Genomic and Proteomic Analyses of Extracellular Products Reveal Major Virulence Factors Likely Accounting for Differences in Pathogenicity to Bivalves between Vibrio mediterranei Strains
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. V. mediterranei Strains, Proteomic Sequence Datasets and Genomic Sequences
2.2. Identification of ECP Protein-Coding Genes in the Genomes
2.3. Functional Annotations of the ECP Proteins
2.4. Prediction of Virulence Factors
2.5. Quantitation of ECP Protein Expression
3. Results
3.1. Coding Genes of the ECP Proteins
3.2. Functional Annotation and Pathway Assignment of ECP Proteins
3.3. Virulence Factors in ECP Proteins
3.4. Distributions of ECP Protein-Coding Genes in Genomes
3.5. Expression of Genes Coding for ECP Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baker-Austin, C.; Trinanes, J.; Gonzalez-Escalona, N.; Martinez-Urtaza, J. Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends Microbiol. 2017, 25, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.L.; Iida, T.; Swings, J. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 2004, 68, 403–431. [Google Scholar] [CrossRef] [PubMed]
- Grimes, D.J. The Vibrios: Scavengers, Symbionts, and Pathogens from the Sea. Microb. Ecol. 2020, 80, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Oliver, J.D.; Alam, M.; Ali, A.; Waldor, M.K.; Qadri, F.; Martinez-Urtaza, J. Vibrio spp. infections. Nat. Rev. Dis. Primers 2018, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Nair, G.B.; Shinoda, S. Pathogenic Vibrios in the Natural Aquatic Environment. Rev. Environ. Health 1997, 12, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Paillard, C.; Le Roux, F.; Borrego, J.J. Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 2004, 17, 477–498. [Google Scholar] [CrossRef]
- Elston, R.; Leibovitz, L.; Relyea, D.; Zatila, J. Diagnosis of vibriosis in a commercial oyster hatchery epizootic: Diagnostic tools and management features. Aquaculture 1981, 24, 53–62. [Google Scholar] [CrossRef]
- Elston, R.A.; Hasegawa, H.; Humphrey, K.L.; Polyak, I.K.; Häse, C.C. Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: Severity, environmental drivers, geographic extent and management. Dis. Aquat. Organ. 2008, 82, 119–134. [Google Scholar] [CrossRef]
- Prado, S.; Dubert, J.; Barja, J.L. Characterization of pathogenic vibrios isolated from bivalve hatcheries in Galicia, NW Atlantic coast of Spain. Description of Vibrio tubiashii subsp. europaensis subsp. nov. Syst. Appl. Microbiol. 2015, 38, 26–29. [Google Scholar] [CrossRef]
- Prado, S.; Romalde, J.L.; Montes, J.; Barja, J.L. Pathogenic bacteria isolated from disease outbreaks in shellfish hatcheries. First description of Vibrio neptunius as an oyster pathogen. Dis. Aquat. Organ. 2005, 67, 209–215. [Google Scholar] [CrossRef]
- Sakatoku, A.; Hatano, K.; Tanaka, S.; Isshiki, T. Isolation and Characterization of a Vibrio Sp. Strain MA3 Possibly Associated with Mass Mortalities of the Pearl Oyster Pinctada fucata. Arch. Microbiol. 2021, 203, 5267–5273. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhai, S.; Li, X.; Tian, J.; Liu, S. Identification of Vibrio alginolyticus as a causative pathogen associated with mass summer mortality of the Pacific Oyster (Crassostrea gigas) in China. Aquaculture 2021, 535, 736363. [Google Scholar] [CrossRef]
- Fan, C.; Liu, S.; Dai, W.; He, L.; Xu, H.; Zhang, H.; Xue, Q. Characterization of Vibrio mediterranei Isolates as Causative Agents of Vibriosis in Marine Bivalves. Microbiol. Spectr. 2023, 11, e0492322. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.K.; Liu, P.C.; Chen, Y.C.; Huang, C.Y. The implication of ambient temperature with the outbreak of vibriosis incultured small abalone Haliotis diversicolor supertexta Lischke. J. Therm. Biol. 2001, 26, 585–587. [Google Scholar] [CrossRef]
