An Ecological and Neural Argument for Developing Pursuit-Based Cognitive Enrichment for Sea Lions in Human Care
Abstract
:Simple Summary
Abstract
1. Introduction
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costa, D.P.; Kuhn, C.; Weise, M. Foraging Ecology of the California Sea Lion: Diet, Diving Behavior, Foraging Locations, and Predation Impacts on Fisheries Resources; UC San Diego: La Jolla, CA, USA, 2007. [Google Scholar]
- George-Nascimento, M.; Bustamante, R.; Oyarzun, C. Feeding ecology of the South American sea lion Otaria flavescens: Food contents and food selectivity. Mar. Ecol. Prog. Ser. 1985, 21, 135–143. [Google Scholar] [CrossRef]
- Melin, S.R. The Foraging Ecology and Reproduction of the California Sea Lion (Zalophus californianus californianus). Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2002. [Google Scholar]
- Clegg, I.L.; Butterworth, A. Assessing the welfare of pinnipeds. In Marine Mammal Welfare: Human Induced Change in the Marine Environment and Its Impacts on Marine Mammal Welfare; Springer: Cham, Switzerland, 2017; pp. 273–295. [Google Scholar]
- Cook, P.; Reichmuth, C.; Hanke, F.D. The mind of a sea lion. In Ethology and Behavioral Ecology of Otariids and the Odobenid; Springer International Publishing: Cham, Switzerland, 2021; pp. 323–345. [Google Scholar]
- Clark, F. Cognitive enrichment and welfare: Current approaches and future directions. Anim. Behav. Cogn. 2017, 4, 52–71. [Google Scholar] [CrossRef]
- Broom, D.M. Animal welfare: Concepts and measurement. J. Anim. Sci. 1991, 69, 4167–4175. [Google Scholar] [CrossRef]
- Browning, H.; Veit, W. Freedom and animal welfare. Animals 2021, 11, 1148. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Mellor, D.J.; Cronin, G.M.; Tilbrook, A.J. Scientific assessment of animal welfare. N. Z. Veter. J. 2015, 63, 24–30. [Google Scholar] [CrossRef]
- Špinka, M. Animal agency, animal awareness and animal welfare. Anim. Welf. 2019, 28, 11–20. [Google Scholar] [CrossRef]
- Bacon, H. Behaviour-based husbandry—A holistic approach to the management of abnormal repetitive behaviors. Animals 2018, 8, 103. [Google Scholar] [CrossRef]
- Newberry, R.C. Environmental enrichment: Increasing the biological relevance of captive environments. Appl. Anim. Behav. Sci. 1995, 44, 229–243. [Google Scholar] [CrossRef]
- Mellen, J.; Macphee, M.S. Philosophy of environmental enrichment: Past, present, and future. Zoo Biol. 2001, 20, 211–226. [Google Scholar] [CrossRef]
- Learmonth, M.J. Dilemmas for natural living concepts of zoo animal welfare. Animals 2019, 9, 318. [Google Scholar] [CrossRef]
- Simon, H.A. Information processing models of cognition. Annu. Rev. Psychol. 1979, 30, 363–396. [Google Scholar] [CrossRef]
- Lachman, R.; Lachman, J.L.; Butterfield, E.C. Cognitive Psychology and Information Processing: An Introduction; Psychology Press: London, UK, 2015. [Google Scholar]
- Shettleworth, S.J. Animal cognition and animal behaviour. Anim. Behav. 2001, 61, 277–286. [Google Scholar] [CrossRef]
- Meagher, R. Is boredom an animal welfare concern? Anim. Welf. 2019, 28, 21–32. [Google Scholar] [CrossRef]
- Dellu, F.; Piazza, P.V.; Mayo, W.; Le Moal, M.; Simon, H. Novelty seeking in rats-biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology 1996, 34, 136–145. [Google Scholar] [CrossRef]
- Molas, S.; Zhao-Shea, R.; Liu, L.; DeGroot, S.R.; Gardner, P.D.; Tapper, A.R. A circuit-based mechanism underlying familiarity signaling and the preference for novelty. Nat. Neurosci. 2017, 20, 1260–1268. [Google Scholar] [CrossRef]
- Pennartz, C.M.A.; Berke, J.D.; Graybiel, A.M.; Ito, R.; Lansink, C.S.; van der Meer, M.; Redish, A.D.; Smith, K.S.; Voorn, P. Corticostriatal interactions during learning, memory processing, and decision making. J. Neurosci. 2009, 29, 12831–12838. [Google Scholar] [CrossRef]
- De Azevedo, C.S.; Cipreste, C.F.; Young, R.J. Environmental enrichment: A GAP analysis. Appl. Anim. Behav. Sci. 2007, 102, 329–343. [Google Scholar] [CrossRef]
- Fernandez, E. Training as enrichment: A critical review. Anim. Welf. 2022, 31, 1–12. [Google Scholar] [CrossRef]
