A Cryptic Subterranean Mammal Species, the Lesser Blind Mole Rat (Nannospalax leucodon syrmiensis)—Retreated but Not Extinct
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Cryptic Species Identification
3.1.1. 16srRNA Gene Polymorphism
3.1.2. MT-CYTB Gene Polymorphism
3.2. Presence and Distribution of N. l. syrmiensis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorbunova, V.; Hine, C.; Tian, X.; Ablaeva, J.; Gudkov, A.V.; Nevo, E.; Seluanov, A. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc. Natl. Acad. Sci. USA 2012, 109, 19392–19396. [Google Scholar] [CrossRef]
- Azpurua, J.; Seluanov, A. Long-lived cancer resistant rodents as new model species for cancer research. Front. Genet. 2013, 3, 319. [Google Scholar] [CrossRef] [PubMed]
- Manov, I.; Hirsh, M.; Iancu, T.; Malik, A.; Sotnichenko, N.; Band, M.; Avivi, A.; Shams, I. Pronounced cancer resistence in a subterranean rodent, the blind mole-rat, Spalax: In Vivo and in vitro evidence. BMC Biol. 2013, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Shams, I.; Malik, A.; Manov, I.; Joel, A.; Band, M.; Avivi, A. Transcription Pattern of p53-targeted DNA repair genes in the hypoxiatolerant subterranean mole rat Spalax. J. Mol. Biol. 2013, 425, 1111–1118. [Google Scholar] [CrossRef]
- Fang, X.D.; Nevo, E.; Han, L.J.; Levanon, E.Y.; Zhao, J.; Avivi, A.; Larkin, D.; Jiang, X.; Feranchuk, S.; Zhu, Y.; et al. Genome-wide adaptive complexes to undergound stresses in blind mole rats. Nat. Commun. 2014, 5, 3966. [Google Scholar] [CrossRef] [PubMed]
- Arslan, A.; Kryštufek, B.; Matur, F.; Zima, J. Review of chromosome races in blind mole rats (Spalax and Nannospalax). Folia Zool. 2016, 65, 249–301. [Google Scholar] [CrossRef]
- Kankılıç, T.; Arslan, S.; ¸Seker, P.S.; Kankılıç, T.; Toyran, K.; Zima, J. A new chromosomal race (2n = 44) of Nannospalax xanthodon from Turkey (Mammalia: Rodentia). Zool. Middle East 2017, 63, 181–188. [Google Scholar] [CrossRef]
- Savić, I.; Ćirović, D.; Bugarski-Stanojević, V. Exceptional Chromosomal Evolution and Cryptic Speciation of Blind Mole Rats Nannospalax leucodon (Spalacinae, Rodentia) from South-Eastern Europe. Genes 2017, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Nevo, E.; Ivanitskaya, E.; Beiles, A. Adaptive Radiation of Blind Subterranean Mole Rats: Naming and Revisiting the Four Sibling Species of the Spalax Ehrenbergi Superspecies in Israel: Spalax galili (2n = 52), S. golani (2n = 54), S. carmeli (2n = 58) and S. judaei (2n = 60); Bachkhuys Publishers: Leiden, The Netherlands, 2001. [Google Scholar]
- Csorba, G.; Krivek, G.; Sendula, T.; Homonnay, Z.G.; Hegyeli, Z.; Sugár, S.; Farkas, J.; Stojnić, N.; Németh, A. How can scientific researches change conservation priorities? A review of decade-long research on blind mole-rats (Rodentia: Spalacinae) in the Carpathian Basin. Therya 2015, 6, 103–121. [Google Scholar] [CrossRef]
- Savić, I.; Soldatović, B. Karyotype Evolution and Taxonomy of the Genus Nannospalax Palmer, 1903, Mammalia, in Europe; Separate Editions; Serbian Academy of Sciences and Arts: Belgrade, Serbia, 1984; Volume 59, pp. 1–104. [Google Scholar]
- Musser, G.G.; Carleton, M.D. Order Rodentia. In Mammal Species of the World: A Taxonomic and Geographic Reference; Wilson, D.E., Reeder, D.M., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2005; pp. 745–1601. [Google Scholar]