- Sugumar, G.; Nakai, T.; Hirata, Y.; Matsubara, D.; Muroga, K. Vibrio splendidus biovar II as the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Dis. Aquat. Organ. 1998, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Labreuche, Y.; Soudant, P.; Gonçalves, M.; Lambert, C.; Nicolas, J.-L. Effects of extracellular products from the pathogenic Vibrio aestuarianus strain 01/32 on lethality and cellular immune responses of the oyster Crassostrea gigas. Dev. Comp. Immunol. 2006, 30, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Liu, H.; Fu, S.; Dong, W.; Bu, W. Transcriptome-wide identification and characterization of Toll-like receptors response to Vibrio anguillarum infection in Manila clam (Ruditapes philippinarum). Fish Shellfish Immun. 2021, 111, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Kehlet-Delgado, H.; Hse, C.; Mueller, R.S. Comparative genomic analysis of Vibrios yields insights into genes associated with virulence towards C. gigas larvae. BMC Genom. 2020, 21, 599. [Google Scholar] [CrossRef]
- Liu, P.C.; Chen, Y.C.; Huang, C.Y.; Lee, K.K. Virulence of Vibrio parahaemolyticus isolated from cultured small abalone, Haliotis diversicolor supertexta, with withering syndrome. Lett. Appl. Microbiol. 2000, 31, 433–437. [Google Scholar] [CrossRef]
- Le Roux, F.; Wegner, K.M.; Polz, M.F. Oysters and Vibrios as a Model for Disease Dynamics in Wild Animals. Trends Microbiol. 2016, 24, 568–580. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.I.; Fuxa, J.R.; Lacey, L.A.; Onstad, D.W.; Kaya, H.K. Definitions of pathogenicity and virulence in invertebrate pathology. J. Invertebr. Pathol. 2005, 184, 1–7. [Google Scholar] [CrossRef]
- Casadevall, A.; Pirofski, L.-A. Host-Pathogen Interactions: The Attributes of Virulence. J. Infect. Dis. 2001, 184, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L.-A. Host-Pathogen Interactions: Redefining the Basic Concepts of Virulence and Pathogenicity. Infect. Immun. 1999, 67, 3703–3713. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L.A. Virulence factors and their mechanisms of action: The view from a damage-response framework. J. Water Health 2009, 7, S2. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef] [PubMed]
- Frans, I.; Michiels, C.W.; Bossier, P.; Willems, K.A.; Lievens, B.; Rediers, H. Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention. J. Fish Dis. 2011, 34, 643–661. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Hasan, N.A.; Huq, A.; Colwell, R.R. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front. Cell. Infect. Microbiol. 2013, 3, 97. [Google Scholar] [CrossRef] [PubMed]
- Osei-Adjei, G.; Huang, X.; Zhang, Y. The extracellular proteases produced by Vibrio parahaemolyticus. World J. Microb. Biot. 2016, 34, 68. [Google Scholar] [CrossRef]
- Natrah, F.M.I.; Ruwandeepika, H.A.D.; Pawar, S.; Karunasagar, I.; Sorgeloos, P.; Bossier, P.; Defoirdt, T. Regulation of virulence factors by quorum sensing in Vibrio harveyi. Vet. Microbiol. 2011, 154, 124–129. [Google Scholar] [CrossRef]
- Choi, G.; Choi, S.H. Complex regulatory networks of virulence factors in Vibrio vulnificus. Trends Microbiol. 2022, 30, 1205–1216. [Google Scholar] [CrossRef]
