Pen-Based Swine Oral Fluid Samples Contain Both Environmental and Pig-Derived Targets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Commercial Production Sites
2.3. Oral Fluid Collection and Handling
2.4. Treatments
2.4.1. Florescence Control Samples
2.4.2. Direct (Pig) and Indirect (Pen Floor) Treatments
2.4.3. Relative Fluorescence Units (RFUs)
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henao-Diaz, A.; Giménez-Lirola, L.; Baum, D.H.; Zimmerman, J. Guidelines for oral fluid-based surveillance of viral pathogens in swine. Porc. Health Manag. 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- White, D.; Rotolo, M.; Olsen, C.; Wang, C.; Prickett, P.; Kittawornrat, A.; Panyasing, Y.; Main, R.; Rademacher, C.; Hoogland, M.; et al. Recommendations for pen-based oral-fluid collection in growing pigs. J. Swine Health Prod. 2014, 22, 138–141. [Google Scholar]
- Kittawornrat, A.; Zimmerman, J.J. Toward a better understanding of pig behavior and pig welfare. Anim. Health Res. Rev. 2010, 12, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Tarasiuk, G.; Remmenga, M.; O’Hara, K.; Rotolo, M.; Zaabel, P.; Zimmerman, J. Effect of pen size and number of ropes on behaviors associated with oral fluid sampling. In Proceedings of the American Association of Swine Veterinarians Annual Meeting, Aurora, CO, USA, 4–7 March 2023. [Google Scholar] [CrossRef]
- Algeo, T.P.; Norhenberg, G.; Hale, R.; Montoney, A.; Chipman, R.B.; Slate, D. Oral rabies vaccination variation in tetracycline biomarking among Ohio raccoons. J. Wildl. Dis. 2013, 49, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Skinner, H.C.; Nalbandian, J. Tetracyclines and mineralized tissues: Review and perspectives. Yale J. Biol. Med. 1975, 48, 377–397. [Google Scholar]
- Evans, J.; Griffith, R.E., Jr. A fluorescent tracer and marker for animal studies. J. Wildl. Manag. 1973, 37, 73–81. [Google Scholar] [CrossRef]
- Phillips, G.E.; Goldade, D.A.; VerCauteren, K.C.; Ott, T.L.; Wagner, D.C. Iophenoxic acid and Rhodamine B as biomarkers of bovine tuberculosis vaccine bait uptake by white-tailed deer. In Proceedings of the Vertebrate Pest Conference, Waikoloa, HI, USA, 5 March 2014. [Google Scholar] [CrossRef]
- Baruzzi, C.; Coats, J.; Callaby, R.; Cowan, D.P.; Massei, G. Rhodamine B as a long-term semi-quantitative bait marker for wild boar. Wildl. Soc. Bull. 2017, 41, 271–277. [Google Scholar] [CrossRef]
- Jacob, J.; Jones, D.A.; Singleton, G.R. Retention of the bait marker Rhodamine B in wild house mice. Wildl. Res. 2002, 29, 159–164. [Google Scholar] [CrossRef]
- Fry, T.L.; Atwood, T.; Dunbar, M.R. Evaluation of rhodamine B as a biomarker for raccoons. Hum. Wildl. Interact. 2010, 4, 275–282. Available online: https://www.jstor.org/stable/24868847 (accessed on 12 September 2023).