- Kryštufek, B.; Amori, G. Nannospalax leucodon (amended version of 2008 assessment). In The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2017. [Google Scholar]
- Bugarski-Stanojević, V.; Stamenković, G.; Ćirović, D.; Ćirić, D.; Stojković, O.; Veličković, J.; Kataranovski, D.; Savić, I.R. 16S rRNA gene polymorphism supports cryptic speciation within the lesser blind mole rat Nannospalax leucodon superspecies (Rodentia: Spalacidae). Mamm. Biol. 2020, 100, 315–324. [Google Scholar] [CrossRef]
- Németh, A.; Csorba, G.; Laczkó, L.; Mizsei, E.; Bereczki, J.; Pásztor, J.A.; Petró, P.; Sramkó, G. Multi-locus genetic identification of a newly discovered population reveals a deep genetic divergence in European blind mole rats (Rodentia: Spalacidae: Nannospalax). Ann. Zool. Fenn. 2020, 57, 89–98. [Google Scholar] [CrossRef]
- Németh, A.; Mizsei, E.; Laczkó, L.; Czabán, D.; Hegyeli, Z.; Lengyel, S.; Csorba, G.; Sramkó, G. Evolutionary history and systematics of European blind mole rats (Rodentia: Spalacidae: Nannospalax): Multilocus phylogeny and species delimitation in a puzzling group. Mol. Phylogenet. Evol. 2024, 190, 107958. [Google Scholar] [CrossRef]
- Németh, A.; Krnács, G.; Krizsik, V.; Révay, T.; Czabán, D.; Stojnić, N.; Farkas, J.; Csorba, G. European rodent on the edge: Status and distribution of the Vojvodina blind mole rat. Springerplus 2013, 2, 2. [Google Scholar] [CrossRef]
- Savić, I.; Soldatović, B. Contribution to the study of ecogeographic distribution and evolution of chromosomal forms of the Spalacidae from the Balkan Peninsula. Arch. Biol. Sci. 1977, 29, 141–156, (In Serbian with English Summary). [Google Scholar]
- Soldatović, B. Karyotype analysis and cytogenetic aspects of speciation in the genus Spalax. Zb. Prir. Nauk. Mat. Srp. 1977, 52, 5–58, (In Serbian with English Summary). [Google Scholar]
- Hadid, Y.; Németh, A.; Snir, S.; Pavlíček, T.; Csorba, G.; Kázmér, M.; Major, A.; Mezhzherin, S.; Rusin, M.; Coşkun, Y.; et al. Is evolution of blind mole rats determined by climate oscillations? PLoS ONE 2012, 7, e30043. [Google Scholar] [CrossRef] [PubMed]
- Bugarski-Stanojević, V.; Stamenković, G.; Jojić, V.; Ćosić, N.; Ćirović, D.; Stojković, O.; Veličković, J.; Savić, I.R. Cryptic Diversity of the European Blind Mole Rat Nannospalax leucodon Species Complex: Implications for Conservation. Animals 2022, 12, 1097. [Google Scholar] [CrossRef] [PubMed]
- Vasić, V.; Džukić, G.; Janković, D.; Simonov, N.; Petrov, B.; Savić, I. Preliminarni spisak vrsta za crvenu listu kičmenjaka Srbije. Zaštita Prir. Prot. Nat. 1991, 43–44, 121–132, (In Serbian and Latin). [Google Scholar]
- Soldatović, B. Cytogenetic Study of the Speciation of the Genus Spalax in Yugoslavia. Ph.D. Thesis, University of Beograd, Belgrade, Serbia, 1971. (In Serbian). [Google Scholar]
- Savić, I.; Soldatović, B. Die Verbreitung der Karyotypen der Blindmaus Spalax (Mesospalax) in Jugoslawien. Arch. Biol. Nauka 1974, 26, 115–122. [Google Scholar]
- Nižetić, D.; Stevanović, M.; Soldatović, B.; Savić, I.; Crkvenjakov, R. Limited polymorphism of both classes of MHC genes in four different species of the Balkan mole rat. Immunogenetics 1988, 28, 91–98. [Google Scholar] [CrossRef]