- Nurhafizah Wan Ibrahim, W.; Kok Leong, L.; Abdul Razzak, L.; Musa, N.; Danish Daniel, M.; Catherine Zainathan, S.; Musa, N. Virulence properties and pathogenicity of multidrug-resistant Vibrio harveyi associated with luminescent vibriosis in Pacific white shrimp, Penaeus vannamei. J. Invertebr. Pathol. 2021, 186, 107594. [Google Scholar] [CrossRef] [PubMed]
- Vanmaele, S.; Defoirdt, T.; Cleenwerck, I.; Vos, P.D.; Bossier, P. Characterization of the virulence of Harveyi clade vibrios isolated from a shrimp hatchery in vitro and in vivo, in a brine shrimp (Artemia franciscana) model system. Aquaculture 2015, 435, 28–32. [Google Scholar] [CrossRef]
- Defoirdt, T.J. Virulence mechanisms of bacterial aquaculture pathogens and antivirulence therapy for aquaculture. Rev. Aquacult. 2013, 5, 100–114. [Google Scholar] [CrossRef]
- Maeda, H.; Yamamoto, T. Pathogenic Mechanisms Induced by Microbial Proteases in Microbial Infections. Chem. Hoppe-Seyler 1996, 377, 217–226. [Google Scholar]
- Lee, K.-K.; Yu, S.-R.; Liu, P.-C. Alkaline serine protease is an exotoxin of Vibrio alginolyticus in kuruma prawn, Penaeus japonicus. Curr. Microbiol. 1997, 34, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Saulnier, D.; Decker, S.D.; Haffner, P.; Cobret, L.; Robert, M.; Garcia, C. A Large-Scale Epidemiological Study to Identify Bacteria Pathogenic to Pacific Oyster Crassostrea gigas and Correlation Between Virulence and Metalloprotease-like Activity. Microb. Ecol. 2010, 59, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhang, X.-H.; Tang, X.; Wang, S.; Zhong, Y.; Chen, J.; Austin, B. A Single Residue Change in Vibrio harveyi Hemolysin Results in the Loss of Phospholipase and Hemolytic Activities and Pathogenicity for Turbot (Scophthalmus maximus). J. Bacteriol. 2007, 189, 2479–2575. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.C.; Lee, K.K.; Chen, S.N. Pathogenicity of different isolates of Vibrio harveyi in tiger prawn, Penaeus monodon. Lett. Appl. Microbiol. 1996, 22, 413–416. [Google Scholar]
- Vogan, C.L.; Costa-Ramos, C.; Rowley, A.F. Shell disease syndrome in the edible crab, Cancer pagurus—Isolation, characterization and pathogenicity of chitinolytic bacteria. Microbiology 2002, 148, 743–754. [Google Scholar] [CrossRef]
- Berlin, K.; Koren, S.; Chin, C.-S.; Drake, J.P.; Landolin, J.M.; Phillippy, A.M. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 2015, 33, 623–630. [Google Scholar] [CrossRef]
- Chin, C.S.; Alexander, D.H.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E.; et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563. [Google Scholar] [CrossRef]
- Delcher, A.L.; Bratke, K.A.; Powers, E.C.; Salzberg, S.L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Qiang, Y.; Zhang, W. ANItools web: A web tool for fast genome comparison within multiple bacterial strains. Database-Oxford 2016, 2016, baw084. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017, 45, D331–D338. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef]
- Urban, M.; Pant, R.; Raghunath, A.; Irvine, A.G.; Pedro, H.; Hammond-Kosack, K.E. The Pathogen-Host Interactions database (PHI-base): Additions and future developments. Nucleic Acids Res. 2014, 43, 645–655. [Google Scholar] [CrossRef]
- Urban, M.; Cuzick, A.; Seager, J.; Wood, V.; Rutherford, K.; Venkatesh, S.Y.; Sahu, J.; Iyer, S.V.; Khamari, L.; Silva, N.D.; et al. PHI-base in 2022: A multi-species phenotype database for Pathogen–Host Interactions. Nucleic Acids Res. 2022, 50, 837–847. [Google Scholar] [CrossRef]
- Anderle, M.; Roy, S.; Lin, H.; Becker, C.; Joho, K. Quantifying reproducibility for differential proteomics: Noise analysis for protein liquid chromatography-mass spectrometry of human serum. Bioinformatics 2004, 20, 3575–3582. [Google Scholar] [CrossRef] [PubMed]
