Salicornia ramosissima Biomass as a Partial Replacement of Wheat Meal in Diets for Juvenile European Seabass (Dicentrarchus labrax)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dietary Treatments
2.2. Fish Rearing and Sampling
Digestibility Trial
2.3. Bromatological Analyses
2.4. Muscle Biochemical Profile
2.5. Data Analysis
3. Results
3.1. Zootechnical Parameters
3.2. Economic Conversion Ratio
3.3. Whole-Body Composition
3.4. Digestibility
3.5. Muscle Biochemical Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koyro, H.W.; Khan, M.A.; Lieth, H. Halophytic crops: A resource for the future to reduce the water crisis? Emirates J. Food Agric. 2011, 23, 1–16. [Google Scholar] [CrossRef]
- Buhmann, A.K.; Waller, U.; Wecker, B.; Papenbrock, J. Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric. Water Manag. 2015, 149, 102–114. [Google Scholar] [CrossRef]
- Jerónimo, D.; Lillebø, A.; Cremades, J.; Cartaxana, P.; Calado, R. Recovering wasted nutrients from shrimp farming through the combined culture of polychaetes and halophytes. Sci. Rep. 2021, 11, 6587. [Google Scholar] [CrossRef] [PubMed]
- Isca, V.M.S.; Seca, A.M.L.; Pinto, D.C.G.A.; Silva, H.; Silva, A.M.S. Lipophilic profile of the edible halophyte Salicornia ramosissima. Food Chem. 2014, 165, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; da Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Custódio, M.; Villasante, S.; Cremades, J.; Calado, R.; Lillebø, A.I. Unravelling the potential of halophytes for marine integrated multi-trophic aquaculture (IMTA)— a perspective on performance, opportunities, and challenges. Aquac. Environ. Interact. 2017, 9, 445–460. [Google Scholar] [CrossRef]
- Maciel, E.; Lillebø, A.; Domingues, P.; da Costa, E.; Calado, R.; Domingues, M.R.M. Polar lipidome profiling of Salicornia ramosissima and Halimione portulacoides and the relevance of lipidomics for the valorization of halophytes. Phytochemistry 2018, 153, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.; Rodrigues, M.J.; Pereira, C.; Oliveira, M.; Barreira, L.; Varela, J.; Trampetii, F.; Custódio, L. Natural products from extreme marine environments: Searching for potential industrial uses within extremophile plants. Ind. Crops Prod. 2016, 94, 299–307. [Google Scholar] [CrossRef]
- Glenn, E.P.; Coates, W.E.; Riley, J.J.; Kuehl, R.O.; Swingle, R.S. Salicornia bigelovii Torr.: A seawater-irrigated forage for goats. Anim. Feed. Sci. Technol. 1992, 40, 21–30. [Google Scholar] [CrossRef]
- FAOa—Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/3/cc3020en/cc3020en_wheat.pdf (accessed on 21 November 2023).
- FAOb —Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/fishery/statistics-query/en/aquaculture/aquaculture_quantity (accessed on 1 November 2023).
- FAOc —Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/fishery/statistics-query/en/aquaculture/aquaculture_value (accessed on 1 November 2023).
- Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Feed matters: Satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Cashion, T.; Le Manach, F.; Zeller, D.; Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish. Fish. 2017, 18, 837–844. [Google Scholar] [CrossRef]
- Ytrestøyl, T.; Aas, T.S.; Åsgård, T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 2015, 448, 365–374. [Google Scholar] [CrossRef]
- Stevens, J.R.; Newton, R.W.; Tlusty, M.; Little, D.C. The rise of aquaculture by-products: Increasing food production, value, and sustainability through strategic utilisation. Mar. Policy 2018, 90, 115–124. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous species. In Feed and Feeding Practices in Aquaculture; Davies, A., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 203–233. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kaushik, S.J.; Coves, D.; Dutto, G.; Blanc, D. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 2004, 230, 391–404. [Google Scholar] [CrossRef]
- Peres, M.H.; Oliva-Teles, A. Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture 1999, 170, 337–348. [Google Scholar] [CrossRef]
- Moreira, I.S.; Peres, H.; Couto, A.; Enes, P.; Oliva-Teles, A. Temperature and dietary carbohydrate level effects on performance and metabolic utilisation of diets in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2008, 274, 153–160. [Google Scholar] [CrossRef]
- Gasto, L.; Henry, M.; Piccolo, G.; Marono, S.; Gai, F.; Renna, M.; Lussiana, C.; Antonopoulou, E.; Mola, P.; Chatzifotis, S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed. Sci. Technol. 2016, 220, 34–35. [Google Scholar] [CrossRef]
- Coutinho, F.; Simões, R.; Monge-Ortiz, R.; Furuya, W.M.; Pousão-Ferreira, P.; Kaushik, S.; Oliva-Teles, A.; Peres, H. Effects of dietary methionine and taurine supplementation to low-fish meal diets on growth performance and oxidative status of European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2016, 479, 447–454. [Google Scholar] [CrossRef]
- Torrecillas, S.; Betancor, M.B.; Caballero, M.J.; Rivero, F.; Robaina, L.; Izquierdo, M.; Montero, D. Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: Effects on growth performance, tissue fatty acid profile and lipid metabolism. Fish. Physiol. Biochem. 2018, 44, 283–300. [Google Scholar] [CrossRef]
- Reubush, K.J.; Heath, A.G. Metabolic responses to acute handling by fingerling inland and anadromous striped bass. J. Fish. Biol. 1996, 49, 830–841. [Google Scholar] [CrossRef]
- Small, B.C. Effect of isoeugenol sedation on plasma cortisol, glucose, and lactate dynamics in channel catfish Ictalurus punctatus exposed to three stressors. Aquaculture 2004, 238, 469–481. [Google Scholar] [CrossRef]
- Yang, S.; Wu, H.; He, K.; Yan, T.; Zhou, J.; Zhao, L.L.; Sun, J.L.; Lian, W.Q.; Zhang, D.M.; Du, Z.J.; et al. Response of AMP-activated protein kinase and lactate metabolism of largemouth bass (Micropterus salmoides) under acute hypoxic stress. Sci. Total Environ. 2019, 666, 1071–1079. [Google Scholar] [CrossRef]
- Currey, L.M.; Heupel, M.R.; Simpfendorfer, C.A.; Clark, T.D. Blood lactate loads of redthroat emperor Lethrinus miniatus associated with handling stress and exhaustive exercise. J. Fish. Biol. 2013, 83, 1401–1406. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Y.; Zhang, J.; Sun, Y.; Wang, J. Dietary effects of succinic acid on the growth, digestive enzymes, immune response and resistance to ammonia stress of Litopenaeus vannamei. Fish. Shellfish. Imunol. 2018, 78, 10–17. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Y.; Ding, X.; Xiong, D.; Zhang, J. Response of intestine microbiota, digestion, and immunity in Pacific white shrimp Litopenaeus vannamei to dietary succinate. Aquaculture 2020, 517, 734762. [Google Scholar] [CrossRef]
- Rombenso, A.; Truong, H.; Simon, C. Dietary butyrate alone or in combination with succinate and fumarate improved survival, feed intake, growth and nutrient retention efficiency of juvenile Penaeus monodon. Aquaculture 2020, 528, 735492. [Google Scholar] [CrossRef]
- Yang, D.; Yang, H.; Cao, Y.; Jiang, M.; Zheng, J.; Peng, B. Succinate promotes phagocytosis of monocytes/macrophages in teleost fish. Front. Mol. Biosci. 2021, 8, 644957. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Lu, C.; Hao, Q.; Zhang, Q.; Yang, Y.; Olsen, R.E.; Ringo, E.; Ran, C.; Zhang, Z.; Zhou, Z. Dietary succinate impacts the nutritional metabolism, protein succinylation and gut microbiota of zebrafish. Front. Nutr. 2022, 9, 894278. [Google Scholar] [CrossRef] [PubMed]
- Horrocks, L.A.; Yeo, Y.K. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 1999, 40, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Narayan, B.; Miyashita, K.; Hosakawa, M. Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-A review. Food Rev. Int. 2006, 22, 291–307. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kalupahana, N.; Moustaid-Moussa, N. Health benefits of n-3 Polyunsaturated Fatty Acids: Eicosapentaenoic Acid and Docosahexaenoic Acid. In Advances in Food and Nutrition Research; Kim, S.K., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 65, pp. 211–222. [Google Scholar] [CrossRef]
- Calder, P.C. Docosahexaenoic Acid. Ann. Nutr. Metab. 2016, 69, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fat. Acids 2017, 136, 3–13. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Production: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 23 November 2023).