- Németh, A.; Révay, T.; Hegyeli, Z.; Farkas, J.; Czabán, D.; Rózsás, A.; Csorba, G. Chromosomal forms and risk assessment of Nannospalax (superspecies leucodon) (Mammalia: Rodentia) in the Carpathian Basin. Folia Zool. 2009, 58, 349–361. [Google Scholar]
- Fox, G.E.; Wisotzkey, J.D.; Jurtshuk, P., Jr. How Close Is Close: 16s RNA Sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 1992, 42, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Caetano-Anollés, G. Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res. 2002, 30, 2575–2587. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Tan, Z.; Wang, D.; Xue, L.; Guan, M.; Huang, T.; Li, R. Species identifcation through mitochondrial rRNA genetic analysis. Sci. Rep. 2014, 4, 4089. [Google Scholar] [CrossRef] [PubMed]
- Arslan, E.; Gülbahçe, E.; Arıkoğlu, H.; Arslan, A.; Bužan, E.V.; Kryštufek, B. Mitochondrial divergence between three cytotypes of the Anatolian Mole Rat, Nannospalax xanthodon (Nordmann, 1840). Zool. Middle East 2010, 50, 27–34. [Google Scholar] [CrossRef]
- Kryštufek, B.; Ivanitskaya, E.; Arslan, A.; Arslan, E.; Buzan, E. Evolutionary history of mole rats (genus Nannospalax) inferred from mitochondrial cytochrome b sequences. Biol. J. Linn. Soc. 2012, 105, 446–455. [Google Scholar] [CrossRef]
- Matur, F.; Yanchukov, A.; Çolak, F.; Sözen, M. Two major clades of blind mole rats (Nannospalax sp.) revealed by mtDNA and microsatellite genotyping in Western and Central Turkey. Mamm. Biol. 2018, 94, 38–47. [Google Scholar] [CrossRef]
- Savić, I.R. Ecology of the mole rat Spalax leucodon Nordm, in Yugoslavia. Proc. Nat. Sci. Matica Srp. Novi Sad 1973, 44, 5–70, (In Serbian with English Summary). [Google Scholar]
- Veith, M.; Kosuch, J.; Vences, M. Climatic oscillations triggered post-Messinian speciation of Western Palearctic brown frogs (Amphibia, Ranidae). Mol. Phylogenet. Evol. 2003, 26, 310–327. [Google Scholar] [CrossRef]
- Irwin, D.M.; Kocher, T.D.; Wilson, A.C. Evolution of the Cytochrome b Gene of Mammals. J. Mol. Evol. 1991, 32, 128–144. [Google Scholar] [CrossRef]
- Schlegel, M.; Ali, H.S.; Stieger, N.; Groschup, M.H.; Wolf, R.; Ulrich, R.G. Molecular identification of small mammal species using novel cytochrome B gene-derived degenerated primers. Biochem. Genet. 2012, 50, 440–447. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computingplatforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Guindon, S.; Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef]
- Karanth, K.P.; Avivi, A.; Beharav, A.; Nevo, E. Microsatellite diversity in populations of blind subterranean mole rats (Spalax ehrenbergi superspecies) in Israel: Speciation and adaptation. Biol. J. Linn. Soc. 2004, 83, 229–241. [Google Scholar] [CrossRef]
- Savić, I.; Soldatović, B. Distribution range and evolution of chromosomal forms in the Spalacidae of the Balkan Peninsula and bordering regions. J. Biogeogr. 1979, 6, 363–374. [Google Scholar] [CrossRef]
- Méhely, L. Species generis Spalax. In A Földi Kutyák Fajai Származás- És Rendszertani Tekintetben; Magyar Tudományos Akadémia: Budapest, Hungary, 1909. (In Hungarian) [Google Scholar]
- Méhely, L. Species generis Spalax. In Die Arten der Blindmäuse in Systematischer und Phylogenetischer Beziehung; Teubner, B.G., Ed.; Berichte aus Ungarn: Leipzig, Germany, 1913; pp. 1–390. [Google Scholar]