- Chen, G.Q.; Wu, Y.M.; Wang, J.; Zhu, T.; Gao, S.M. Fluorescence spectroscopy study of synthetic food colors. Guang Pu Xue Yu Guang Pu Fen Xi 2009, 29, 2518–2522. (In Chinese) [Google Scholar]
- Leiner, M.J.; Hubmann, M.R.; Wolfbeis, O.S. The total fluorescence of human urine. Anal. Chim. Acta 1987, 198, 13–23. [Google Scholar] [CrossRef]
- Kim, M.S.; Lefcourt, A.M.; Chen, Y.R. Optimal fluorescence excitation and emission bands for detection of fecal contamination. J. Food Prot. 2003, 66, 1198–1207. [Google Scholar] [CrossRef]
- Hruska, Z.; Yao, H.; Kincaid, R.; Brown, R.; Cleveland, T.; Bhatnagar, D. Fluorescence excitation–emission features of aflatoxin and related secondary metabolites and their application for rapid detection of mycotoxins. Food Bioprocess Techol. 2014, 7, 1195–1201. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. R Package Version 1.1.3. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 15 September 2023).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Ranke, J. chemCal: Calibration Functions for Analytical Chemistry. R Package Version 0.2.3. 2022. Available online: https://CRAN.R-project.org/package=chemCal (accessed on 20 November 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Bellagambi, F.G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.; Hangouët, M.; Ghimenti, S.; Biagini, D.; Di Francesco, F.; Fuoco, R.; Errachid, A. Saliva sampling: Methods and devices. An overview. TrAC Trends Anal. Chem. 2020, 124, 115781. [Google Scholar] [CrossRef]
- Brill, N.; Krasse, B.O. The passage of tissue fluid into the clinically healthy gingival pocket. Acta Odontol. Scand. 1958, 16, 233–245. [Google Scholar] [CrossRef]
- Brill, N.; Björn, H. Passage of tissue fluid into human gingival pockets. Acta Odontol. Scand. 1959, 17, 11–21. [Google Scholar] [CrossRef]
- Schein, A.H.; Tung, F. Appearance of parenterally administered proteins in saliva. Nature 1962, 196, 1092–1093. [Google Scholar] [CrossRef]
- Madonia, J.V.; Bahn, A.N.; Calandra, J.C. Salivary excretion of Coxsackie b-1 virus in rabbits. Appl. Microbiol. 1966, 14, 394–396. [Google Scholar] [CrossRef] [PubMed]
- Groopman, J.; Salahuddin, S.; Sarngadharan, M.; Markham, P.; Gonda, M.; Sliski, A.; Gallo, R. HTLV-III in saliva of people with AIDS-related complex and healthy homosexual men at risk for AIDS. Science 1984, 226, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Archibald, D.W.; Zon, L.; Groopman, J.E.; McLane, M.F.; Essex, M. Antibodies to human T-lymphotropic virus type III (HTLV-III) in saliva of acquired immunodeficiency syndrome (AIDS) patients and in persons at risk for AIDS. Blood 1986, 67, 831–834. [Google Scholar] [CrossRef]
- Pugliese, G. FDA Approves Oral HIV Test. Infect. Control Hosp. Epidemiol. 1995, 16, 186. [Google Scholar] [CrossRef]
- Yeh, C.K.; Christodoulides, N.J.; Floriano, P.N.; Miller, C.S.; Ebersole, J.L.; Weigum, S.E.; McDevitt, J.; Redding, S.W. Current development of saliva/oral fluid-based diagnostics. Tex. Dent. J. 2010, 127, 651–661. [Google Scholar]
- Bird, A.G.; Gore, S.M.; Jolliffe, D.W.; Burns, S.M. Anonymous HIV surveillance in Saughton prison, Edinburgh. Aids 1992, 6, 725–734. [Google Scholar] [CrossRef]
- Ramsay, M.; Brugha, R.; Brown, D. Surveillance of measles in England and Wales: Implications of a national saliva testing programme. Bull. World Health Organ. 1997, 75, 515–521. [Google Scholar] [PubMed]
- Jacobson, S.K.; Buttery, R.; Parry, J.V.; Perry, K.R.; Wreghitt, T.G. Investigation of a hepatitis A outbreak in a primary school by sequential saliva sampling. Clin. Diagn. Vir. 1995, 3, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Tsang, N.N.Y.; So, H.C.; Ng, K.Y.; Cowling, B.J.; Leung, G.M.; Ip, D.K.M. Diagnostic performance of different sampling approaches for SARS-CoV-2 RT-PCR testing: A systematic review and meta-analysis. Lancet Infect. Dis. 2021, 21, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Prickett, J.; Simer, R.; Christopher-Hennings, J.; Yoon, K.J.; Evans, R.B.; Zimmerman, J. Detection of porcine reproductive and respiratory syndrome virus infection in porcine oral fluid samples: A longitudinal study under experimental conditions. J. Vet. Diagn. Investig. 2008, 20, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Munguía-Ramírez, B.; Armenta-Leyva, B.; Giménez-Lirola, L.; Wang, C.; Zimmerman, J.J. Surveillance on swine farms using antemortem specimens. In Optimizing Pig Herd Health and Production; Maes, D., Segalés, J., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2023; pp. 97–138. [Google Scholar] [CrossRef]
- Bjustrom-Kraft, J.; Christopher-Hennings, J.; Daly, R.; Main, R.; Torrison, J.; Thurn, M.; Zimmerman, J. The use of oral fluid diagnostics in swine medicine. J. Swine Health Prod. 2018, 26, 262–269. [Google Scholar] [CrossRef]
- Trevisan, G.; (Iowa State University, Ames, IA, USA). Personal communication, 2023.
