Adaptive Responses of Vertebrates to Climate Change

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Physiology".

Deadline for manuscript submissions: closed (25 December 2023) | Viewed by 10230

Special Issue Editors


E-Mail Website
Guest Editor
School of Life Sciences, Shandong University, Qingdao 266237, China
Interests: animal physiological adaptation to changing environments; thermoregulation and thermogenesis in small mammals; animal behavior and physiological mechanism

E-Mail Website
Guest Editor
College of Life Sciences, Qufu Normal University, Qufu 273165, China
Interests: animal physiological adaptation to changing environments; ecological immunology

E-Mail Website
Guest Editor
College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
Interests: amphibian physiological ecology; ecological immunology in vertebrates

Special Issue Information

Dear Colleagues,

Global climate change will affect many aspects including animal behavior, physiology, and ecology. Animals have the ability to sense the signals of climate change of their living habitats and environments and can adjust their adaptive changes in morphology, behavior, physiology, and ecology to cope with the environmental changes.

This special issue focuses on the adaptive responses to climate change in vertebrates, and we welcome related papers from the gene, molecular, physiological, behavioral, morphological, and ecological levels.

Prof. Dr. Dehua Wang
Prof. Dr. Deli Xu
Prof. Dr. Zhiqiang Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • adaptive responses
  • phenotypic variation
  • stress
  • climate change
  • vertebrates

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

31 pages, 13259 KiB  
Article
Impact of Climate Change on the Distribution of Three Rare Salamanders (Liua shihi, Pseudohynobius jinfo, and Tylototriton wenxianensis) in Chongqing, China, and Their Conservation Implications
by Qi Ma, Lipeng Wan, Shengchao Shi and Zhijian Wang
Animals 2024, 14(5), 672; https://doi.org/10.3390/ani14050672 - 21 Feb 2024
Cited by 1 | Viewed by 796
Abstract
The Wushan Salamander (Liua shihi), Jinfo Salamander (Pseudohynobius jinfo), and Wenxian Knobby Salamander (Tylototriton wenxianensis) are rare national Class II protected wild animals in China. We performed MaxEnt modeling to predict and analyze the potential distribution and [...] Read more.
The Wushan Salamander (Liua shihi), Jinfo Salamander (Pseudohynobius jinfo), and Wenxian Knobby Salamander (Tylototriton wenxianensis) are rare national Class II protected wild animals in China. We performed MaxEnt modeling to predict and analyze the potential distribution and trends of these species in Chongqing under current and future climate conditions. Species distribution data were primarily obtained from field surveys, supplemented by museum collections and the existing literature. These efforts yielded 636 records, including 43 for P. jinfo, 23 for T. wenxianensis, and 570 for L. shihi. Duplicate records within the same 100 m × 100 m grid cell were removed using ENMTools, resulting in 10, 12, and 58 valid distribution points for P. jinfo, T. wenxianensis, and L. shihi, respectively. The optimization of feature class parameters (FC) and the regularization multiplier (RM) were applied using R package “ENMeval 2.0” to establish the optimal model with MaxEnt. The refined models were applied to simulate the suitable distribution areas for the three species. The results indicate that the current suitable habitat area for L. shihi accounted for 9.72% of the whole region of the Chongqing municipality. It is projected that, by 2050, the proportion of suitable habitat will increase to 12.54% but will decrease to 11.98% by 2070 and further decline to 8.80% by 2090. The current suitable habitat area for P. jinfo accounted for 1.08% of the whole region of the Chongqing municipality, which is expected to decrease to 0.31%% by 2050, 0.20% by 2070, and 0.07% by 2090. The current suitable habitat area for T. wenxianensis accounted for 0.81% of the whole region of the Chongqing municipality, which is anticipated to decrease to 0.37% by 2050, 0.21% by 2070, and 0.06% by 2090. Human disturbance, climate variables, and habitat characteristics are the primary factors influencing the distribution of three salamander species in Chongqing. The proximity to roads significantly impacts L. shihi, while climate conditions mainly affect P. jinfo, and the distance to water sources is crucial for T. wenxianensis. The following suggestions were made based on key variables identified for each species: (1) For L. shihi, it is imperative to minimize human disturbances and preserve areas without roads and the existing vegetation within nature reserves to ensure their continued existence. (2) For P. jinfo, the conservation of high-altitude habitats is of utmost importance, along with the reduction in disturbances caused by roads to maintain the species’ ecological niche. (3) For T. wenxianensis, the protection of aquatic habitats is crucial. Additionally, efforts to mitigate the impacts of road construction and enhance public awareness are essential for the preservation of this species and the connectivity of its habitats. Full article
(This article belongs to the Special Issue Adaptive Responses of Vertebrates to Climate Change)
Show Figures