- Castiglia, R. Sympatric sister species in rodents are more chromosomally differentiated than allopatric ones: Implications for the role of chromosomal rearrangements in speciation. Mammal Rev. 2013, 44, 1–4. [Google Scholar] [CrossRef]
- Oliveira, T.D.; Freitas, T.R.O. Investigating the evolutionary dynamics of diploid number variation in Ctenomys (Ctenomyidae, Rodentia). Genet. Mol. Biol. 2024, 46, e20230180. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.; Barton, N.H. Chromosomal speciation and molecular divergence—Accelerated evolution in rearranged chromosomes. Science 2003, 300, 321–324. [Google Scholar] [CrossRef]
- Ayala, F.J.; Coluzzi, M. Chromosome speciation: Humans, Drosophila, and mosquitoes. Proc. Natl. Acad. Sci. USA 2005, 102, 6535–6542. [Google Scholar] [CrossRef]
- Faria, R.; Navarro, A. Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends Ecol. Evol. 2010, 25, 660–669. [Google Scholar] [CrossRef]
- Mills, P.J.; Cook, L.G. Rapid chromosomal evolution in a morphologically cryptic radiation. Mol. Phylogenet. Evol. 2014, 77, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Utsunomia, R.; Pansonato-Alves, J.C.; Costa-Silva, G.J.; Mendonça, F.F.; Scacchetti, P.C.; Oliveira, C.; Foresti, F. Molecular and cytogenetic analyses of cryptic species within the Synbranchus marmoratus Bloch, 1795 (Synbranchiformes: Synbranchidae) grouping: Species delimitations, karyotypic evolution and intraspecific diversification. Neotrop. Ichthyol. 2014, 12, 903–911. [Google Scholar] [CrossRef]
- Baskevich, M.I.; Potapov, S.G.; Mironova, T.A. Caucasian Cryptic Species of Rodents as Models in Research on the Problems of Species and Speciation. Biol. Bull. Rev. 2016, 6, 245–259. [Google Scholar] [CrossRef]
- Malcher, S.M.; Pieczarka, J.C.; Geise, L.; Rossi, R.V.; Pereira, A.L.; O’Brien, P.C.M.; Asfora, P.H.; da Silva, V.F.; Sampaio, M.I.; Ferguson-Smith, M.A.; et al. Oecomys catherinae (Sigmodontinae, Cricetidae): Evidence for chromosomal speciation? PLoS ONE 2017, 12, e0181434. [Google Scholar] [CrossRef]
- Angeler, D.G.; Fried-Petersen, H.B. Parallels of quantum superposition in ecological models: From counterintuitive patterns to eco-evolutionary interpretations of cryptic species. BMC Ecol. Evol. 2024, 24, 15. [Google Scholar] [CrossRef]
- IUCN. Threats Classification Scheme. Version 3.3. 2022. Available online: https://www.iucnredlist.org/resources/threat-classification-scheme (accessed on 8 February 2024).
- IUCN. Conservation Actions Classification Scheme. Version 2.0. 2012. Available online: www.iucnredlist.org/resources/conservation-actions-classification-scheme (accessed on 8 February 2024).
HUN | SER | MSY | MSE | SYR | N. xan. | N. e. go. | N. e. ga. | N. e. ju. | N. e. ca. | Spalax | |
---|---|---|---|---|---|---|---|---|---|---|---|
N. l. hungaricus | 0.0074 | 0.0110 | 0.0096 | 0.0074 | 0.0146 | 0.0169 | 0.0179 | 0.0181 | 0.0180 | 0.0191 | |
N. l. serbicus | 0.0304 | 0.0111 | 0.0095 | 0.0048 | 0.0144 | 0.0170 | 0.0182 | 0.0180 | 0.0176 | 0.0193 | |
N. l. montanosyrmiensis | 0.0537 | 0.0522 | 0.0073 | 0.0104 | 0.0136 | 0.0169 | 0.0170 | 0.0167 | 0.0170 | 0.0180 | |
N. l. montanoserbicus | 0.0444 | 0.0422 | 0.0254 | 0.0086 | 0.0120 | 0.0151 | 0.0163 | 0.0164 | 0.0160 | 0.0173 | |
N. l. syrmiensis | 0.0301 | 0.0140 | 0.0459 | 0.0353 | 0.0141 | 0.0168 | 0.0180 | 0.0177 | 0.0173 | 0.0178 | |
