Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Registries, Pruning, and Software Tool
2.2. Inbreeding, Coancestry, Non-Random Mating Degree, and Genetic Conservation Index
2.3. Pedigree Completeness Index
2.4. Meteorological and Moon Cycle Records
2.5. A Priori Assumptions
2.6. Regularized Generalized Canonical Correlation Analysis (RCCA)
2.7. Pearson’s Product–Moment Correlations
2.8. Validity
2.9. Variability Explanation
2.10. Canonical Correlations
2.11. Roots
2.12. Wilks’ Lambda and R2
2.13. Canonical Correlation Analysis k-Fold Cross-Validation
3. Results
3.1. A Priori Assumptions
3.2. Regularized Generalized Canonical Correlation Analysis (RCCA)
Pearson’s Product–Moment Correlations
3.3. Validity and Variability Explanation
3.4. Canonical Correlations and Roots
- F1:
- 0.531 × Height + 0.088 × Rainfall + 0.238 × Minimum Temperature + 0.248 × Maximum Temperature + 0.509 × Wind Direction + 0.169 × Average Wind Speed + 0.123 × Gust Speed + −0.037 × Sunlight hours + 0.315 × Minimum Barometric Pressure
- F2:
- −0.515 × Height + 0.186 × Rainfall + −0.502 × Minimum Temperature + 0.583 × Maximum Temperature + 0.085 × Wind Direction + 0.782 × Average Wind Speed + −0.177 × Gust Speed + 0.066 × Sunlight hours + 0.212 × Minimum Barometric Pressure
- F1:
- 0.097 × Inbreeding (F. %) + −0.217 × Relatedness Coefficient (ΔR. %) + 0.105 × Genetic Conservation Index (GCI) + 0.973 × Maximum number of Generations + −0.232 × Individual Increase in Inbreeding Rate (ΔF. %) + −0.044 × Offspring
- F2:
- 0.614 × Inbreeding (F. %) + −0.169 × Relatedness Coefficient (ΔR. %) + −0.974 × Genetic Conservation Index (GCI) + 1.038 × Maximum number of Generations + 0.008 × Individual Increase in Inbreeding Rate (ΔF. %) + −0.039 × Offspring
3.5. Wilks’ Lambda and R2
3.6. Canonical Correlation Analysis k-Fold Cross-Validation
4. Discussion
4.1. Genetic Diversity Parameters’ Inclusion
4.2. Climatic Conditions Parameters’ Inclusion
4.3. Genetic Diversity Parameters’ Intracluster Correlations
4.4. Climatic Conditions Parameters’ Intracluster Correlations
4.5. Genetic Diversity and Climatic Conditions Parameters’ Canonical Correlations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 2010, 41, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Meissner, K.J.; Mix, A.C.; Abram, N.J.; Austermann, J.; Brovkin, V.; Capron, E.; Colombaroli, D.; Daniau, A.-L.; Dyez, K.A. Palaeoclimate constraints on the impact of 2 C anthropogenic warming and beyond. Nat. Geosci. 2018, 11, 474–485. [Google Scholar] [CrossRef]
- Jones, P.D.; Osborn, T.J.; Briffa, K.R. The evolution of climate over the last millennium. Science 2001, 292, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.; Antwi-Agyei, P.; Aragon-Durand, F.; Babiker, M.; Bertoldi, P.; Bind, M.; Brown, S.; Buckeridge, M.; Camilloni, I.; Cartwright, A. Technical Summary: Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Chen, I.-C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.C.; De Meester, L.; Vellend, M.; Stoks, R.; Vanoverbeke, J. A crucial step toward realism: Responses to climate change from an evolving metacommunity perspective. Evol. Appl. 2012, 5, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Mandleni, B.; Anim, F. Perceptions of cattle and sheep farmers on climate change and adaptation in the Eastern Cape Province of South Africa. J. Hum. Ecol. 2011, 34, 107–112. [Google Scholar] [CrossRef]
- Urban, M.C.; Richardson, J.L.; Freidenfelds, N.A. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evol. Appl. 2014, 7, 88–103. [Google Scholar] [CrossRef]
- Hoffmann, I. Adaptation to climate change–exploring the potential of locally adapted breeds. Animal 2013, 7, 346–362. [Google Scholar] [CrossRef]
- Jarvis, A.; Lane, A.; Hijmans, R.J. The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23. [Google Scholar] [CrossRef]
