Effects of Supplementation with Oregano Essential Oil during Late Gestation and Lactation on Serum Metabolites, Antioxidant Capacity and Fecal Microbiota of Sows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Animals and Treatment
2.3. Sow and Piglet Performance
2.4. Sample Collection
2.5. Determination of Serum Biochemical Parameters
2.6. 16S rRNA-Based Microbiota Analysis
2.7. Statistical Analysis
3. Results
3.1. Sow Performance
3.2. Piglet Performance
3.3. Serum Biochemical Parameters and Antioxidant Capacity of Sows
3.4. Composition and Differences of Fecal Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grahofer, A.; Plush, K. Lactation in Swine: Review Article. Anim. Front. 2023, 13, 112–118. [Google Scholar] [CrossRef]
- Almeida, F.R.C.L.; Dias, A.L.N.A. Pregnancy in Pigs: The Journey of an Early Life. Domest. Anim. Endocrinol. 2022, 78, 106656. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Xie, P.; Li, H.; Blachier, F.; Yin, Y.; Kong, X. Dynamic Changes of Metabolite Profiles in Maternal Biofluids During Gestation Period in Huanjiang Mini-Pigs. Front. Vet. Sci. 2021, 8, 636943. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Yan, C.; Hu, L.; Huang, Y.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B.; Li, J.; Zhuo, Y.; et al. Live Yeast Supplementation during Late Gestation and Lactation Affects Reproductive Performance, Colostrum and Milk Composition, Blood Biochemical and Immunological Parameters of Sows. Anim. Nutr. 2020, 6, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.; Marchant-Forde, J.N.; Richert, B.T.; Lay, D.C., Jr. Including Dietary Fiber and Resistant Starch to Increase Satiety and Reduce Aggression in Gestating Sows. J. Anim. Sci. 2016, 94, 2117–2127. [Google Scholar] [CrossRef]
- Tokach, M.D.; Menegat, M.B.; Gourley, K.M.; Goodband, R.D. Review: Nutrient Requirements of the Modern High-Producing Lactating Sow, with an Emphasis on Amino Acid Requirements. Animal 2019, 13, 2967–2977. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Langendijk, P.; Jaworski, N.W.; Wu, Y.; Bai, Y.; Lu, D.; Page, G.; Kemp, B.; Han, D.; Soede, N.M.; et al. Protein Digestion Kinetics Influence Maternal Protein Loss, Litter Growth, and Nitrogen Utilization in Lactating Sows. Front. Nutr. 2022, 9, 862823. [Google Scholar] [CrossRef] [PubMed]
- Tummaruk, P.; Sumransap, P.; Jiebna, N. Fat and Whey Supplementation Influence Milk Composition, Backfat Loss, and Reproductive Performance in Lactating Sows. Trop. Anim. Health Prod. 2014, 46, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Berchieri-Ronchi, C.B.; Kim, S.W.; Zhao, Y.; Correa, C.R.; Yeum, K.-J.; Ferreira, A.L.A. Oxidative Stress Status of Highly Prolific Sows during Gestation and Lactation. Animal 2011, 5, 1774–1779. [Google Scholar] [CrossRef]
- Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D.H.; Kalhoro, M.S.; Rahu, B.A.; Sahito, R.G.A.; Yin, Y.; Yang, H.; Chughtai, M.I.; et al. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediat. Inflamm. 2021, 2021, e9962860. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Z.; Heng, J.; Song, H.; Tian, M.; Chen, F.; Guan, W. Combined Yeast Culture and Organic Selenium Supplementation during Late Gestation and Lactation Improve Preweaning Piglet Performance by Enhancing the Antioxidant Capacity and Milk Content in Nutrient-Restricted Sows. Anim. Nutr. 2020, 6, 160–167. [Google Scholar] [CrossRef]