Ingredients (%) | CTRL | SAL2.5 | SAL5 | SAL10 |
---|---|---|---|---|
Fishmeal LT70 a | 35.00 | 35.00 | 35.00 | 35.00 |
Krill meal b | 5.00 | 5.00 | 5.00 | 5.00 |
Soy protein concentrate c | 13.00 | 13.00 | 13.00 | 13.00 |
Wheat gluten d | 10.00 | 10.10 | 10.10 | 10.30 |
Corn gluten meal e | 8.00 | 8.00 | 8.00 | 8.00 |
Wheat meal f | 16.30 | 13.70 | 11.20 | 6.00 |
Vitamin and mineral premix g | 1.00 | 1.00 | 1.00 | 1.00 |
Monocalcium phosphate h | 0.78 | 0.78 | 0.78 | 0.78 |
Yttrium oxide i | 0.02 | 0.02 | 0.02 | 0.02 |
Fish oil a | 5.20 | 5.20 | 5.20 | 5.20 |
Rapeseed oil j | 5.70 | 5.70 | 5.70 | 5.70 |
Salicornia ramosissima biomass k | 0.00 | 2.50 | 5.00 | 10.00 |
Production cost (EUR Kg−1) | ||||
Salicornia—0.000 EUR kg−1 | 1.164 | 1.159 | 1.151 | 1.140 |
Salicornia—0.145 EUR kg−1 | 1.164 | 1.162 | 1.159 | 1.155 |
Salicornia—0.232 EUR kg−1 | 1.164 | 1.164 | 1.163 | 1.163 |
Nutrient Composition (% Dry Matter) | CTRL | SAL2.5 | SAL5 | SAL10 |
---|---|---|---|---|
Dry matter | 94.1 | 96.5 | 95.5 | 94.5 |
Crude protein | 52.4 | 51.4 | 53.7 | 52.1 |
Crude lipids | 16.8 | 16.8 | 17.3 | 17.3 |
Ash | 9.0 | 9.8 | 10.5 | 11.3 |
Energy (KJ g−1 DM) | 23.4 | 23.1 | 23.3 | 22.7 |
CTRL | SAL2.5 | SAL5 | SAL10 | p Value | |
---|---|---|---|---|---|
Initial weight (g) | 7.27 ± 0.03 | 7.24 ± 0.03 | 7.27 ± 0.09 | 7.26 ± 0.10 | 0.959 |
Final weight (g) | 43.70 ± 0.32 | 43.30 ± 1.28 | 43.60 ± 0.98 | 43.50 ± 0.95 | 0.980 |
SGR (% day−1) | 2.93 ± 0.01 | 2.93 ± 0.05 | 2.93 ± 0.03 | 2.93 ± 0.03 | 0.996 |
FCR | 1.00 ± 0.03 | 0.99 ± 0.01 | 0.99 ± 0.02 | 1.01 ± 0.00 | 0.470 |
Feed intake (% ABW day−1) | 2.32 ± 0.04 | 2.30 ± 0.02 | 2.30 ± 0.03 | 2.36 ± 0.02 | 0.996 |
Survival (%) | 94.60 ± 4.10 | 97.10 ± 1.60 | 97.90 ± 1.20 | 95.80 ± 1.60 | 0.856 |
CTRL | SAL2.5 | SAL5 | SAL10 | p Value | |
---|---|---|---|---|---|
ECR (Salicornia EUR kg−1 0.000) | 1.159 ± 0.041 | 1.147 ± 0.018 | 1.138 ± 0.023 | 1.157 ± 0.007 | 0.727 |
ECR (Salicornia EUR kg−1 0.145) | 1.159 ± 0.041 | 1.150 ± 0.018 | 1.146 ± 0.023 | 1.172 ± 0.007 | 0.614 |
ECR (Salicornia EUR Kg−1 0.232) | 1.159 ± 0.041 | 1.152 ± 0.018 | 1.150 ± 0.023 | 1.180 ± 0.007 | 0.483 |
CTRL | SAL2.5 | SAL5 | SAL10 | p Value | |
---|---|---|---|---|---|