Figure 1

27 pages, 29423 KiB  
Article
Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations
by Carmen Marín Navas, Juan Vicente Delgado Bermejo, Amy Katherine McLean, José Manuel León Jurado, María Esperanza Camacho Vallejo and Francisco Javier Navas González
Animals 2024, 14(5), 659; https://doi.org/10.3390/ani14050659 - 20 Feb 2024
Viewed by 692
Abstract
The historical increase in the occurrence of extreme weather events in Spain during the last thirty years makes it a perfect location for the evaluation of climate change. Modeling the effects of climate change on domestic animals’ genetic diversity may help to anticipate [...] Read more.
The historical increase in the occurrence of extreme weather events in Spain during the last thirty years makes it a perfect location for the evaluation of climate change. Modeling the effects of climate change on domestic animals’ genetic diversity may help to anticipate challenging situations. However, animal populations’ short life cycle and patent lack of historical information during extended periods of time drastically compromise the evaluation of climate change effects. Locally adapted breeds’ gene pool is the base for their improved resilience and plasticity in response to climate change’s extreme climatic conditions. The preservation of these domestic resources offers selection alternatives to breeders who seek such improved adaptability. The Spanish endangered autochthonous Hispano-Arabian horse breed is perfectly adapted to the conditions of the territory where it was created, developed, and widespread worldwide. The possibility to trace genetic diversity in the Hispano-Arabian breed back around seven decades and its global ubiquity make this breed an idoneous reference subject to act as a model for other international populations. Climate change’s shaping effects on the genetic diversity of the Hispano-Arabian horse breed’s historical population were monitored from 1950 to 2019 and evaluated. Wind speed, gust speed, or barometric pressure have greater repercussions than extreme temperatures on genetic diversity. Extreme climate conditions, rather than average modifications of climate, may push breeders/owners to implement effective strategies in the short to medium term, but the effect will be plausible in the long term due to breed sustainability and enhanced capacity of response to extreme climate events. When extreme climatic conditions occur, breeders opt for mating highly diverse unrelated individuals, avoiding the production of a large number of offspring. People in charge of domestic population conservation act as catalyzers of the regulatory changes occurring during breeds’ climate change adaptive process and may identify genes conferring their animals with greater adaptability but still maintaining enhanced performance. This model assists in determining how owners of endangered domestic populations should plan their breeding strategies, seeking the obtention of animals more resilient and adapted to climate-extreme conditions. This efficient alternative is focused on the obtention of increased profitability from this population and in turn ensuring their sustainability. Full article
(This article belongs to the Special Issue Adaptive Responses of Vertebrates to Climate Change)
Show Figures

Figure 1

12 pages, 4543 KiB  
Article
Rodents Inhabiting the Southeastern Mu Us Desert May Not Have Experienced Prolonged Heat Stress in Summer 2022
by Yang-Yang Guo, Shan-Shan Wang, Xinyue Wang, Wei Liu and Deli Xu
Animals 2023, 13(13), 2114; https://doi.org/10.3390/ani13132114 - 26 Jun 2023
Cited by 1 | Viewed by 1230
Abstract
Climate change combined with human activities has altered the spatial and temporal patterns of summer extreme heat in the Mu Us Desert. To determine how those rodents living in the desert respond to increased extreme heat in summer, in July 2022, during the [...] Read more.
Climate change combined with human activities has altered the spatial and temporal patterns of summer extreme heat in the Mu Us Desert. To determine how those rodents living in the desert respond to increased extreme heat in summer, in July 2022, during the hottest month, we examined the rodent species, vegetation coverage, and small-scale heterogeneity in ambient temperature in the southeastern Mu Us Desert. The results showed that Meriones meridianus, Meriones unguiculatus, and Cricetulus longicaudatus were found in the study area, where the vegetation coverage is 33.5–40.8%. Moreover, the maximum temperature of the desert surface was 61.8 °C. The maximum air temperature at 5 cm above the desert surface was 41.3 °C. The maximum temperature in the burrow at a depth of 15 cm was 31 °C. M. unguiculatus might experience 4–9.3 h of heat stress in a day when exposed outside the burrow, whereas M. meridianus would experience 8.5–10.8 h of heat stress. Yet, inside the burrow, both species were barely exposed to heat stress. In conclusion, adjustments in behavioral patterns can be the main way that rodents in the Mu Us Desert adapt to the extreme heat in the summer. Full article
(This article belongs to the Special Issue Adaptive Responses of Vertebrates to Climate Change)
Show Figures