- Lilja, M.; Räisänen, S.; Stenfors, L.E. Initial events in the pathogenesis of acute tonsillitis caused by Streptococcus pyogenes. Int. J. Pediatr. Otorhinolaryngol. 1998, 45, 15–20. [Google Scholar] [CrossRef]
- Horter, D.C.; Yoon, K.J.; Zimmerman, J.J. A review of porcine tonsils in immunity and disease. Anim. Health Res. Rev. 2003, 4, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Prickett, J.R.; Zimmerman, J.J. The development of oral fluid-based diagnostics and applications in veterinary medicine. Anim. Health Res. Rev. 2010, 11, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Main, R.; Zimmerman, J. Exogenous source of PRRSV antibody in positive oral-fluid ELISA results. J. Swine Health Prod. 2012, 20, 215. [Google Scholar]
- Frana, T.; Warneke, H.; Stensland, W.; Kinyon, J.; Bower, L.; Burrough, E. Comparative detection of Lawsonia intracellularis, Salmonella, and Brachyspira from oral fluids and feces. In Proceedings of the American Association of Swine Veterinarians Annual Meeting, Dallas, TX, USA, 1–4 March 2014; pp. 67–69. [Google Scholar]
- Zhang, J. Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution. Virus Res. 2016, 226, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Bower, L.; Madson, D.; Hoang, H.; Sun, D.; Giménez-Lirola, L.; Magstadst, D.; Arruda, P.; Wilberts, B.; Yoon, K. Utility of oral fluid sampling and testing for monitoring PEDV in herds. In Proceedings of the American Association of Swine Veterinarians Annual Meeting, Dallas, TX, USA, 1–4 March 2014; pp. 61–62. [Google Scholar]
- Bjustrom-Kraft, J.; Woodard, K.; Giménez-Lirola, L.; Rotolo, M.; Wang, C.; Sun, Y.; Lasley, P.; Zhang, J.; Baum, D.; Gauger, P.; et al. Porcine epidemic diarrhea virus (PEDV) detection and antibody response in commercial growing pigs. BMC Vet. Res. 2016, 12, 99. [Google Scholar] [CrossRef]
- Magtoto, R.; Poonsuk, K.; Baum, D.; Zhang, J.; Chen, Q.; Ji, J.; Piñeyro, P.; Zimmerman, J.; Giménez-Lirola, L.G. Evaluation of the serologic cross-reactivity between transmissible gastroenteritis coronavirus and porcine respiratory coronavirus using commercial blocking enzyme-linked immunosorbent assay kits. mSphere 2019, 4, 10–1128. [Google Scholar] [CrossRef]
- Savarie, P.J.; Johns, B.E.; Gaddis, S.E. A review of chemical and particle marking agents used for studying vertebrate pests. In Proceedings of the Vertebrate Pest Conference, Newport Beach, CA, USA, 3–5 March 1992; Volume 15. Available online: https://escholarship.org/uc/item/90q7x14m (accessed on 10 October 2023).