- Jarvis, A.; Upadhyaya, H.D.; Gowda, C.; Aggarwal, P.K.; Fujisaka, S.; Anderson, B. Plant genetic resources for food and agriculture and climate change. In Coping with Climate Change—The Roles of Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; pp. 9–22. [Google Scholar]
- Gutiérrez, J.P.; Marmi, J.; Goyache, F.; Jordana, J. Pedigree information reveals moderate to high levels of inbreeding and a weak population structure in the endangered Catalonian donkey breed. J. Anim. Breed. Genet. 2005, 122, 378–386. [Google Scholar] [CrossRef]
- Luís, C.; Cothran, E.G.; Oom, M.d.M. Inbreeding and genetic structure in the endangered Sorraia horse breed: Implications for its conservation and management. J. Hered. 2007, 98, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, R.; Tullo, E.; Cito, A.; Caroli, A.; Pieragostini, E. Monitoring of genetic diversity in the endangered Martina Franca donkey population. J. Anim. Sci. 2011, 89, 1304–1311. [Google Scholar] [CrossRef]
- Santana, M.L.; Bignardi, A.B. Status of the genetic diversity and population structure of the Pêga donkey. Trop. Anim. Health Prod. 2015, 47, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Navas, F.; Jordana, J.; León, J.M.; Barba, C.; Delgado, J.V. A model to infer the demographic structure evolution of endangered donkey populations. Animal 2017, 11, 2129–2138. [Google Scholar] [CrossRef]
- ORDEN APA/3277/2002; De 13 de Diciembre, Por la Que se Establecen las Normas Zootécnicas de la Raza Equina Hispano-Árabe (Vigente Hasta el 28 de Enero de 2009). Spanish Ministry of Agriculture, Fisheries and Food: Madrid, Spain, 2002.
- Marín Navas, C.; Delgado Bermejo, J.V.; McLean, A.K.; León Jurado, J.M.; Rodriguez de la Borbolla y Ruiberriz de Torres, A.; Navas González, F.J. Discriminant Canonical Analysis of the contribution of Spanish and Arabian purebred horses to the genetic diversity and population structure of Hispano-Arabian Horses. Animals 2021, 11, 269. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Agricultura, Pesca Y Alimentación. Resolución de 20 de Agosto de 2020, de la Dirección General de Producciones y Mercados Agrarios, Por la que se Aprueba el Programa de Cría del Caballo de la Raza Hispano-Árabe y el Programa de Difusión de la Mejora. BOE » Núm. 241, de 9 de Septiembre de 2020, 2020, Sección III.Otras Disposiones, 75733. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2020-10419 (accessed on 15 February 2023).
- Marín Navas, C.; Delgado Bermejo, J.V.; McLean, A.K.; León Jurado, J.M.; Navas González, F.J. Análisis del número efectivo de rebaños en la raza equina Hispanoárabe. In Proceedings of the XXI Simposio Iberoamericano sobre Conservación y Uso de Recursos Zoogenéticos Locales, Córdoba, Spain, 15–16 December 2020. [Google Scholar]
- Marín Navas, C.; Delgado Bermejo, J.V.; McLean, A.K.; León Jurado, J.M.; Navas González, F.J. Estudio de las distancias genéticas de Nei y conexión entre ganaderías en la raza equina Hispanoárabe. In Proceedings of the XXI Simposio Iberoamericano sobre Conservación y Uso de Recursos Zoogenéticos Locales, Córdoba, Spain, 15–16 December 2020. [Google Scholar]
- Savolainen, O.; Lascoux, M.; Merilä, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 2013, 14, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Bay, R.A.; Harrigan, R.J.; Le Underwood, V.; Gibbs, H.L.; Smith, T.B.; Ruegg, K. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 2018, 359, 83–86. [Google Scholar] [CrossRef]
- Shafer, A.B.; Wolf, J.B.; Alves, P.C.; Bergström, L.; Bruford, M.W.; Brännström, I.; Colling, G.; Dalén, L.; De Meester, L.; Ekblom, R. Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 2015, 30, 78–87. [Google Scholar] [CrossRef]
- Bay, R.A.; Rose, N.; Barrett, R.; Bernatchez, L.; Ghalambor, C.K.; Lasky, J.R.; Brem, R.B.; Palumbi, S.R.; Ralph, P. Predicting responses to contemporary environmental change using evolutionary response architectures. Am. Nat. 2017, 189, 463–473. [Google Scholar] [CrossRef]
- Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; Cornwell, W.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 2014, 17, 1351–1364. [Google Scholar] [CrossRef]
- Marín Navas, C.; Delgado Bermejo, J.V.; McLean, A.K.; León Jurado, J.M.; Rodriguez de la Borbolla y Ruiberriz de Torres, A.; Navas González, F.J. One Hundred Years of Coat Colour Influences on Genetic Diversity in the Process of Development of a Composite Horse Breed. Vet. Sci. 2022, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.H.E.; Luo, Z. Computing inbreeding coefficients in large populations. Genet. Sel. Evol. 1992, 24, 305–313. [Google Scholar] [CrossRef]
- Leroy, G.; Mary-Huard, T.; Verrier, E.; Danvy, S.; Charvolin, E.; Danchin-Burge, C. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse. Genet. Sel. Evol. 2013, 45, 1–10. [Google Scholar] [CrossRef]
- Gutiérrez, J.P.; Cervantes, I.; Goyache, F. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet. 2009, 126, 327–332. [Google Scholar] [CrossRef]
- Cervantes, I.; Goyache, F.; Molina, A.; Valera, M.; Gutiérrez, J.P. Estimation of effective population size from the rate of coancestry in pedigreed populations. J. Anim. Breed. Genet. 2011, 128, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Caballero, A.; Toro, M.A. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet. Res. 2000, 75, 331–343. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the Genetics of Populations. Theory of Gene Frequencies; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Oliveira, R.; Brasil, L.; Delgado, J.; Peguezuelos, J.; León, J.; Guedes, D.; Arandas, J.; Ribeiro, M. Genetic diversity and population structure of the Spanish Murciano–Granadina goat breed according to pedigree data. Small Rumin. Res. 2016, 144, 170–175. [Google Scholar] [CrossRef]
- Marín Navas, C.; Navas González, F.J.; Castillo López, V.; Payeras Capellà, L.; Gómez Fernández, M.; Delgado Bermejo, J.V. Impact of breeding for coat and spotting patterns on the population structure and genetic diversity of an islander endangered dog breed. Res. Vet. Sci. 2020, 131, 117–130. [Google Scholar] [CrossRef]
- Maignel, L.; Boichard, D.; Verrier, E. Genetic variability of French dairy breeds estimated from pedigree information. Interbull Bull. 1996, 14, 49–54. [Google Scholar]
- Boichard, D.; Maignel, L.; Verrier, E. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol. 1997, 29, 5–23. [Google Scholar] [CrossRef]
- Thompson, B. Canonical Correlation: Recent Extensions for Modelling Educational Processes. In Proceedings of the 64th Annual Meeting of the American Educational Research Association, Boston, MA, USA, 7–11 April 1980. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Mod. Anal. 2011, 2, 21–33. [Google Scholar]
- Garson, G.D. Statnotes: Topics in Multivariate Analysis, Canonical Correlation. Available online: http://www2.chass.ncsu.edu/garson/ (accessed on 16 February 2010).
- Winkler, A.M.; Renaud, O.; Smith, S.M.; Nichols, T.E. Permutation inference for canonical correlation analysis. NeuroImage 2020, 220, 117065. [Google Scholar] [CrossRef] [PubMed]
- Motulsky, H.J.; Brown, R.E. Detecting outliers when fitting data with nonlinear regression—A new method based on robust nonlinear regression and the false discovery rate. BMC Bioinform. 2006, 7, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Martins-Bessa, A.; Quaresma, M.; Leiva, B.; Calado, A.; Arando, A.; Marín, C.; Navas, F.J. Age-related linear and nonlinear modelling of semen quality parameters in Miranda donkeys. Ital. J. Anim. Sci. 2021, 20, 1029–1041. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson Edition: Boston, MA, USA, 2007. [Google Scholar]
- XLSTAT Pearson Edition; Addinsoft: Paris, France, 2014.
