
Gene.42028 | Allatostatin B | 214–221 | |
LOC113811755 | XM_027363562.1 | YRPRP4 | 3666–3678 |
XM_027363563.1 | YRPRP4 | 3643–3655 | |
XM_027363561.1 | YRPRP4 | 3678–3690 | |
XM_027363559.1 | YRPRP4 | 3686–3698 | |
XM_027363564.1 | YRPRP4 | 3610–3622 | |
XM_027363560.1 | YRPRP4 | 3679–3691 | |
Gene.41176 | YRPRP4 | 3465–3477 | |
Gene.41353 | YRPRP4 | 3498–3510 | |
LOC113811756 | XM_027363565.1 | YRPRP4 | 2374–2386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Ran, H.; Zhang, Q.; Chen, H.; Han, F.; Xu, C.; Zhao, Q. Unveiling the Impact of Rapeseed Meal on Feeding Behavior and Anorexigenic Endocrine in Litopenaeus vannamei. Animals 2024, 14, 540. https://doi.org/10.3390/ani14040540
Zhou B, Ran H, Zhang Q, Chen H, Han F, Xu C, Zhao Q. Unveiling the Impact of Rapeseed Meal on Feeding Behavior and Anorexigenic Endocrine in Litopenaeus vannamei. Animals. 2024; 14(4):540. https://doi.org/10.3390/ani14040540
Chicago/Turabian StyleZhou, Bo, Hongmei Ran, Qijun Zhang, Hu Chen, Fenglu Han, Chang Xu, and Qun Zhao. 2024. "Unveiling the Impact of Rapeseed Meal on Feeding Behavior and Anorexigenic Endocrine in Litopenaeus vannamei" Animals 14, no. 4: 540. https://doi.org/10.3390/ani14040540
APA StyleZhou, B., Ran, H., Zhang, Q., Chen, H., Han, F., Xu, C., & Zhao, Q. (2024). Unveiling the Impact of Rapeseed Meal on Feeding Behavior and Anorexigenic Endocrine in Litopenaeus vannamei. Animals, 14(4), 540. https://doi.org/10.3390/ani14040540