- Sandin, M.; Teleman, J.; Johan, M.; Levander, F. Data processing methods and quality control strategies for label-free LC-MS protein quantification. Biochim. Biophys. Acta 2014, 1844, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Madec, S.; Pichereau, V.; Jacq, A.; Paillard, M.; Boisset, C.; Guérard, F.; Paillard, C.; Nicolas, J.-L. Characterization of the secretomes of two vibrios pathogenic to mollusks. PLoS ONE 2014, 9, e113097. [Google Scholar] [CrossRef] [PubMed]
- Nottage, A.S.; Birkbeck, T.H. Purification of a proteinase produced by the bivalve pathogen Vibrio alginolyticus NCMB 1339. J. Fish Dis. 1987, 10, 211–220. [Google Scholar] [CrossRef]
- Rameshwaram, N.R.; Singh, P.; Ghosh, S.; Mukhopadhyay, S. Lipid metabolism and intracellular bacterial virulence: Key to next-generation therapeutics. Future Microbiol. 2018, 13, 1301–1328. [Google Scholar] [CrossRef] [PubMed]
- Guerra, P.R.; Herrero-Fresno, A.; Pors, S.E.; Ahmed, S.; Wang, D.; Thøfner, I.; Antenucci, F.; Olsen, J.E. The membrane transporter PotE is required for virulence in avian pathogenic Escherichia coli (APEC). Vet. Microbiol. 2018, 216, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Smith, I. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clin. Microbiol. Rev. 2003, 16, 463–496. [Google Scholar] [CrossRef]
- Sherman, D.R.; Mdluli, K.; Hickey, M.J.; Arain, T.M.; Morris, S.L.; Barry, C.E., III; Stover, C.K. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 1996, 272, 1641–1643. [Google Scholar] [CrossRef]
- Li, Z.; Kelley, C.; Collins, F.; Rouse, D.; Morris, S. Expression of katG in Mycobacterium tuberculosis Is Associated with Its Growth and Persistence in Mice and Guinea Pigs. J. Infect. Dis. 1998, 177, 1030–1035. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, Q.; Mao, L.; Wang, S.; Huang, L.; Xu, X.; Qin, Y. KatG plays an important role in Aeromonas hydrophila survival in fish macrophages and escape for further infection. Gene 2018, 672, 156–164. [Google Scholar] [CrossRef]
- Hagman, K.E.; Shafer, W.M. Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J. Bacteriol. 1995, 177, 4162–4165. [Google Scholar] [CrossRef] [PubMed]
- Jerse, A.E.; Sharma, N.D.; Simms, A.N.; Crow, E.T.; Snyder, L.A.; Shafer, W.M. A Gonococcal Efflux Pump System Enhances Bacterial Survival in a Female Mouse Model of Genital Tract Infection. Infect. Immun. 2003, 71, 5576–5582. [Google Scholar] [CrossRef] [PubMed]
- Miller, V.L.; Taylor, R.K.; Mekalanos, J.J. Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 1987, 48, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Milton, D.L. Quorum sensing in vibrios: Complexity for diversification. Int. J. Med. Microbiol. 2006, 296, 61–71. [Google Scholar] [CrossRef]
- Ruwandeepika, H.A.D.; Defoirdt, T.; Bhowmick, P.P.; Karunasagar, I.; Karunasagar, I.; Bossier, P. In vitro and in vivo expression of virulence genes in Vibrio isolates belonging to the Harveyi clade in relation to their virulence towards gnotobiotic brine shrimp (Artemia franciscana). Environ. Microbiol. 2010, 13, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Rønneseth, A.; Castillo, D.; D’Alvise, P.; Tønnesen, Ø.; Haugland, G.; Grotkjær, T.; Engell-Sørensen, K.; Nørremark, L.; Bergh, Ø.; Wergeland, H.I.; et al. Comparative assessment of Vibrio virulence in marine fish larvae. J. Fish Dis. 2017, 40, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.H.; Sabbah, M.A.; Jasem, K.A.; Hammad, Z.N. Identification of virulence factors in Vibrio cholerae isolated from Iraq during the 2007-2009 outbreak. Can. J. Microbiol. 2011, 57, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Gerganova, V.; Berger, M.; Zaldastanishvili, E.; Sobetzko, P.; Lafon, C.; Mourez, M.; Travers, A.; Muskhelishvili, G. Chromosomal position shift of a regulatory gene alters the bacterial phenotype. Nucleic Acids Res. 2015, 43, 8215–8226. [Google Scholar] [CrossRef]