- IBM Corp. IBM SPSS Statistics for Windows, 25.0; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Profillidis, V.A.; Botzoris, G.N. Chapter 5—Statistical Methods for Transport Demand Modeling. In Modeling of Transport Demand: Analyzing, Calculating, and Forecasting Transport Demand; Elsevier: Amsterdam, The Netherlands, 2018; pp. 163–224. [Google Scholar]
- Gil-Lebrero, S.; Navas González, F.J.; Gámiz López, V.; Quiles Latorre, F.J.; Flores Serrano, J.M. Regulation of Microclimatic Conditions inside Native Beehives and Its Relationship with Climate in Southern Spain. Sustainability 2020, 12, 6431. [Google Scholar] [CrossRef]
- Parkhomenko, E.; Tritchler, D.; Beyene, J. Sparse canonical correlation analysis with application to genomic data integration. Stat. Appl. Genet. Mol. Biol. 2009, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- González, I.; Lê Cao, K.-A.; Davis, M.J.; Déjean, S. Visualising associations between paired ‘omics’ data sets. BioData Min. 2012, 5, 1–23. [Google Scholar] [CrossRef]
- Olson, C.L. On choosing a test statistic in multivariate analysis of variance. Psychol. Bull. 1976, 83, 579. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 16; StataCorp: College Station, TX, USA, 2019. [Google Scholar]
- Liang, K.-H.; Krus, D.J.; Webb, J.M. K-fold crossvalidation in canonical analysis. Multivariate Behav. Res. 1995, 30, 539–545. [Google Scholar] [CrossRef]
- Jung, K.; Bae, D.-H.; Um, M.-J.; Kim, S.; Jeon, S.; Park, D. Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation. Sustainability 2020, 12, 400. [Google Scholar] [CrossRef]
- González, I.; Déjean, S.; Martin, P.; Baccini, A. CCA: An R package to extend canonical correlation analysis. J. Stat. Softw. 2008, 23, 1–14. [Google Scholar] [CrossRef]
- Lê Cao, K.-A.; Déjean, S. mixOmics 6.16.3; Bioconductor: Toulouse, France, 2021. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2020; Volume 1. [Google Scholar]
- González, I.; Le Cao, K.-A.; Dejean, S. tune.rcc: Estimate the Parameters of Regularization for Regularized CCA, R package version 6.1.1.; mixOmics: Omics Data Integration Project: Toulouse, France, 2009. [Google Scholar]
- De Cecco, L.; Giannoccaro, M.; Marchesi, E.; Bossi, P.; Favales, F.; Locati, L.D.; Licitra, L.; Pilotti, S.; Canevari, S. Integrative miRNA-Gene Expression Analysis Enables Refinement of Associated Biology and Prediction of Response to Cetuximab in Head and Neck Squamous Cell Cancer. Genes 2017, 8, 35. [Google Scholar] [CrossRef]
- Lange, K. Mathematical and Statistical Methods for Genetic Analysis; Springer: New York, NY, USA, 2002; Volume 488. [Google Scholar]
- Haldane, J.B.S. Suggestions as to quantitative measurement of rates of evolution. Evolution 1949, 3, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.P.; Goyache, F. A note on ENDOG: A computer program for analysing pedigree information. J. Anim. Breed. Genet. 2005, 122, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Baumung, R.; Sölkner, J. Pedigree and marker information requirements to monitor genetic variability. Genet. Select. Evol. 2003, 35, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Danchin-Burge, C.; Leroy, G.; Brochard, M.; Moureaux, S.; Verrier, E. Evolution of the genetic variability of eight French dairy cattle breeds assessed by pedigree analysis. J. Animal. Breed. Genet. 2012, 129, 206–217. [Google Scholar] [CrossRef] [PubMed]
- González-Recio, O.; De Maturana, E.L.; Gutiérrez, J. Inbreeding depression on female fertility and calving ease in Spanish dairy cattle. J. Dairy. Sci. 2007, 90, 5744–5752. [Google Scholar] [CrossRef] [PubMed]