- Olson, C.A.; Mitchell, K.D.; Werner, P.A. Bait ingestion by free-ranging raccoons and nontarget species in an oral rabies vaccine field trial in Florida. J. Wildl. Diseas. 2000, 36, 734–743. [Google Scholar] [CrossRef]
- Rossi, S.; Staubach, C.; Blome, S.; Guberti, V.; Thulke, H.H.; Vos, A.; Koenen, F.; Le Potier, M.F. Controlling of CSFV in European wild boar using oral vaccination: A review. Front. Microbiol. 2015, 6, 1141. [Google Scholar] [CrossRef]
- McCormic for Chefs. Available online: https://www.mccormickforchefs.com/en-us/products/mccormick-culinary/red-food-color (accessed on 26 December 2023).
Step-Wise Analysis | Pen Size (Sampling Time) | |||
---|---|---|---|---|
30 Pigs per Pen (30 min) | 60 Pigs per Pen (45 min) | 125 Pigs per Pen (60 min) | ||
Direct treatment 2 |
| 11.86 1 (11.78, 11.93) | 11.87 1 (11.77, 11.96) | 11.78 1 (11.73, 11.82) |
| 12.17 (12.05, 12.30) | 12.30 (12.21, 12.38) | 13.36 (13.19, 13.52) | |
| 12.06 1 of 16 pens 11 of 15 pens 12.28 a (12.16, 12.40) | 12.10 0 of 16 pens 16 of 16 pens 12.30 a (12.21, 12.38) | 12.45 0 of 16 pens 16 of 16 pens 13.36 b (13.19, 13.52) | |
Indirect treatment 2 |
| 11.83 (11.76, 11.90) | 11.78 (11.67, 11.89) | 11.76 (11.67, 11.84) |
| 12.13 (12.02, 12.24) | 12.17 (12.08, 12.25) | 12.04 (11.94, 12.14) | |
| 11.96 2 of 16 pens 12 of 14 pens 12.16 a (12.06, 12.26) | 11.99 2 of 16 pens 13 of 14 pens 12.18 a (12.12, 12.25) | 11.88 2 of 16 pens 10 of 14 pens 12.11 a (12.04, 12.17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasiuk, G.; Remmenga, M.D.; O’Hara, K.C.; Talbert, M.K.; Rotolo, M.L.; Zaabel, P.; Zhang, D.; Giménez-Lirola, L.G.; Zimmerman, J.J. Pen-Based Swine Oral Fluid Samples Contain Both Environmental and Pig-Derived Targets. Animals 2024, 14, 766. https://doi.org/10.3390/ani14050766
Tarasiuk G, Remmenga MD, O’Hara KC, Talbert MK, Rotolo ML, Zaabel P, Zhang D, Giménez-Lirola LG, Zimmerman JJ. Pen-Based Swine Oral Fluid Samples Contain Both Environmental and Pig-Derived Targets. Animals. 2024; 14(5):766. https://doi.org/10.3390/ani14050766
Chicago/Turabian StyleTarasiuk, Grzegorz, Marta D. Remmenga, Kathleen C. O’Hara, Marian K. Talbert, Marisa L. Rotolo, Pam Zaabel, Danyang Zhang, Luis G. Giménez-Lirola, and Jeffrey J. Zimmerman. 2024. "Pen-Based Swine Oral Fluid Samples Contain Both Environmental and Pig-Derived Targets" Animals 14, no. 5: 766. https://doi.org/10.3390/ani14050766
APA StyleTarasiuk, G., Remmenga, M. D., O’Hara, K. C., Talbert, M. K., Rotolo, M. L., Zaabel, P., Zhang, D., Giménez-Lirola, L. G., & Zimmerman, J. J. (2024). Pen-Based Swine Oral Fluid Samples Contain Both Environmental and Pig-Derived Targets. Animals, 14(5), 766. https://doi.org/10.3390/ani14050766