Screening of Litter-Size-Associated SNPs in NOX4, PDE11A and GHR Genes of Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Preparation and Sample Collection
2.2. DNA Extraction
2.3. Selection of Candidate Loci in Three Genes
2.4. Genotyping
2.5. Statistical Analysis
2.6. Protein Functional Domain and Interaction Networks Analysis
3. Results
3.1. Genotyping and Population Genetic Analysis of Candidate SNPs in NOX4, PDE11A and GHR Genes
3.2. Association Analysis between Candidate Loci in NOX4, PDE11A, GHR and Litter Size of Small Tail Han Sheep
3.3. Protein Structure and Interaction Network Analysis of NOX4 and PDE11A
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Yang, J.; Shen, M.; Xie, X.-L.; Liu, G.-J.; Xu, Y.-X.; Lv, F.-H.; Yang, H.; Yang, Y.-L.; Liu, C.-B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Li, L.; Bai, L.; Wang, Y.; Zhang, J.; Wang, H. Inhibition of nicotinamide adenine dinucleotide phosphate oxidase 4 attenuates cell apoptosis and oxidative stress in a rat model of polycystic ovary syndrome through the activation of Nrf-2/HO-1 signaling pathway. Mol. Cell. Endocrinol. 2022, 550, 111645. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Luo, S.; Fan, P.; Jin, S.; Zhu, H.; Deng, T.; Quan, Y.; Huang, W. Growth hormone alleviates oxidative stress and improves oocyte quality in Chinese women with polycystic ovary syndrome: A randomized controlled trial. Sci. Rep. 2020, 10, 18769. [Google Scholar] [CrossRef]
- Zhang, Y.; Murugesan, P.; Huang, K.; Cai, H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets. Nat. Rev. Cardiol. 2020, 17, 170–194. [Google Scholar] [CrossRef]
- Shkolnik, K.; Tadmor, A.; Ben-Dor, S.; Nevo, N.; Galiani, D.; Dekel, N. Reactive oxygen species are indispensable in ovulation. Proc. Natl. Acad. Sci. USA 2011, 108, 1462–1467. [Google Scholar] [CrossRef]
- Petersen, T.S.; Stahlhut, M.; Andersen, C.Y. Phosphodiesterases in the rat ovary: Effect of cAMP in primordial follicles. Reproduction 2015, 150, 11–20. [Google Scholar] [CrossRef]
- Brucato, S.; Bocquet, J.; Villers, C. Regulation of glypican-1, syndecan-1 and syndecan-4 mRNAs expression by follicle-stimulating hormone, cAMP increase and calcium influx during rat Sertoli cell development. Eur. J. Biochem. 2002, 269, 3461–3469. [Google Scholar] [CrossRef]
- Pan, B.; Li, J. The art of oocyte meiotic arrest regulation. Reprod. Biol. Endocrinol. 2019, 17, 8. [Google Scholar] [CrossRef]
- Zhang, P.; Louhio, H.; Tuuri, T.; Sjöberg, J.; Hreinsson, J.; Telfer, E.E.; Hovatta, O. In vitro effect of cyclic adenosine 3′, 5′-monophosphate (cAMP) on early human ovarian follicles. J. Assist. Reprod. Genet. 2004, 21, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-S.; Gao, L.; Xie, X.-L.; Ren, Y.-L.; Shen, Z.-Q.; Wang, F.; Shen, M.; Eyϸórsdóttir, E.; Hallsson, J.H.; Kiseleva, T.; et al. Genome-Wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Front. Genet. 2018, 9, 118. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Tian, H.; Guo, X.; Zhang, L. Regulation of ovarian function by growth hormone: Potential intervention of ovarian aging. Front. Endocrinol. 2022, 13, 1072313. [Google Scholar] [CrossRef]
- Bachelot, A.; Monget, P.; Imbert-Bolloré, P.; Coshigano, K.; Kopchick, J.J.; Kelly, P.A.; Binart, N. Growth hormone is required for ovarian follicular growth. Endocrinology 2002, 143, 4104–4112. [Google Scholar] [CrossRef]