- Karl, T.R.; Williams, C.N., Jr.; Young, P.J.; Wendland, W.M. A model to estimate the time of observation bias associated with monthly mean maximum, minimum and mean temperatures for the United States. J. Appl. Meteorolol. Climatol. 1986, 25, 145–160. [Google Scholar] [CrossRef]
- Linvill, D.E. Calculating chilling hours and chill units from daily maximum and minimum temperature observations. HortScience 1990, 25, 14–16. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Donat, M.G.; Mueller, B.; Alexander, L.V. No pause in the increase of hot temperature extremes. Nat. Clim. Chang. 2014, 4, 161–163. [Google Scholar] [CrossRef]
- Ter, A.; Water, I.F.O.; Ter Level, A.; NGVD, I.F.A. A Graphical Method for Estimation of Barometric Efficiency from Continuous Data—Concepts and Application to a Site in the Piedmont; Scientific Investigations Report 2007-5111; Air Force Plant 6: Marietta, GA, USA, 2003. [Google Scholar]
- Esteves, L.; Williams, J.; Brown, J. Looking for evidence of climate change impacts in the eastern Irish Sea. Nat. Hazards Earth Syst. Sci. 2011, 11, 1641–1656. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Emanuel, K.; Chonabayashi, S.; Bakkensen, L. The impact of climate change on global tropical cyclone damage. Nat. Clim. Chang. 2012, 2, 205–209. [Google Scholar] [CrossRef]
- Genin, A.; Levy, L.; Sharon, G.; Raitsos, D.E.; Diamant, A. Rapid onsets of warming events trigger mass mortality of coral reef fish. Proc. Natl. Acad. Sci. USA 2020, 117, 25378–25385. [Google Scholar] [CrossRef]
- Bodo, I.; Lawrence, A.; Langlois, B. Conservation Genetics of Endangered Horse Breeds; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 155–162. [Google Scholar]
- MacCluer, J.W.; Boyce, A.J.; Dyke, B.; Weitkamp, L.R.; Pfenning, D.W.; Parsons, C.J. Inbreeding and pedigree structure in Standardbred horses. J. Hred. 1983, 74, 394–399. [Google Scholar] [CrossRef]
- Iglesias Pastrana, C.; Navas González, F.J.; Ruiz Aguilera, M.J.; Dávila García, J.A.; Delgado Bermejo, J.V.; Abelló, M.T. White-naped mangabeys’ viable insurance population within European Zoo Network. Sci. Rep. 2021, 11, 674. [Google Scholar] [CrossRef] [PubMed]
- Falconer, D.; Mackay, T. Introduction to Quantitative Genetics, 4th ed.; Prentice Hall: Harlow, UK, 1996; Available online: https://www.cabdirect.org/cabdirect/abstract/19601603365 (accessed on 20 May 2019).
- Granado-Tajada, I.; Rodríguez-Ramilo, S.T.; Legarra, A.; Ugarte, E. Inbreeding, effective population size, and coancestry in the Latxa dairy sheep breed. J. Dairy Sci. 2020, 103, 5215–5226. [Google Scholar] [CrossRef] [PubMed]
- Caballero, A. Developments in the prediction of effective population size. Heredity 1994, 73, 657–679. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.P.; Cervantes, I.; Molina, A.; Valera, M.; Goyache, F. Individual increase in inbreeding allows estimating effective sizes from pedigrees. Genet. Sel. Evol. 2008, 40, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Bernstein, R.; Hoppe, A.; Bienefeld, K. Short-term effects of controlled mating and selection on the genetic variance of honeybee populations. Heredity 2021, 126, 733–747. [Google Scholar] [CrossRef]
- Tallis, G.M.; Leppard, P. The joint effects of selection and assortative mating on multiple polygenic characters. Theor. Appl. Genet. 1988, 75, 278–281. [Google Scholar] [CrossRef]
- Royo, L.J.; Álvarez, I.; Gutiérrez, J.P.; Fernández, I.; Goyache, F. Genetic variability in the endangered Asturcón pony assessed using genealogical and molecular information. Livest. Sci. 2007, 107, 162–169. [Google Scholar] [CrossRef]
- De La Rosa, A.M.; Cervantes, I.; Gutiérrez, J. Equivalent effective population size mating as a useful tool in the genetic management of the Ibicenco rabbit breed (Conill Pages d’Eivissa). Czech J. Anim. Sci. 2016, 61, 108–116. [Google Scholar] [CrossRef]