- Zheng, S.; Qin, G.; Zhen, Y.; Zhang, X.; Chen, X.; Dong, J.; Li, C.; Aschalew, N.D.; Wang, T.; Sun, Z. Correlation of Oxidative Stress-Related Indicators with Milk Composition and Metabolites in Early Lactating Dairy Cows. Vet. Med. Sci. 2021, 7, 2250–2259. [Google Scholar] [CrossRef]
- Sonnenburg, J.L.; Bäckhed, F. Diet–Microbiota Interactions as Moderators of Human Metabolism. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.; Abe, F.; Osawa, R. Age-Related Changes in Gut Microbiota Composition from Newborn to Centenarian: A Cross-Sectional Study. BMC. Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef]
- Hasan, N.; Yang, H. Factors Affecting the Composition of the Gut Microbiota, and Its Modulation. PeerJ. 2019, 7, e7502. [Google Scholar] [CrossRef]
- Gorczyca, K.; Obuchowska, A.; Kimber-Trojnar, Ż.; Wierzchowska-Opoka, M.; Leszczyńska-Gorzelak, B. Changes in the Gut Microbiome and Pathologies in Pregnancy. Int. J. Environ. Res. Public Health 2022, 19, 9961. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Bäckhed, H.K.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R.; et al. Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Miko, E.; Csaszar, A.; Bodis, J.; Kovacs, K. The Maternal–Fetal Gut Microbiota Axis: Physiological Changes, Dietary Influence, and Modulation Possibilities. Life 2022, 12, 424. [Google Scholar] [CrossRef] [PubMed]
- Butel, M.-J.; Waligora-Dupriet, A.-J.; Wydau-Dematteis, S. The Developing Gut Microbiota and Its Consequences for Health. J. Dev. Orig. Health Dis. 2018, 9, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Lombrea, A.; Antal, D.; Ardelean, F.; Avram, S.; Pavel, I.Z.; Vlaia, L.; Mut, A.-M.; Diaconeasa, Z.; Dehelean, C.A.; Soica, C.; et al. A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum vulgare L. Essential Oil. Int. J. Mol. Sci. 2020, 21, 9653. [Google Scholar] [CrossRef] [PubMed]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef] [PubMed]
- Khafaga, A.F.; Naiel, M.A.E.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Dietary Origanum Vulgare Essential Oil Attenuates Cypermethrin-Induced Biochemical Changes, Oxidative Stress, Histopathological Alterations, Apoptosis, and Reduces DNA Damage in Common Carp (Cyprinus carpio). Aquat. Toxicol. 2020, 228, 105624. [Google Scholar] [CrossRef] [PubMed]
- Maral, H.; Ulupınar, S.; Baydır, A.T.; Özbay, S.; Altınkaynak, K.; Şebin, E.; Şiktar, E.; Kishalı, N.F.; Buzdağlı, Y.; Gençoğlu, C.; et al. Effect of Origanum Dubium, Origanum Vulgare Subsp. Hirtum, and Lavandula Angustifolia Essential Oils on Lipid Profiles and Liver Biomarkers in Athletes. Z. Naturforsch. C J. Biosci. 2022, 77, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Jara, D.; Rivera-Gomis, J.; Tornel, J.A.; Jordán, M.J.; Martínez-Conesa, C.; Pablo, M.J.C. Oregano Essential Oil and Purple Garlic Powder Effects on Intestinal Health, Microbiota Indicators and Antimicrobial Resistance as Feed Additives in Weaning Piglets. Animals 2024, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.d.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, Thyme, and Other Plant Sources: Health and Potential Uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.R.; de Carvalho, F.O.; Teixeira, L.G.B.; Santos, N.G.L.; Felipe, F.A.; Santana, H.S.R.; Shanmugam, S.; Júnior, L.J.Q.; de Souza Araújo, A.A.; Nunes, P.S. Pharmacological Effects of Carvacrol in In Vitro Studies: A Review. Curr. Pharm. Des. 2018, 24, 3454–3465. [Google Scholar] [CrossRef]