- Pan, Z.; Li, S.; Liu, Q.; Wang, Z.; Zhou, Z.; Di, R.; Miao, B.; Hu, W.; Wang, X.; Hu, X.; et al. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization. Gigascience 2018, 7, giy019. [Google Scholar] [CrossRef]
- Romar, R.; De Santis, T.; Papillier, P.; Perreau, C.; Thélie, A.; Dell’Aquila, M.E.; Mermillod, P.; Dalbiès-Tran, R. Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age. Reprod. Domest. Anim. 2011, 46, e23–e30. [Google Scholar] [CrossRef]
- Zhou, M.; Pan, Z.; Cao, X.; Guo, X.; He, X.; Sun, Q.; Di, R.; Hu, W.; Wang, X.; Zhang, X.; et al. Single nucleotide polymorphisms in the HIRA gene affect litter size in Small Tail Han sheep. Animals 2018, 8, 71. [Google Scholar] [CrossRef]
- von Mering, C.; Jensen, L.J.; Snel, B.; Hooper, S.D.; Krupp, M.; Foglierini, M.; Jouffre, N.; Huynen, M.A.; Bork, P. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005, 33, D433–D437. [Google Scholar] [CrossRef] [PubMed]
- Ceccon, M.; Millana Fananas, E.; Massari, M.; Mattevi, A.; Magnani, F. Engineering stability in NADPH oxidases: A common strategy for enzyme production. Mol. Membr. Biol. 2017, 34, 67–76. [Google Scholar] [CrossRef]
- Wang, L.; Tang, J.; Wang, L.; Tan, F.; Song, H.; Zhou, J.; Li, F. Oxidative stress in oocyte aging and female reproduction. J. Cell. Physiol. 2021, 236, 7966–7983. [Google Scholar] [CrossRef] [PubMed]
- Gnainsky, Y.; Zfanya, N.; Elgart, M.; Omri, E.; Brandis, A.; Mehlman, T.; Itkin, M.; Malitsky, S.; Adamski, J.; Soen, Y. Systemic regulation of host energy and oogenesis by microbiome-derived mitochondrial coenzymes. Cell Rep. 2021, 34, 108583. [Google Scholar] [CrossRef] [PubMed]
- Ramos Leal, G.; Santos Monteiro, C.A.; Souza-Fabjan, J.M.G.; de Paula Vasconcelos, C.O.; Garcia Nogueira, L.A.; Reis Ferreira, A.M.; Varella Serapião, R. Role of cAMP modulator supplementations during oocyte in vitro maturation in domestic animals. Anim. Reprod. Sci. 2018, 199, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, K.; Meidan, R. The cAMP-EPAC pathway mediates PGE2-Induced FGF2 in bovine granulosa cells. Endocrinology 2018, 159, 3482–3491. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bao, X.; Peng, Z.; Wang, L.; Du, L.; Niu, W.; Sun, Y. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell. Oncotarget 2016, 7, 27899–27909. [Google Scholar] [CrossRef] [PubMed]
- Piersanti, R.L.; Horlock, A.D.; Block, J.; Santos, J.E.P.; Sheldon, I.M.; Bromfield, J.J. Persistent effects on bovine granulosa cell transcriptome after resolution of uterine disease. Reproduction 2019, 158, 35–46. [Google Scholar] [CrossRef]
- Hirata, T.; Osuga, Y.; Hamasaki, K.; Hirota, Y.; Nose, E.; Morimoto, C.; Harada, M.; Takemura, Y.; Koga, K.; Yoshino, O.; et al. Expression of toll-like receptors 2, 3, 4, and 9 genes in the human endometrium during the menstrual cycle. J. Reprod. Immunol. 2007, 74, 53–60. [Google Scholar] [CrossRef]
- Kuokkanen, S.; Polotsky, A.J.; Chosich, J.; Bradford, A.P.; Jasinska, A.; Phang, T.; Santoro, N.; Appt, S.E. Corpus luteum as a novel target of weight changes that contribute to impaired female reproductive physiology and function. Syst. Biol. Reprod. Med. 2016, 62, 227–242. [Google Scholar] [CrossRef]
- Braude, P.R.; Monk, M.; Pickering, S.J.; Cant, A.; Johnson, M.H. Measurement of HPRT activity in the human unfertilized oocyte and pre-embryo. Prenat. Diagn. 1989, 9, 839–850. [Google Scholar] [CrossRef]
- Aliagas, E.; Vidal, A.; Torrejón-Escribano, B.; Taco Mdel, R.; Ponce, J.; de Aranda, I.G.; Sévigny, J.; Condom, E.; Martín-Satué, M. Ecto-nucleotidases distribution in human cyclic and postmenopausic endometrium. Purinergic Signal. 2013, 9, 227–237. [Google Scholar] [CrossRef]