- Álvarez, I.; Royo, L.J.; Gutiérrez, J.P.; Fernández, I.; Arranz, J.J.; Goyache, F. Relationship between genealogical and microsatellite information characterizing losses of genetic variability: Empirical evidence from the rare Xalda sheep breed. Livest. Sci. 2008, 115, 80–88. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef]
- Borge, R.; Requia, W.J.; Yagüe, C.; Jhun, I.; Koutrakis, P. Impact of weather changes on air quality and related mortality in Spain over a 25 year period [1993–2017]. Environ. Int. 2019, 133, 105272. [Google Scholar] [CrossRef]
- Li, Z.; Guo, L.; Sha, Y.; Yang, K. Knowledge map and global trends in extreme weather research from 1980 to 2019: A bibliometric analysis. Environ. Sci. Pollut. Res. Int. 2021, 28, 49755–49773. [Google Scholar] [CrossRef] [PubMed]
- Hernanz, A.; García-Valero, J.A.; Domínguez, M.; Ramos-Calzado, P.; Pastor-Saavedra, M.A.; Rodríguez-Camino, E. Evaluation of statistical downscaling methods for climate change projections over Spain: Present conditions with perfect predictors. Int. J. Climatol. 2022, 42, 762–776. [Google Scholar] [CrossRef]
- Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 2015, 5, 560–564. [Google Scholar] [CrossRef]
- Young, I.R.; Zieger, S.; Babanin, A.V. Global Trends in Wind Speed and Wave Height. Science 2011, 332, 451–455. [Google Scholar] [CrossRef]
- Dang, H.L.; Li, E.; Nuberg, I.; Bruwer, J. Factors influencing the adaptation of farmers in response to climate change: A review. Clim. Dev. 2019, 11, 765–774. [Google Scholar] [CrossRef]
- Burnham, M.; Ma, Z. Linking smallholder farmer climate change adaptation decisions to development. Clim. Dev. 2016, 8, 289–311. [Google Scholar] [CrossRef]
- Ozkaynak, E. Effects of air temperature and hours of sunlight on the length of the vegetation period and the yield of some field crops. Ekoloji 2013, 22, 58–63. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Pakmehr, S.; Yazdanpanah, M.; Baradaran, M. Explaining farmers’ response to climate change-induced water stress through cognitive theory of stress: An Iranian perspective. Environ. Dev. Sustain. 2021, 23, 5776–5793. [Google Scholar] [CrossRef]
- Bronson, F. Climate change and seasonal reproduction in mammals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 364, 3331–3340. [Google Scholar] [CrossRef] [PubMed]
- Ćurić, M.; Zafirovski, O.; Spiridonov, V. Meteorological and Weather Elements. In Essentials of Medical Meteorology; Springer: Cham, Switzerland, 2022; pp. 39–62. [Google Scholar]
- Refaee, E.A. Using Machine Learning for Performance Classification and Early Fault Detection in Solar Systems. Math. Probl. Eng. 2022, 2022, 6447434. [Google Scholar] [CrossRef]
- Hagen, M.; Azevedo, A. Climate Changes Consequences from Sun-Earth Connections and Anthropogenic Relationships. Nat. Sci. 2022, 14, 24–41. [Google Scholar] [CrossRef]
- Malhi, Y.; Lander, T.; le Roux, E.; Stevens, N.; Macias-Fauria, M.; Wedding, L.; Girardin, C.; Kristensen, J.Å.; Sandom, C.J.; Evans, T.D. The role of large wild animals in climate change mitigation and adaptation. Curr. Biol. 2022, 32, R181–R196. [Google Scholar] [CrossRef] [PubMed]
- Ariano-Sánchez, D.; Mortensen, R.M.; Wilson, R.P.; Bjureke, P.; Reinhardt, S.; Rosell, F. Temperature and barometric pressure affect the activity intensity and movement of an endangered thermoconforming lizard. Ecosphere 2022, 13, e3990. [Google Scholar] [CrossRef]
- Librado, P.; Sarkissian, C.D.; Ermini, L.; Schubert, M.; Jónsson, H.; Albrechtsen, A.; Fumagalli, M.; Yang, M.A.; Gamba, C.; Seguin-Orlando, A.; et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc. Natl. Acad. Sci. USA 2015, 112, E6889–E6897. [Google Scholar] [CrossRef] [PubMed]