- Salyers, A.A.; Gupta, A.; Wang, Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004, 12, 412–416. [Google Scholar] [CrossRef]
Protein ID | Carrier Strain | Gene Name | Gene ID | Protein Function | VFDB ID |
---|---|---|---|---|---|
A0A241TBU8 | RW01 | ECB94_2627 | - | NUDIX hydrolase | - |
A0A241TD21 | DT07/RW01 | ECB94_2193 | - | Transcriptional regulator | - |
A0A2C9P8E4 | DT07/DT02 | dapB | - | 4-Hydroxy-tetrahydrodipicolinate reductase | - |
A0A2C9P8Q5 | DT07 | C998_17345 | - | Glyceraldehyde-3-phosphate dehydrogenase | plr/gapA |
A0A2C9PAH6 | RW01 | atpF | atpF | ATP synthase subunit b | - |
A0A2C9PAJ3 | DT07/DT02 | orn | - | Oligoribonuclease | - |
A0A2C9PCL2 | DT07/RW01 | fabB | fabB | Beta-ketoacyl-ACP synthase I | kasB |
A0A2S9ZJ94 | DT07/RW01 | rplC | - | 5S ribosomal protein L3 | - |
A0A2S9ZN28 | RW01/DT02 | ampD | - | 1,6-Anhydro-N-acetylmuramyl-L-alanine amidase AmpD | - |
A0A2S9ZRI4 | DT07 | C998_9425 | - | MarR family transcriptional regulator | - |
A0A3G4V556 | RW01/DT02 | ECB94_66 | - | UPF234 protein ECB94_66 | - |
A0A3G4V5Q8 | DT07/DT02 | purC | - | Phosphoribosylaminoimidazole-succinocarboxamide synthase | purCD |
A0A3G4V5Z8 | RW01/DT02 | C998_16755 | - | Probable phosphatase ECB94_197 | - |
A0A3G4V6B1 | DT07/RW01 | ECB94_262 | - | Aminotransferase | - |
A0A3G4V6Y7 | RW01/DT02 | ackA | - | Acetate kinase | - |
A0A3G4V9F9 | DT02 | ECB94_8 | - | Putrescine-binding periplasmic protein | - |
A0A3G4VA61 | DT07/DT02 | rplE | rplE | 5S ribosomal protein L5 | - |
A0A3G4VB02 | DT07/DT02 | surA | - | Chaperone SurA | - |
A0A3G4VB66 | DT07/RW01 | proS | proS | Proline–tRNA ligase | - |
A0A3G4VBI1 | RW01/DT02 | treC | - | Alpha, alpha-phosphotrehalase | - |
A0A3G4VBT8 | DT07/DT02 | alaS | - | Alanine–tRNA ligase | - |
A0A3G4VCV5 | DT02 | ECB94_15585 | - | Threonylcarbamoyl-AMP synthase | - |
A0A3G4VF14 | DT07/DT02 | menB | - | 1,4-Dihydroxy-2-naphthoyl-CoA synthase | - |
A0A3G4VF71 | DT07/RW01 | ECB94_147 | - | Dipeptide epimerase | - |
A0A3G4VH60 | DT07/RW01 | mtlD | - | Mannitol-1-phosphate 5-dehydrogenase | - |
A0A3G4VHP1 | DT07/RW01 | tkt | - | Transketolase | - |
A0A3G4VHT5 | RW01/DT02 | ECB94_24335 | - | IclR family transcriptional regulator | - |
A0A3G4VJM1 | DT02 | ECB94_25375 | - | UPF52 protein ECB94_25375 | - |
A0A3G4VJR7 | DT07/RW01 | ECB94_23525 | - | Alpha-amylase | - |
A0A3G4VKZ1 | DT07/RW01 | ECB94_2372 | - | Porin | nmpC |
Protein ID | Gene Name | Gene ID | Protein Function | VFDB ID |
---|---|---|---|---|
A0A2S9ZJJ4 * | tcdA | - | tRNA cyclic N6-threonylcarbamoyladenosine (37) synthase TcdA | qbsC |
A0A3G4VIK3 | ECB94_25465 | - | Endonuclease/exonuclease/phosphatase family protein | - |
A0A241TCY2 | C9980_10675 | - | Antibiotic biosynthesis monooxygenase | - |
A0A2C9PE00 | infC | infC | Translation initiation factor IF-3 | - |
A0A2S9ZU94 | C9980_13450 | - | DUF2132 domain-containing protein | - |
A0A3G4VGP7 | ECB94_21925 | - | Carbohydrate porin | - |
A0A3G4VH03 | katG | - | Catalase-peroxidase | katG |
Protein ID | Carrier Strain | Gene Name | Gene ID | Protein Function |
---|---|---|---|---|
A0A241T9V0 | DT02 | ECB94_16565 | - | Thioredoxin peroxidase |
A0A241TAL0 | DT02 | ECB94_16580 | - | Flavodoxin family protein |