Figure 1

11 pages, 3195 KiB  
Article
Effects of Eggshell Thickness, Calcium Content, and Number of Pores in Erosion Craters on Hatching Rate of Chinese Alligator Eggs
by Naijing Zhang, Huabin Zhang, Guangwei Fan, Ke Sun, Qingqing Jiang, Zhuowen Lv, Boyang Han, Zhenyuan Nie, Yujie Shao, Yongkang Zhou, Baowei Zhang, Xiaobing Wu and Tao Pan
Animals 2023, 13(8), 1405; https://doi.org/10.3390/ani13081405 - 19 Apr 2023
Viewed by 1643
Abstract
The Chinese alligator (Alligator sinensis), found only in a small region in southeastern Anhui Province, is listed as critically endangered (CR) by the International Union for Conservation of Nature (IUCN) due to its current declining population trend. Any abnormalities in the [...] Read more.
The Chinese alligator (Alligator sinensis), found only in a small region in southeastern Anhui Province, is listed as critically endangered (CR) by the International Union for Conservation of Nature (IUCN) due to its current declining population trend. Any abnormalities in the physical properties of an egg can decrease the hatching rate. In particular, eggshells play an essential role in embryo development, motivating us to analyze the microstructures of the eggshells of Chinese alligators. In this study, we categorized the eggshells into two groups, based on the hatching rates, and analyzed the relationship between the eggshell parameters (eggshell thickness, calcium content, and number of pores in erosion craters) and the hatching rate, as well as the relationships between the eggshell parameters. We found that the shells of the eggs with high hatching rates were thicker than those of the eggs with low hatching rates. There were also fewer erosion-crater pores on the surfaces of the eggs with high hatching rates than on the surfaces of the eggs with low hatching rates. Moreover, the shell Ca content was significantly higher in the eggs with high hatching rates than in the eggs with low hatching rates. Cluster modeling indicated that the highest hatching rate occurred when the eggshell thickness was 200–380 µm and there were 1–12 pores. These results suggest that eggs with adequate Ca contents, thicker shells, and less air permeability are more likely to hatch. Furthermore, our findings can inform future studies, which will be vital for the survival of the critically endangered Chinese alligator species. Full article
(This article belongs to the Special Issue Adaptive Responses of Vertebrates to Climate Change)
Show Figures

Figure 1

13 pages, 3635 KiB  
Article
Immunity and Growth Plasticity of Asian Short-Toed Lark Nestlings in Response to Changes in Food Conditions: Can It Buffer the Challenge of Climate Change-Induced Trophic Mismatch?
by Guang Lu, Xinjie Zhang, Xinyu Li and Shuping Zhang
Animals 2023, 13(5), 860; https://doi.org/10.3390/ani13050860 - 27 Feb 2023
Cited by 1 | Viewed by 1351
Abstract
Passerine nestlings frequently suffer from sub-optimal food conditions due to climate change-induced trophic mismatch between the nestlings and their optimal food resources. The ability of nestlings to buffer this challenge is less well understood. We hypothesized that poor food conditions might induce a [...] Read more.
Passerine nestlings frequently suffer from sub-optimal food conditions due to climate change-induced trophic mismatch between the nestlings and their optimal food resources. The ability of nestlings to buffer this challenge is less well understood. We hypothesized that poor food conditions might induce a higher immune response and lower growth rate of nestlings, and such physiological plasticity is conducive to nestling survival. To test this, we examined how food (grasshopper nymphs) abundance affects the expression of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β) genes, plasma IGF-1 levels, body mass, and fledging rates in wild Asian short-toed lark (Alaudala cheleensis) nestlings. Linear mixed models revealed that nymph biomass significantly influenced the expression of IFN-γ, TNF-α, and IL-1β genes, and the level of plasma IGF-1. The expressions of IFN-γ, TNF-α, and IL-1β genes were negatively correlated with nymph biomass and plasma IGF-1 level. Plasma IGF-1 level, nestling body mass growth rate, was positively correlated with nymph biomass. Despite a positive correlation between the nestling fledge rate and nymph biomass, more than 60% of nestlings fledged when nymph biomass was at the lowest level. These results suggest that immunity and growth plasticity of nestlings may be an adaptation for birds to buffer the negative effects of trophic mismatch. Full article
(This article belongs to the Special Issue Adaptive Responses of Vertebrates to Climate Change)
Show Figures