N. xanthodon | 0.0854 | 0.0827 | 0.0735 | 0.0630 | 0.0788 | 0.0167 | 0.0168 | 0.0179 | 0.0169 | 0.0201 | |
N. e. golani | 0.1021 | 0.1029 | 0.0996 | 0.0862 | 0.0992 | 0.1024 | 0.0031 | 0.0086 | 0.0080 | 0.0154 | |
N. e. galili | 0.1100 | 0.1124 | 0.1006 | 0.0953 | 0.1086 | 0.1027 | 0.0052 | 0.0088 | 0.0087 | 0.0163 | |
N. e. judaei | 0.1186 | 0.1175 | 0.1023 | 0.1035 | 0.1135 | 0.1172 | 0.0367 | 0.0379 | 0.0043 | 0.0148 | |
N. e. carmeli | 0.1139 | 0.1090 | 0.1010 | 0.0953 | 0.1051 | 0.1046 | 0.0288 | 0.0322 | 0.0136 | 0.0149 | |
Spalax sp. | 0.1325 | 0.1324 | 0.1197 | 0.1157 | 0.1197 | 0.1429 | 0.0975 | 0.1049 | 0.0970 | 0.0939 |
SYR | MSY | MSE | SER | HUN | N. xan. | N. e. ju. | N. e. ca. | N. e. ga. | N. e. go. | Spalax | |
---|---|---|---|---|---|---|---|---|---|---|---|
N. l. syrmiensis | 0.0188 | 0.0179 | 0.0091 | 0.0109 | 0.0203 | 0.0234 | 0.0239 | 0.0237 | 0.0240 | 0.0301 | |
N. l. montanosyrmiensis | 0.1073 | 0.0140 | 0.0179 | 0.0159 | 0.0206 | 0.0253 | 0.0272 | 0.0258 | 0.0262 | 0.0291 | |
N. l. montanoserbicus | 0.1039 | 0.0724 | 0.0168 | 0.0155 | 0.0178 | 0.0204 | 0.0214 | 0.0207 | 0.0210 | 0.0266 | |
N. l. serbicus | 0.0383 | 0.0991 | 0.0952 | 0.0084 | 0.0184 | 0.0207 | 0.0213 | 0.0216 | 0.0213 | 0.0287 | |
N. l. hungaricus | 0.0482 | 0.0830 | 0.0835 | 0.0314 | 0.0178 | 0.0186 | 0.0193 | 0.0204 | 0.0199 | 0.0261 | |
N. xanthodon | 0.1241 | 0.1269 | 0.1106 | 0.1087 | 0.1020 | 0.0208 | 0.0211 | 0.0224 | 0.0215 | 0.0256 | |
N. e. judaei | 0.1459 | 0.1624 | 0.1258 | 0.1255 | 0.1075 | 0.1333 | 0.0062 | 0.0114 | 0.0118 | 0.0260 | |
N. e. carmeli | 0.1471 | 0.1736 | 0.1309 | 0.1267 | 0.1087 | 0.1311 | 0.0195 | 0.0127 | 0.0131 | 0.0267 | |
N. e. galili | 0.1461 | 0.1643 | 0.1264 | 0.1296 | 0.1176 | 0.1416 | 0.0515 | 0.0555 | 0.0065 | 0.0267 | |
N. e. golani | 0.1477 | 0.1663 | 0.1274 | 0.1248 | 0.1134 | 0.1326 | 0.0529 | 0.0570 | 0.0183 | 0.0261 | |
Spalax sp. | 0.2380 | 0.2287 | 0.2119 | 0.2265 | 0.2015 | 0.2020 | 0.2042 | 0.2074 | 0.2083 | 0.2028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bugarski-Stanojević, V.; Đokić, M.; Stamenković, G.; Barišić Klisarić, N.; Stojković, O.; Jojić, V.; Savić, I. A Cryptic Subterranean Mammal Species, the Lesser Blind Mole Rat (Nannospalax leucodon syrmiensis)—Retreated but Not Extinct. Animals 2024, 14, 774. https://doi.org/10.3390/ani14050774
Bugarski-Stanojević V, Đokić M, Stamenković G, Barišić Klisarić N, Stojković O, Jojić V, Savić I. A Cryptic Subterranean Mammal Species, the Lesser Blind Mole Rat (Nannospalax leucodon syrmiensis)—Retreated but Not Extinct. Animals. 2024; 14(5):774. https://doi.org/10.3390/ani14050774
Chicago/Turabian StyleBugarski-Stanojević, Vanja, Marko Đokić, Gorana Stamenković, Nataša Barišić Klisarić, Oliver Stojković, Vida Jojić, and Ivo Savić. 2024. "A Cryptic Subterranean Mammal Species, the Lesser Blind Mole Rat (Nannospalax leucodon syrmiensis)—Retreated but Not Extinct" Animals 14, no. 5: 774. https://doi.org/10.3390/ani14050774
APA StyleBugarski-Stanojević, V., Đokić, M., Stamenković, G., Barišić Klisarić, N., Stojković, O., Jojić, V., & Savić, I. (2024). A Cryptic Subterranean Mammal Species, the Lesser Blind Mole Rat (Nannospalax leucodon syrmiensis)—Retreated but Not Extinct. Animals, 14(5), 774. https://doi.org/10.3390/ani14050774