A0A2C9P9E1 | DT07/RW01 | C9980_24925 | - | DUF2492 family protein |
A0A2C9PBH5 | DT07/RW01 | rpmA | rpmA | 50S ribosomal protein |
A0A2S9ZM41 | DT02 | ECB94_19840 | - | TRAP transporter substrate-binding protein |
A0A3G4V6C7 | DT07/RW01 | ECB94_03025 | - | OmpA family protein |
A0A3G4V8Z6 | DT07/RW01 | argH | - | Argininosuccinate lyase |
A0A3G4VAL7 | DT07/RW01 | ECB94_06050 | - | Lytic transglycosylase |
A0A3G4VBK1 | DT07/RW01 | ECB94_12780 | - | DUF2057 domain-containing protein |
A0A3G4VD91 | DT02 | ECB94_16550 | - | Aminopeptidase P family protein |
A0A3G4VDN8 | DT07/RW01 | iolC | - | 5-dehydro-2-deoxygluconokinase |
A0A3G4VHY4 | DT02 | ECB94_24420 | - | Uncharacterized protein |
A0A3G4VII2 | DT02 | ECB94_19140 | - | TRAP transporter substrate-binding protein |
A0A3G4VNN0 | DT02/RW01 | ECB94_24780 | - | Nucleotidyltransferase domain-containing protein |
A0A3G4VPA6 | DT07 | ECB94_26085 | - | Arylesterase |
KEGG A Class | KEGG B Class | 1265 Proteins | 95 Proteins | 127 Proteins |
---|---|---|---|---|
Metabolism | Global and overview maps | 70.64% | 74.19% | 68.57% |
Amino acid metabolism | 23.55% | 12.90% | 8.57% | |
Carbohydrate metabolism | 23.55% | 29.03% | 37.14% | |
Metabolism of cofactors and vitamins | 14.68% | 22.58% | 11.43% | |
Energy metabolism | 12.33% | 6.45% | 17.14% | |
Nucleotide metabolism | 9.83% | 3.23% | 0 | |
Metabolism of other amino acids | 6.23% | 9.68% | 2.86% | |
Lipid metabolism | 5.40% | 6.45% | 2.86% | |
Biosynthesis of other secondary metabolites | 4.02%5 | 3.23% | 0 | |
Glycan biosynthesis and metabolism | 3.74% | 0 | 0 | |
Xenobiotics biodegradation and metabolism | 3.74% | 3.24% | 0 | |
Metabolism of terpenoids and polyketides | 2.35% | 0 | 0 | |
Genetic Information Processing | Translation | 9.70% | 3.23% | 0 |
Folding, sorting and degradation | 3.19% | 6.45% | 0 | |
Replication and repair | 2.35% | 3.23% | 0 | |
Transcription | 0.55% | 0 | 0 | |
Environmental Information Processing | Membrane transport | 7.76% | 16.13% | 14.29% |
Signal transduction | 5.54% | 0 | 14.29% | |
Cellular Processes | Cellular community—prokaryotes | 6.37% | 12.90% | 5.71% |
Cell motility | 3.19% | 0 | 11.43% | |
Cell growth and death | 0.83% | 0 | 0 | |
Organismal Systems | Environmental adaptation | 0.97% | 0 | 0 |
Immune system | 0.69% | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Dai, W.; Zhang, H.; Liu, S.; Lin, Z.; Xue, Q. Genomic and Proteomic Analyses of Extracellular Products Reveal Major Virulence Factors Likely Accounting for Differences in Pathogenicity to Bivalves between Vibrio mediterranei Strains. Animals 2024, 14, 692. https://doi.org/10.3390/ani14050692
Fan C, Dai W, Zhang H, Liu S, Lin Z, Xue Q. Genomic and Proteomic Analyses of Extracellular Products Reveal Major Virulence Factors Likely Accounting for Differences in Pathogenicity to Bivalves between Vibrio mediterranei Strains. Animals. 2024; 14(5):692. https://doi.org/10.3390/ani14050692
Chicago/Turabian StyleFan, Congling, Wenfang Dai, Haiyan Zhang, Sheng Liu, Zhihua Lin, and Qinggang Xue. 2024. "Genomic and Proteomic Analyses of Extracellular Products Reveal Major Virulence Factors Likely Accounting for Differences in Pathogenicity to Bivalves between Vibrio mediterranei Strains" Animals 14, no. 5: 692. https://doi.org/10.3390/ani14050692
APA StyleFan, C., Dai, W., Zhang, H., Liu, S., Lin, Z., & Xue, Q. (2024). Genomic and Proteomic Analyses of Extracellular Products Reveal Major Virulence Factors Likely Accounting for Differences in Pathogenicity to Bivalves between Vibrio mediterranei Strains. Animals, 14(5), 692. https://doi.org/10.3390/ani14050692