- Tan, C.; Wei, H.; Sun, H.; Ao, J.; Long, G.; Jiang, S.; Peng, J. Effects of Dietary Supplementation of Oregano Essential Oil to Sows on Oxidative Stress Status, Lactation Feed Intake of Sows, and Piglet Performance. Biomed. Res. Int. 2015, 2015, 525218. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Z.; Ming, D.; Huang, C.; Xu, S.; Li, Z.; Wang, Z.; Liu, H.; Zeng, X.; Wang, F. Effect of Maternal Dietary Starch-to-Fat Ratio and Daily Energy Intake during Late Pregnancy on the Performance and Lipid Metabolism of Primiparous Sows and Newborn Piglets. J. Anim. Sci. 2022, 100, skac033. [Google Scholar] [CrossRef]
- Wang, L.; Hou, Y.; Yi, D.; Li, Y.; Ding, B.; Zhu, H.; Liu, J.; Xiao, H.; Wu, G. Dietary Supplementation with Glutamate Precursor α-Ketoglutarate Attenuates Lipopolysaccharide-Induced Liver Injury in Young Pigs. Amino Acids 2015, 47, 1309–1318. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Zhou, L.; Zhou, J.; He, L.; Li, J.; Xu, X.; Wang, J.; Wang, L. Elevated AST/ALT Ratio Is Associated with All-cause Mortality and Cancer Incident. J. Clin. Lab. Anal. 2022, 36, e24356. [Google Scholar] [CrossRef]
- Daoudi, N.E.; Bnouham, M. Hepatoprotective Essential Oils: A Review. J. Pharmacopunct. 2020, 23, 124–141. [Google Scholar] [CrossRef]
- Haque, M.R.; Ansari, S.H.; Najmi, A.K.; Ahmad, M.A. Monoterpene Phenolic Compound Thymol Prevents High Fat Diet Induced Obesity in Murine Model. Toxicol. Mech. Method. 2014, 24, 116–123. [Google Scholar] [CrossRef]
- Mauri, M.; Calmarza, P.; Ibarretxe, D. Dislipemias y Embarazo, Una Puesta al Día. Clin. Investig. Arterioscler. 2021, 33, 41–52. [Google Scholar] [CrossRef]
- Schneider, I.; Kressel, G.; Meyer, A.; Krings, U.; Berger, R.G.; Hahn, A. Lipid Lowering Effects of Oyster Mushroom (Pleurotus ostreatus) in Humans. J. Funct. Foods 2011, 3, 17–24. [Google Scholar] [CrossRef]
- Saravanan, S.; Pari, L. Role of Thymol on Hyperglycemia and Hyperlipidemia in High Fat Diet-Induced Type 2 Diabetic C57BL/6J Mice. Eur. J. Pharmacol. 2015, 761, 279–287. [Google Scholar] [CrossRef]
- Aristatile, B.; Al-Numair, K.S.; Veeramania, C.; Pugalendi, K.V. Antihyperlipidemic Effect of Carvacrol on D-Galactosamine Induced Hepatotoxic Rats. J. Basic Clin. Physiol. Pharmacol. 2009, 20, 15–28. [Google Scholar] [CrossRef]
- Basmacioğlu Malayoğlu, H.; Baysal, Ş.; Misirlioğlu, Z.; Polat, M.; Yilmaz, H.; Turan, N. Effects of Oregano Essential Oil with or without Feed Enzymes on Growth Performance, Digestive Enzyme, Nutrient Digestibility, Lipid Metabolism and Immune Response of Broilers Fed on Wheat–Soybean Meal Diets. Br. Poultry Sci. 2010, 51, 67–80. [Google Scholar] [CrossRef]
- Costa, H.A.; Dias, C.J.M.; Martins, V.d.A.; de Araujo, S.A.; da Silva, D.P.; Mendes, V.S.; de Oliveira, M.N.S., Jr.; Mostarda, C.T.; Borges, A.C.R.; Ribeiro, R.M.; et al. Effect of Treatment with Carvacrol and Aerobic Training on Cardiovascular Function in Spontaneously Hypertensive Rats. Exp. Physiol. 2021, 106, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.E.; Rodriguez Polanco, S.; Bousvarou, M.D.; Papakonstantinou, E.J.; Peña Genao, E.; Guzman, E.; Kostara, C.E. The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics 2023, 13, 929. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wei, H.; Yu, H.; Xu, C.; Jiang, S.; Peng, J. Metabolic Syndrome During Perinatal Period in Sows and the Link With Gut Microbiota and Metabolites. Front. Microbiol. 2018, 9, 1989. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Wei, H.; Ao, J.; Long, G.; Peng, J. Inclusion of Konjac Flour in the Gestation Diet Changes the Gut Microbiota, Alleviates Oxidative Stress, and Improves Insulin Sensitivity in Sows. Appl. Environ. Microbiol. 2016, 82, 5899–5909. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Assessment of Lipid Peroxidation by Measuring Malondialdehyde (MDA) and Relatives in Biological Samples: Analytical and Biological Challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Puerto, M.; Pichardo, S.; Jos, Á.; Cameán, A.M. In Vitro Pro-Oxidant/Antioxidant Role of Carvacrol, Thymol and Their Mixture in the Intestinal Caco-2 Cell Line. Toxicol. In Vitro 2015, 29, 647–656. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, E.M.; Abd-Allah, A.R.; Mansour, A.M.; EL-Arabey, A.A. Thymol and Carvacrol Prevent Cisplatin-Induced Nephrotoxicity by Abrogation of Oxidative Stress, Inflammation, and Apoptosis in Rats. J. Biochem. Mol. Toxicol. 2015, 29, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wang, J.; Peng, J.; Wei, H. Oregano Essential Oil Induces SOD1 and GSH Expression through Nrf2 Activation and Alleviates Hydrogen Peroxide-Induced Oxidative Damage in IPEC-J2 Cells. Oxid. Med. Cell. Longev. 2016, 2016, 5987183. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends. Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.T.H. The Ameliorative Efficacy of Thymus Vulgaris Essential Oil against Escherichia Coli O157:H7-Induced Hematological Alterations, Hepatorenal Dysfunction and Immune-Inflammatory Disturbances in Experimentally Infected Rats. Environ. Sci. Pollut. Res. 2022, 29, 41476–41491. [Google Scholar] [CrossRef] [PubMed]
- Satora, M.; Magdziarz, M.; Rząsa, A.; Rypuła, K.; Płoneczka-Janeczko, K. Insight into the Intestinal Microbiome of Farrowing Sows Following the Administration of Garlic (Allium sativum) Extract and Probiotic Bacteria Cultures under Farming Conditions. BMC. Vet. Res. 2020, 16, 442. [Google Scholar] [CrossRef]
- Andrade-Ochoa, S.; Chacón-Vargas, K.F.; Sánchez-Torres, L.E.; Rivera-Chavira, B.E.; Nogueda-Torres, B.; Nevárez-Moorillón, G.V. Differential Antimicrobial Effect of Essential Oils and Their Main Components: Insights Based on the Cell Membrane and External Structure. Membranes 2021, 11, 405. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Belzer, C.; Goossens, M.; Kleerebezem, M.; De Vos, W.M.; Thas, O.; De Weirdt, R.; Kerckhof, F.-M.; Van de Wiele, T. Butyrate-Producing Clostridium Cluster XIVa Species Specifically Colonize Mucins in an in vitro Gut Model. ISME J. 2013, 7, 949–961. [Google Scholar] [CrossRef]
- Tett, A.; Pasolli, E.; Masetti, G.; Ercolini, D.; Segata, N. Prevotella Diversity, Niches and Interactions with the Human Host. Nat. Rev. Microbiol. 2021, 19, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Szajewska, H.; Kołodziej, M. Systematic Review with Meta-Analysis: Lactobacillus Rhamnosus GG in the Prevention of Antibiotic-Associated Diarrhoea in Children and Adults. Aliment. Pharmacol. Ther. 2015, 42, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Tyagi, A.; Kumar, A.; Panwar, S.; Grover, S.; Saklani, A.C.; Hemalatha, R.; Batish, V.K. Adhesion of Lactobacilli and Their Anti-Infectivity Potential. Crit. Rev. Food. Sci. Nutr. 2017, 57, 2042–2056. [Google Scholar] [CrossRef]
- Betancur, C.; Martínez, Y.; Tellez-Isaias, G.; Castillo, R.; Ding, X. Effect of Oral Administration with Lactobacillus Plantarum CAM6 Strain on Sows during Gestation-Lactation and the Derived Impact on Their Progeny Performance. Mediat. Inflamm. 2021, 2021, 6615960. [Google Scholar] [CrossRef] [PubMed]