Figure 1

14 pages, 1966 KiB  
Article
Comparison and Phylogenetic Analysis of Mitochondrial Genomes of Talpidae Animals
by Di Xu, Mengyao Sun, Zenghao Gao, Yiping Zhou, Qingqian Wang and Lei Chen
Animals 2023, 13(2), 186; https://doi.org/10.3390/ani13020186 - 4 Jan 2023
Cited by 4 | Viewed by 2252
Abstract
Talpidae is a model group for evolutionary studies due to their highly specialized morphologies and diverse lifestyles. Mitochondrial genomes are molecular markers commonly used in species evolution and phylogenetic studies. In this study, the complete mitochondrial genome sequence of Scaptochirus moschatus was obtained [...] Read more.
Talpidae is a model group for evolutionary studies due to their highly specialized morphologies and diverse lifestyles. Mitochondrial genomes are molecular markers commonly used in species evolution and phylogenetic studies. In this study, the complete mitochondrial genome sequence of Scaptochirus moschatus was obtained by Illumina NovaSeq sequencing. The complete mitochondrial genomes of 14 Talpidae species (including Scaptochirus moschatus obtained in the present study) and the cytochrome b (Cyt b) gene sequences of 48 Talpidae species were downloaded from the NCBI database for comparison and phylogenetic studies to analyze the phylogenetic relationships and to find the possible reasons of the niche differentiation and ecotype specialization of Talpidae animals. The results showed that the mitochondrial genome sequences of 14 species belonging to the family Talpidae were 16,528 to 16,962 bp, all containing 13 protein-coding genes, 22 tRNA, two rRNA, and a non-coding region (control region). The difference in the number of repetitive repeats in the control region is responsible for the difference in the length of Talpidae mitochondrial genome sequences. Combining the divergence time of Talpidae animals with the geological history, it is found that the niche differentiation and ecotype divergence of Talpidae is closely related to historically global climate changes. Semi-aquatic groups diverged in the early Oligocene (about 31.22 MYA), probably in response to the global climate transition from warm to cool. During the early Miocene (about 19.54 MYA), some species of Talpidae moved to underground habitats and formed fossorial groups that were adept at digging due to the effects of the glaciation. In the middle Miocene (about 16.23 MYA), some Talpidae animals returned to the ground and formed semi-fossorial shrew moles as global climate warming again. Full article
(This article belongs to the Special Issue Adaptive Responses of Vertebrates to Climate Change)
Show Figures

Figure 1

16 pages, 4409 KiB  
Article
Roles of Ghrelin and Leptin in Body Mass Regulation under Food Restriction Based on the AMPK Pathway in the Red-Backed Vole, Eothenomys miletus, from Kunming and Dali Regions
by Yuting Liu, Ting Jia, Yue Ren, Zhengkun Wang and Wanlong Zhu
Animals 2022, 12(23), 3333; https://doi.org/10.3390/ani12233333 - 28 Nov 2022
Cited by 1 | Viewed by 1293
Abstract
The phenotype plasticity of animals’ physiological characteristics is an important survival strategy to cope with environmental changes, especially the change in climate factors. Small mammals that inhabit seasonally changing environments often face the stress of food shortage in winter. This study measured and [...] Read more.
The phenotype plasticity of animals’ physiological characteristics is an important survival strategy to cope with environmental changes, especially the change in climate factors. Small mammals that inhabit seasonally changing environments often face the stress of food shortage in winter. This study measured and compared the thermogenic characteristics and related physiological indicators in the adenosine-5′-monophosphate-activated protein kinase (AMPK) pathway in Eothenomys miletus between Kunming (KM, n = 18) and Dali (DL, n = 18) under food restriction and refeeding. The results showed that food restriction and the region have significant effects on body mass, the resting metabolic rate (RMR), hypothalamic neuropeptide gene expression, ghrelin levels in the stomach and serum, serum leptin level and the activity of AMPK, and malonyl CoA and carnitine palmitoyltransferase 1 (CPT-1) activity. Food restriction reduced the body mass, the gene expression of neuropeptide proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcription peptide (CART), and leptin level. However, the ghrelin concentration and AMPK activity increased. After refeeding, there was no difference in these physiological indexes between the food restriction and control groups. Moreover, the physiological indicators also showed regional differences, such as the body mass, POMC and CART gene expression, ghrelin concentration in the stomach and serum, and AMPK activity in DL changed more significantly. All these results showed that food restriction reduces energy metabolism in E. miletus. After refeeding, most of the relevant physiological indicators can return to the control level, indicating that E. miletus has strong phenotypic plasticity. Ghrelin, leptin, and the AMPK pathway play an important role in the energy metabolism of E. miletus under food restriction. Moreover, regional differences in physiological indicators under food restriction may be related to the different temperatures or food resources in different regions. Full article
(This article belongs to the Special Issue Adaptive Responses of Vertebrates to Climate Change)
Show Figures

Figure 1

Back to TopTop