Cluster | Parameters | Mean | Mode | Std. Deviation | Variance | Minimum | Maximum | Percentile 25 | Median/Percentile 50 | Percentile 75 |
---|---|---|---|---|---|---|---|---|---|---|
Genetic Diversity | Relatedness Coefficient (ΔR, %) | 0.04 | 0.01 | 0.03 | 0.00 | 0.00 | 0.13 | 0.01 | 0.04 | 0.06 |
Inbreeding (F, %) | 0.03 | 0.00 | 0.05 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.06 | |
Genetic Conservation Index (GCI) | 9.10 | 2.00 | 5.92 | 35.07 | 1.00 | 27.00 | 3.11 | 8.81 | 14.55 | |
Coancestry (C, %) | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.07 | 0.00 | 0.02 | 0.03 | |
Non-Random Mating Degree (α) | 0.01 | 0.06 | 0.06 | 0.00 | −0.05 | 0.49 | −0.03 | −0.01 | 0.03 | |
Number of Maximum Generations | 12.14 | 16.00 | 5.75 | 33.05 | 0.00 | 21.00 | 11.00 | 15.00 | 16.00 | |
Number of Complete Generations | 2.96 | 1.00 | 1.78 | 3.18 | 0.00 | 8.00 | 1.00 | 3.00 | 4.00 | |
Number of Equivalent Generations | 6.16 | 2.00 | 3.04 | 9.25 | 0.00 | 11.54 | 3.89 | 6.76 | 8.79 | |
Individual Increase in Inbreeding Rate (ΔF, %) | 0.02 | 0.00 | 0.04 | 0.00 | 0.00 | 0.47 | 0.00 | 0.00 | 0.01 | |
Offspring | 0.73 | 0.00 | 3.76 | 14.10 | 0.00 | 219.00 | 0.00 | 0.00 | 0.00 | |
Climate Change | Height (m) | 399.77 | 172.71 | 341.50 | 116,624.62 | 0.00 | 1703.00 | 172.71 | 229.00 | 721.75 |
Rainfall (mm) | 1.64 | 0.00 | 4.60 | 21.12 | 0.00 | 57.80 | 0.00 | 0.00 | 0.56 | |
Minimum Temperature (°C) | 8.13 | 0.00 | 5.42 | 29.33 | −12.00 | 25.00 | 4.41 | 8.18 | 11.70 | |
Maximum Temperature (°C) | 18.92 | 0.00 | 7.19 | 51.73 | −3.60 | 44.55 | 14.66 | 18.62 | 23.34 | |
Wind Direction (Tenths of Degree) | 18.29 | 0.00 | 13.18 | 173.69 | 0.00 | 99.00 | 5.23 | 19.33 | 26.67 | |
Average Wind Speed (m/s) | 7.22 | 0.00 | 10.72 | 114.91 | 0.00 | 99.00 | 2.12 | 3.30 | 5.70 | |
Gust Speed (m/s) | 9.78 | 0.00 | 4.04 | 16.33 | 0.00 | 33.13 | 7.50 | 9.50 | 11.90 | |
Sunlight Hours (h) | 6.68 | 0.00 | 4.40 | 19.37 | 0.00 | 14.60 | 2.50 | 7.70 | 10.30 | |
Minimum Barometric Pressure (HPa) | 916.20 | 0.00 | 228.16 | 52,055.31 | 0.00 | 1036.10 | 925.37 | 985.70 | 1003.80 |
Variables | Inbreeding (F, %) | Relatedness Coefficient (ΔR, %) | Genetic Conservation Index (GCI) | Maximum number of Generations | Individual Increase in Inbreeding Rate (ΔF, %) | Offspring |
---|---|---|---|---|---|---|
Inbreeding (F, %) | 1 | −0.281 | −0.301 | −0.308 | 0.774 | −0.003 |
Relatedness Coefficient (ΔR, %) | 1 | 0.778 | 0.724 | −0.406 | −0.023 | |
Genetic Conservation Index (GCI) | 1 | 0.726 | −0.414 | −0.024 | ||
Number of Maximum Generations | 1 | −0.506 | −0.036 | |||
Individual Increase in Inbreeding Rate (ΔF, %) | 1 | 0.003 | ||||
Offspring | 1 |
Variables | Altitude | Rainfall | Minimum Temperature | Maximum Temperature | Wind Direction | Average Wind Speed | Gust Speed | Sunlight Hours | Minimum Barometric Pressure |
---|---|---|---|---|---|---|---|---|---|
Altitude | 1 | −0.006 | −0.345 | −0.148 | 0.037 | −0.011 | 0.070 | 0.106 | 0.041 |
Rainfall | 1 | 0.018 | −0.174 | 0.009 | 0.038 | 0.265 | −0.338 | 0.035 | |
Minimum Temperature | 1 | 0.786 | 0.098 | 0.059 | 0.201 | 0.158 | 0.193 | ||
Maximum Temperature | 1 | 0.069 | 0.081 | 0.103 | 0.503 | 0.318 | |||
Wind Direction | 1 | −0.438 | 0.208 | 0.182 | 0.237 | ||||
Average Wind Speed | 1 | 0.108 | −0.114 | 0.030 | |||||
Gust Speed | 1 | 0.047 | 0.295 | ||||||
Sunlight hours | 1 | 0.366 | |||||||
Minimum Barometric Pressure | 1 |
Variables | Altitude | Rainfall | Minimum Temperature | Maximum Temperature | Wind Direction | Average Wind Speed | Gust Speed | Sunlight hours | Minimum Barometric Pressure |