Item | Ratio (%) |
---|---|
Corn | 44.30 |
Beet pulp | 3.00 |
Brown rice | 10.00 |
Wheat flour | 10.00 |
Limestone | 0.90 |
Fermented soybean meal | 3.00 |
Extruded soybean | 12.00 |
Soybean meal | 11.00 |
Soybean oil | 1.80 |
Premix 1 | 4.00 |
Crude protein | 17.06 |
Ether extract | 6.09 |
Crude fiber | 2.56 |
Calcium | 1.00 |
Total phosphorus | 0.67 |
Lysine | 1.10 |
Methionine | 0.31 |
Cystine | 0.30 |
Threonine | 0.68 |
Tryptophan | 0.21 |
Digestible energy 2 (Mcal/kg) | 3.46 |
Item | CTL | OEO | p Value |
---|---|---|---|
Sow BW (kg) | |||
Parturition | 271.1 ± 14.6 | 288.5 ± 20.0 | 0.08 |
Weaning | 225.0 ± 18.1 | 241.4 ± 27.5 | 0.20 |
Loss | 46.1 ± 8.0 | 47.1 ± 16.9 | 0.88 |
Sow backfat thickness (mm) | |||
Day 113 | 18.8 ± 1.5 | 18.9 ± 1.4 | 0.87 |
Weaning | 14.7 ± 1.7 | 15.3 ± 1.0 | 0.33 |
Loss | 4.1 ± 0.6 | 3.6 ± 1.5 | 0.32 |
Lactation ADFI (kg) | 5.06 ± 0.59 | 4.90 ± 0.48 | 0.75 |
WEI (d) | 5.38 ± 0.74 | 5.22 ± 0.44 | 0.61 |
Item | CTL | OEO | p Value |
---|---|---|---|
Litter Size | |||
Total born | 15.29 ± 1.98 | 16.14 ± 3.48 | 0.58 |
Born alive | 15.00 ± 2.00 | 15.29 ± 2.63 | 0.82 |
After cross-foster | 13.57 ± 0.53 | 13.71 ± 0.76 | 0.69 |
Pigs weaned | 13.00 ± 1.00 | 13.14 ± 1.07 | 0.80 |
Weaning survival rate (%) | 95.76 ± 5.96 | 95.84 ± 5.67 | 0.98 |
Piglet mean BW (kg) | |||
At birth | 1.55 ± 0.09 | 1.62 ± 0.22 | 0.51 |
After cross-foster | 1.60 ± 0.07 | 1.63 ± 0.21 | 0.75 |
At day 7 | 2.91 ± 0.26 | 2.91 ± 0.15 | 0.97 |
At day 14 | 4.62 ± 0.34 | 4.75 ± 0.20 | 0.45 |
At day 21 | 6.31 ± 0.29 | 6.71 ± 0.41 | 0.08 |
Item | CTL | OEO | p Value |
---|---|---|---|
UREA (mmol/L) | 6.86 ± 0.43 | 5.06 ± 0.62 | <0.01 |
CR (μmol/L) | 195.65 ± 21.08 | 178.80 ± 22.08 | 0.21 |
BUN/CR | 35.19 ± 1.77 | 28.52 ± 3.94 | <0.01 |
TC (mmol/L) | 2.29 ± 0.37 | 1.87 ± 0.21 | 0.04 |
TG (mmol/L) | 0.38 ± 0.06 | 0.35 ± 0.05 | 0.36 |
HDL-C (mmol/L) | 0.93 ± 0.17 | 0.82 ± 0.11 | 0.25 |
LDL-C (mmol/L) | 1.16 ± 0.15 | 0.94 ± 0.14 | 0.02 |
TG/HDL-C | 0.37 ± 0.10 | 0.42 ± 0.08 | 0.24 |
AST (U/L) | 59.00 ± 16.16 | 41.86 ± 10.61 | 0.04 |
ALT (U/L) | 37.67 ± 12.16 | 32.86 ± 8.99 | 0.43 |
AST/ALT | 1.64 ± 0.48 | 1.29 ± 0.19 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Deng, Y.; Hao, Y.; Fang, J.; Feng, J. Effects of Supplementation with Oregano Essential Oil during Late Gestation and Lactation on Serum Metabolites, Antioxidant Capacity and Fecal Microbiota of Sows. Animals 2024, 14, 753. https://doi.org/10.3390/ani14050753
Zhang Y, Deng Y, Hao Y, Fang J, Feng J. Effects of Supplementation with Oregano Essential Oil during Late Gestation and Lactation on Serum Metabolites, Antioxidant Capacity and Fecal Microbiota of Sows. Animals. 2024; 14(5):753. https://doi.org/10.3390/ani14050753
Chicago/Turabian StyleZhang, Yuanyi, Yuhang Deng, Yubin Hao, Jianmin Fang, and Jie Feng. 2024. "Effects of Supplementation with Oregano Essential Oil during Late Gestation and Lactation on Serum Metabolites, Antioxidant Capacity and Fecal Microbiota of Sows" Animals 14, no. 5: 753. https://doi.org/10.3390/ani14050753
APA StyleZhang, Y., Deng, Y., Hao, Y., Fang, J., & Feng, J. (2024). Effects of Supplementation with Oregano Essential Oil during Late Gestation and Lactation on Serum Metabolites, Antioxidant Capacity and Fecal Microbiota of Sows. Animals, 14(5), 753. https://doi.org/10.3390/ani14050753