Dry matter (%) | 29.5 ± 2.5 | 32.4 ± 1.1 | 32.4 ± 0.9 | 30.9 ± 0.7 | 0.125 |
Protein (%) | 14.5 ± 1.6 | 16.0 ± 1.3 | 16.9 ± 1.4 | 15.7 ± 1.2 | 0.549 |
Lipids (%) | 12.7 ± 1.2 | 12.9 ± 0.1 | 11.8 ± 0.6 | 12.4 ± 0.7 | 0.111 |
Ash (%) | 4.5 ± 0.7 | 5.7 ± 0.7 | 5.6 ± 0.6 | 5.4 ± 1.1 | 0.652 |
Energy (KJ g−1) | 7.8 ± 0.8 a | 8.9 ± 0.3 b | 9.0 ± 0.0 b | 8.5 ± 0.2 ab | 0.018 |
CTRL | SAL2.5 | SAL5 | SAL10 | p Value | |
---|---|---|---|---|---|
Dry matter 1 | 81.4 ± 0.5 a | 84.2 ± 0.6 b | 83.2 ± 0.6 b | 80.2 ± 0.8 a | <0.001 |
Protein 2 | 96.4 ± 0.4 ab | 97.1 ± 0.0 b | 96.9 ± 0.3 ab | 96.3 ± 0.3 a | 0.034 |
Lipids 2 | 98.9 ± 0.5 | 98.6 ± 0.5 | 98.6 ± 0.4 | 98.4 ± 0.6 | 0.664 |
Compounds (μg mg Dry Weight−1) | CTRL | SAL2.5 | SAL5 | SAL10 | p Value | |
---|---|---|---|---|---|---|
Alcohols | Glycerol | 18.47 ± 0.28 bc | 18.76 ± 1.32 c | 17.20 ± 0.94 b | 13.99 ± 0.44 a | <0.001 |
Amino acids | Alanine | 3.29 ± 0.21 b | 2.95 ± 0.08 a | 3.02 ± 0.07 a | 3.55 ± 0.12 c | <0.001 |
Glycine | 4.72 ± 0.11 b | 3.24 ± 0.36 a | 5.13 ± 0.21 b | 4.70 ± 0.45 b | <0.001 | |
Serine | 2.95 ± 0.06 b | 2.88 ± 0.04 a | 2.89 ± 0.02 ab | 2.88 ± 0.01 a | 0.019 | |
Organic acids | Acetic acid | 0.04 ± 0.01 a | 0.41 ± 0.02 b | 0.35 ± 0.17 b | 0.29 ± 0.20 b | 0.001 |
Lactic acid | 23.98 ± 0.50 b | 22.38 ± 1.49 b | 19.06 ± 1.19 a | 18.73 ± 0.34 a | <0.001 | |
Malic acid | 0.39 ± 0.04 c | 0.16 ± 0.07 a | 0.24 ± 0.03 ab | 0.26 ± 0.05 b | <0.001 | |
Propanoic acid | 0.35 ± 0.01 d | 0.17 ± 0.01 a | 0.22 ± 0.01 b | 0.31 ± 0.02 c | <0.001 | |
Succinic acid | 0.22 ± 0.00 a | 0.31 ± 0.04 b | 0.39 ± 0.01 c | 0.74 ± 0.21 d | <0.001 | |
Saturated fatty acids | Heptadecanoic acid | 1.06 ± 0.13 a | 0.87 ± 0.09 a | 0.90 ± 0.03 a | 1.31 ± 0.20 b | <0.001 |
Myristic acid | 9.30 ± 0.38 bc | 8.31 ± 0.39 a | 8.70 ± 0.16 ab | 9.56 ± 0.77 c | 0.001 | |
Palmitic acid | 31.84 ± 2.15 b | 28.54 ± 3.00 ab | 28.59 ± 1.41 ab | 26.79 ± 1.02 a | 0.003 | |
Pentadecanoic acid | 5.16 ± 0.07 ab | 5.09 ± 0.03 a | 5.17 ± 0.02 ab | 5.23 ± 0.10 b | 0.012 | |
Stearic acid | 28.68 ± 3.24 b | 24.13 ± 3.84 a | 24.65 ± 1.57 ab | 23.30 ± 1.43 a | 0.013 | |
Unsaturated fatty acids | 11,14-Eicosadienoic acid | 3.40 ± 0.05 | 3.36 ± 0.05 | 3.39 ± 0.03 | 3.41 ± 0.05 | 0.273 |