- Brochiero, E.; Coady, M.J.; Klein, H.; Laprade, R.; Lapointe, J.-Y. Activation of an ATP-dependent K+ conductance in Xenopus oocytes by expression of adenylate kinase cloned from renal proximal tubules. Biochim. Biophys. Acta (BBA)—Biomembr. 2001, 1510, 29–42. [Google Scholar] [CrossRef]
- Rozycki, M.; Bialik, J.F.; Speight, P.; Dan, Q.; Knudsen, T.E.T.; Szeto, S.G.; Yuen, D.A.; Szászi, K.; Pedersen, S.F.; Kapus, A. Myocardin-related transcription factor regulates Nox4 protein expression. J. Biol. Chem. 2016, 291, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xiao, D.; Hu, X.-Q.; Huang, X.; Zhou, J.; Wilson, S.M.; Yang, S.; Zhang, L. Chronic hypoxia during gestation enhances uterine arterial myogenic tone via heightened oxidative stress. PLoS ONE 2013, 8, e73731. [Google Scholar] [CrossRef]
- Huan, W.; Dan, L.; Can-feng, S.; Liang, L.; Jing, L.; Hui, C. Association of monogenic hypertension related pathogenic genes with preeclampsia. Chin. J. Hypertens. 2022, 30, 236–243. [Google Scholar] [CrossRef]
- Bánfi, B.; Molnár, G.; Maturana, A.; Steger, K.; Hegedûs, B.; Demaurex, N.; Krause, K.H. A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J. Biol. Chem. 2001, 276, 37594–37601. [Google Scholar] [CrossRef]
- Sela-Abramovich, S.; Galiani, D.; Nevo, N.; Dekel, N. Inhibition of rat oocyte maturation and ovulation by nitric oxide: Mechanism of action. Biol. Reprod. 2008, 78, 1111–1118. [Google Scholar] [CrossRef]
- Prasad, S.; Tiwari, M.; Tripathi, A.; Pandey, A.N.; Chaube, S.K. Changes in signal molecules and maturation promoting factor levels associate with spontaneous resumption of meiosis in rat oocytes. Cell Biol. Int. 2015, 39, 759–769. [Google Scholar] [CrossRef]
- Tiwari, M.; Chaube, S.K. Moderate increase of reactive oxygen species triggers meiotic resumption in rat follicular oocytes. J. Obstet. Gynaecol. Res. 2016, 42, 536–546. [Google Scholar] [CrossRef]
- Bergeron, A.; Guillemette, C.; Sirard, M.A.; Richard, F.J. Active 3′-5′ cyclic nucleotide phosphodiesterases are present in detergent-resistant membranes of mural granulosa cells. Reprod. Fertil. Dev. 2017, 29, 778–790. [Google Scholar] [CrossRef]
- Gonçalves, J.P.; Magalhães, B.A.; Campos-Junior, P.H.A. Contrasting effects of the Toll-like receptor 4 in determining ovarian follicle endowment and fertility in female adult mice. Zygote 2022, 30, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Weng, Y.; Zhang, Y.; Wang, R.; Wang, T.; Zhou, J.; Shen, S.; Wang, H.; Wang, Y. Exposure to hyperandrogen drives ovarian dysfunction and fibrosis by activating the NLRP3 inflammasome in mice. Sci. Total Environ. 2020, 745, 141049. [Google Scholar] [CrossRef]
- Tamura, H.; Takasaki, A.; Miwa, I.; Taniguchi, K.; Maekawa, R.; Asada, H.; Taketani, T.; Matsuoka, A.; Yamagata, Y.; Shimamura, K.; et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res. 2008, 44, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Xiang, W.; Li, Q.; Zhang, H.; Li, Y.; Zhu, G.; Xiong, C.; Jin, L. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front. Med. 2018, 12, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Dzeja, P.P.; Terzic, A. Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB J. 1998, 12, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Li, F.X.; Yu, J.J.; Liu, Y.; Miao, X.P.; Curry, T.E., Jr. Induction of Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 during the Periovulatory Period in the Rat Ovary. Reprod. Sci. 2017, 24, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Kauffenstein, G.; Pelletier, J.; Lavoie, E.G.; Kukulski, F.; Martín-Satué, M.; Dufresne, S.S.; Frenette, J.; Ribas Fürstenau, C.; Sereda, M.J.; Toutain, B.; et al. Nucleoside triphosphate diphosphohydrolase-1 ectonucleotidase is required for normal vas deferens contraction and male fertility through maintaining P2X1 receptor function. J. Biol. Chem. 2014, 289, 28629–28639. [Google Scholar] [CrossRef] [PubMed]
Loci | Primer Sequence (5′-3′) |
---|---|
c.1057-4 | F-ACGTTGGATGTTGAACTTCTTTCTTGGTC |
R-ACGTTGGATGTCTAATGCAGACACACTGGG | |
EXT-GGGCAATGTAGAATAATATACTA | |
c.1983 | F-ACGTTGGATGTGTGCCAGCTGATGTTTGCG |
R-ACGTTGGATGTAGGTCCTCACAAGTGACAG | |
EXT-ACGTCACCAAACACACTTAC | |
c.1618 | F-ACGTTGGATGCAGAAGTAAGCGCTGTCCAC |
R-ACGTTGGATGCCCCAGGCCAAAAGAATAAG | |
EXT-TCACACCCAGCCAAGCA |
Gene | SNPs | Breeds | PIC | He | Ne | χ2 (p) |
---|---|---|---|---|---|---|
NOX4 | c.1057-4C > T | Small Tail Han sheep | 0.20 | 0.23 | 1.3 | 0.30 |
Hu sheep | 0.11 | 0.11 | 1.13 | 0.00 | ||
Cele Black sheep | 0.18 | 0.20 | 1.24 | 0.00 | ||
Sunit sheep | 0.18 | 0.20 | 1.24 | 0.01 | ||
Bamei mutton sheep | 0.30 | 0.38 | 1.60 | 0.32 | ||
PDE11A | c.1983C > T | Small Tail Han sheep | 0.07 | 0.08 | 1.08 | 0.02 |
Hu sheep | 0.37 | 0.49 | 1.97 | 0.83 | ||
Cele Black sheep | 0.25 | 0.30 | 1.42 | 0.10 | ||
Sunit sheep | 0.09 | 0.10 | 1.10 | 0.00 | ||
Bamei mutton sheep | 0.32 | 0.39 | 1.65 | 0.40 | ||
GHR | c.1618C > T | Small Tail Han sheep | 0.33 | 0.42 | 1.72 | 0.44 |
Hu sheep | 0.36 | 0.47 | 1.87 | 0.51 | ||
Cele Black sheep | 0.21 | 0.24 | 1.32 | 0.52 | ||
Sunit sheep | 0.32 | 0.40 | 1.68 | 0.44 | ||
Bamei mutton sheep | 0.25 | 0.30 | 1.42 | 0.36 |
Gene | SNPs | Genotypes | First Parity | Second Parity | Third Parity |
---|---|---|---|---|---|
Litter Size | Litter Size | Litter Size | |||
NOX4 | c.1057-4C > T | CC | 2.13 ± 0.08 (261) c | 2.43 ± 0.07(193) bc | 2.55 ± 0.17 (56) bc |
CT | 2.40 ± 0.09 (79) b | 2.45 ± 0.11 (68) b | 2.62 ± 0.52 (21) b | ||
TT | 3.80 ± 0.63 (5) a | 3.50 ± 0.29 (5) a | 3.60 ± 0.67 (5) a | ||
PDE11A | c.1983C > T | CC | 1.80 ± 0.43 (10) bc | 1.63 ± 0.52 (8) c | 1.67 ± 0.46 (6) c |
CT | 1.93 ± 0.20 (72) b | 2.33 ± 0.60 (45) b | 2.58 ± 0.50 (19) b | ||
TT | 2.30 ± 0.62 (265) a | 2.61 ± 0.76 (201) a | 3.07 ± 0.74 (70) a | ||
GHR | c.1618C > T | CC | 2.25 ± 0.07 (168) | 2.50 ± 0.08 (135) | 2.98 ± 0.15 (54) |
CT | 2.20 ± 0.06 (151) | 2.38 ± 0.08 (120) | 2.88 ± 0.16 (41) | ||
TT | 2.04 ± 0.16 (27) | 2.62 ± 0.33 (13) | 3.00 ± 0.00 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Gong, Y.; Wang, X.; He, X.; He, X.; Chu, M.; Di, R. Screening of Litter-Size-Associated SNPs in NOX4, PDE11A and GHR Genes of Sheep. Animals 2024, 14, 767. https://doi.org/10.3390/ani14050767
Li J, Gong Y, Wang X, He X, He X, Chu M, Di R. Screening of Litter-Size-Associated SNPs in NOX4, PDE11A and GHR Genes of Sheep. Animals. 2024; 14(5):767. https://doi.org/10.3390/ani14050767
Chicago/Turabian StyleLi, Jiajun, Yiming Gong, Xiangyu Wang, Xiaoyun He, Xiaolong He, Mingxing Chu, and Ran Di. 2024. "Screening of Litter-Size-Associated SNPs in NOX4, PDE11A and GHR Genes of Sheep" Animals 14, no. 5: 767. https://doi.org/10.3390/ani14050767
APA StyleLi, J., Gong, Y., Wang, X., He, X., He, X., Chu, M., & Di, R. (2024). Screening of Litter-Size-Associated SNPs in NOX4, PDE11A and GHR Genes of Sheep. Animals, 14(5), 767. https://doi.org/10.3390/ani14050767