---|---|---|---|---|---|---|---|---|---|
Altitude | 1 | −0.006 | −0.345 | −0.148 | 0.037 | −0.011 | 0.070 | 0.106 | 0.041 |
Rainfall | 1 | 0.018 | −0.174 | 0.009 | 0.038 | 0.265 | −0.338 | 0.035 | |
Minimum Temperature | 1 | 0.786 | 0.098 | 0.059 | 0.201 | 0.158 | 0.193 | ||
Maximum Temperature | 1 | 0.069 | 0.081 | 0.103 | 0.503 | 0.318 | |||
Wind Direction | 1 | −0.438 | 0.208 | 0.182 | 0.237 | ||||
Average Wind Speed | 1 | 0.108 | −0.114 | 0.030 | |||||
Gust Speed | 1 | 0.047 | 0.295 | ||||||
Sunlight hours | 1 | 0.366 | |||||||
Minimum Barometric Pressure | 1 |
Test Name | Value | Approx. F | Hypothesis df | Error df | Significance of F |
---|---|---|---|---|---|
Pillai’s trace criterion | 0.15433 | 31.71974 | 54 | 64,878 | 0.001 |
Hotelling–Lawley trace criterion | 0.17004 | 34.02836 | 54 | 64,838 | 0.001 |
Wilks’ lambda | 0.85054 | 32.92284 | 54 | 55,114.8 | 0.001 |
Roy’s greatest root | 0.11482 |
Variates | F1 | F2 | F3 | F4 | F5 | F6 | |
Canonical correlations | 0.339 | 0.166 | 0.071 | 0.057 | 0.048 | 0.039 | |
Squared Canonical Correlations | 0.115 | 0.027 | 0.005 | 0.003 | 0.002 | 0.002 | |
Variates | F1 | F2 | F3 | F4 | F5 | F6 | Sum |
Redundancy coefficients (Y1) | 0.0459 | 0.0038 | 0.0008 | 0.0001 | 0.0002 | 0.0000 | 0.0510 |
Variates | F1 | F2 | F3 | F4 | F5 | F6 | Sum |
Redundancy coefficients (Y2) | 0.0214 | 0.0023 | 0.0005 | 0.0003 | 0.0001 | 0.0000 | 0.0247 |
Roots | Variates | Wilks’ Lambda | F | Hypothesis df | Error df | Sig. of F (Pr > F) |
---|---|---|---|---|---|---|
1 to 6 | F1 | 0.85054 | 32.92284 | 54 | 55,114.8 | 0.001 |
2 to 6 | F2 | 0.96087 | 10.83779 | 40 | 47,118.13 | 0.001 |
3 to 6 | F3 | 0.98794 | 4.69107 | 28 | 38,977.43 | 0.001 |
4 to 6 | F4 | 0.99289 | 4.2922 | 18 | 30,578.61 | 0.001 |
5 to 6 | F5 | 0.99617 | 4.15126 | 10 | 21,624 | 0.001 |
6 to 6 | F6 | 0.99844 | 4.21186 | 4 | 10,813 | 0.002 |
Variable | Multivariate Generalization of R2 | Adjusted R2 | Hypothesis Mean Square | Error Mean Square | F | Significance of F (Pr < F) |
---|---|---|---|---|---|---|
Inbreeding (F, %) | 0.02678 | 0.02597 | 0.08702 | 0.00263 | 33.05582 | 0.001 |
Relatedness Coefficient (ΔR, %) | 0.05209 | 0.05130 | 0.04955 | 0.00075 | 66.02326 | 0.001 |
Genetic Conservation Index (GCI) | 0.06655 | 0.06577 | 2806.35282 | 32.76502 | 85.65087 | 0.001 |
Maximum number of Generations | 0.11066 | 0.10992 | 4399.28812 | 29.42751 | 149.49577 | 0.001 |
Individual Increase in Inbreeding Rate (ΔF, %) | 0.04837 | 0.04758 | 0.10866 | 0.00178 | 61.07202 | 0.001 |
Offspring | 0.00309 | 0.00226 | 1953.65319 | 524.39592 | 3.72553 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín Navas, C.; Delgado Bermejo, J.V.; McLean, A.K.; León Jurado, J.M.; Camacho Vallejo, M.E.; Navas González, F.J. Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations. Animals 2024, 14, 659. https://doi.org/10.3390/ani14050659
Marín Navas C, Delgado Bermejo JV, McLean AK, León Jurado JM, Camacho Vallejo ME, Navas González FJ. Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations. Animals. 2024; 14(5):659. https://doi.org/10.3390/ani14050659
Chicago/Turabian StyleMarín Navas, Carmen, Juan Vicente Delgado Bermejo, Amy Katherine McLean, José Manuel León Jurado, María Esperanza Camacho Vallejo, and Francisco Javier Navas González. 2024. "Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations" Animals 14, no. 5: 659. https://doi.org/10.3390/ani14050659
APA StyleMarín Navas, C., Delgado Bermejo, J. V., McLean, A. K., León Jurado, J. M., Camacho Vallejo, M. E., & Navas González, F. J. (2024). Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations. Animals, 14(5), 659. https://doi.org/10.3390/ani14050659