11-Eicosenoic acid | 5.51 ± 0.48 a | 5.03 ± 0.25 a | 4.98 ± 0.12 a | 6.29 ± 0.37 b | <0.001 | |
9,12-Octadecadienoic acid | 7.68 ± 0.44 b | 6.89 ± 0.34 a | 6.96 ± 0.13 a | 7.61 ± 0.42 b | 0.001 | |
Arachidonic acid | 3.40 ± 0.05 | 3.42 ± 0.04 | 3.45 ± 0.03 | 3.40 ± 0.04 | 0.180 | |
Docosahexaenoic acid (DHA) | 5.77 ± 0.38 a | 5.71 ± 0.23 a | 5.75 ± 0.17 a | 6.35 ± 0.34 b | 0.003 | |
Eicosapentaenoic acid (EPA) | 6.92 ± 0.33 c | 6.30 ± 0.34 ab | 5.84 ± 0.12 a | 6.59 ± 0.35 bc | <0.001 | |
Oleic acid | 58.19 ± 2.59 b | 56.05 ± 5.17 b | 54.59 ± 1.97 b | 48.79 ± 2.46 a | 0.001 | |
Palmitelaidic acid | 12.76 ± 0.83 c | 7.22 ± 0.44 a | 7.67 ± 0.25 a | 9.09 ± 1.00 b | <0.001 | |
Sterols | Cholesterol | 2.66 ± 0.22 bc | 2.42 ± 0.26 ab | 2.26 ± 0.18 a | 2.97 ± 0.24 c | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreto, A.; Couto, A.; Jerónimo, D.; Laranjeira, A.; Silva, B.; Nunes, C.; Veríssimo, A.C.S.; Pinto, D.C.G.A.; Dias, J.; Pacheco, M.; et al. Salicornia ramosissima Biomass as a Partial Replacement of Wheat Meal in Diets for Juvenile European Seabass (Dicentrarchus labrax). Animals 2024, 14, 614. https://doi.org/10.3390/ani14040614
Barreto A, Couto A, Jerónimo D, Laranjeira A, Silva B, Nunes C, Veríssimo ACS, Pinto DCGA, Dias J, Pacheco M, et al. Salicornia ramosissima Biomass as a Partial Replacement of Wheat Meal in Diets for Juvenile European Seabass (Dicentrarchus labrax). Animals. 2024; 14(4):614. https://doi.org/10.3390/ani14040614
Chicago/Turabian StyleBarreto, André, Ana Couto, Daniel Jerónimo, Adriana Laranjeira, Bruna Silva, Catarina Nunes, Ana C. S. Veríssimo, Diana C. G. A. Pinto, Jorge Dias, Mário Pacheco, and et al. 2024. "Salicornia ramosissima Biomass as a Partial Replacement of Wheat Meal in Diets for Juvenile European Seabass (Dicentrarchus labrax)" Animals 14, no. 4: 614. https://doi.org/10.3390/ani14040614
APA StyleBarreto, A., Couto, A., Jerónimo, D., Laranjeira, A., Silva, B., Nunes, C., Veríssimo, A. C. S., Pinto, D. C. G. A., Dias, J., Pacheco, M., Costas, B., & Rocha, R. J. M. (2024). Salicornia ramosissima Biomass as a Partial Replacement of Wheat Meal in Diets for Juvenile European Seabass (Dicentrarchus labrax). Animals, 14(4), 614. https://doi.org/10.3390/ani14040614