- Clark, F.E. Great ape cognition and captive care: Can cognitive challenges enhance well-being? Appl. Anim. Behav. Sci. 2011, 135, 1–12. [Google Scholar] [CrossRef]
- Van Gelder, T. What might cognition be, if not computation? J. Philos. 1995, 92, 345–381. [Google Scholar] [CrossRef]
- Macphail, E.M. Vertebrate intelligence: The null hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1985, 308, 37–51. [Google Scholar]
- Fountain, S.B.; Dyer, K.H.; Jackman, C.C. Simplicity from Complexity in Vertebrate Behavior: Macphail Revisited. Front. Psychol. 2020, 11, 581899. [Google Scholar] [CrossRef]
- Bauer, G.B.; Cook, P.F.; Harley, H.E. The relevance of ecological transitions to intelligence in marine mammals. Front. Psychol. 2020, 11, 2053. [Google Scholar] [CrossRef]
- Bastos, A.P.M.; Taylor, A.H. Macphail’s null hypothesis of vertebrate intelligence: Insights from avian cognition. Front. Psychol. 2020, 11, 1692. [Google Scholar] [CrossRef]
- Striedter, G.F. Principles of Brain Evolution; Sinauer Associates: Sunderland, MA, USA, 2005. [Google Scholar]
- Krubitzer, L. The magnificent compromise: Cortical field evolution in mammals. Neuron 2007, 56, 201–208. [Google Scholar] [CrossRef]
- Grabowski, M.; Kopperud, B.T.; Tsuboi, M.; Hansen, T.F. Both diet and sociality affect primate brain-size evolution. Syst. Biol. 2023, 72, 404–418. [Google Scholar] [CrossRef]
- Smith, B.P.; Litchfield, C.A. An empirical case study examining effectiveness of environmental enrichment in two captive australian sea lions (Neophoca cinerea). J. Appl. Anim. Welf. Sci. 2010, 13, 103–122. [Google Scholar] [CrossRef]
- Samuelson, M.M.; Lauderdale, L.K.; Pulis, K.; Solangi, M.; Hoffland, T.; Lyn, H. Olfactory enrichment in California sea lions (Zalophus californianus): An effective tool for captive welfare? J. Appl. Anim. Welf. Sci. 2017, 20, 75–85. [Google Scholar] [CrossRef]
- Clark, F.E. Marine mammal cognition and captive care: A proposal for cognitive enrichment in zoos and aquariums. J. Zoo Aquar. Res. 2013, 1, 1–6. [Google Scholar]
- Donald, K.; Benedetti, A.; Goulart, V.D.L.R.; Deming, A.; Nollens, H.; Stafford, G.; Brando, S. Environmental enrichment eevices are safe and effective at reducing undesirable behaviors in California sea lions and northern elephant seals during rehabilitation. Animals 2023, 13, 1222. [Google Scholar] [CrossRef]
- Kuczaj, S.; Lacinak, T.; Fad, O.; Trone, M.; Solangi, M.; Ramos, J. Keeping environmental enrichment enriching. Int. J. Comp. Psychol. 2002, 15, 127–137. [Google Scholar] [CrossRef]
- Brando, S.; Broom, D.M.; Acasuso-Rivero, C.; Clark, F. Optimal marine mammal welfare under human care: Current efforts and future directions. Behav. Process. 2018, 156, 16–36. [Google Scholar] [CrossRef]
- Chance, P. Thorndike’s puzzle boxes and the origins of the experimental analysis of behavior. J. Exp. Anal. Behav. 1999, 72, 433–440. [Google Scholar] [CrossRef]
- Krebs, B.; Watters, J. Simple but temporally unpredictable puzzles are cognitive enrichment. Anim. Behav. Cogn. 2017, 4, 119–134. [Google Scholar] [CrossRef]
- Borrego, N.; Gaines, M. Social carnivores outperform asocial carnivores on an innovative problem. Anim. Behav. 2016, 114, 21–26. [Google Scholar] [CrossRef]
- Benson-Amram, S.; Dantzer, B.; Stricker, G.; Swanson, E.M.; Holekamp, K.E. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl. Acad. Sci. USA 2016, 113, 2532–2537. [Google Scholar] [CrossRef]
- Kim-McCormack, N.N.; Smith, C.L.; Behie, A.M. Is interactive technology a relevant and effective enrichment for captive great apes? Appl. Anim. Behav. Sci. 2016, 185, 1–8. [Google Scholar] [CrossRef]
- Roberts, D.L.; Eskelinen, H.C.; Winship, K.A.; Ramos, A.M.; Xitco, M.J. Effects of failure on California sea lion (Zalophus californianus) gameplay strategies and interest in a cognitive task: Implications for cognitive enrichment in pinnipeds. J. Zool. Bot. Gard. 2023, 4, 240–255. [Google Scholar] [CrossRef]
- Gentry, R.L. Eared Seals: Otariidae. In Encyclopedia of Marine Mammals; Academic Press: Cambridge, MA, USA, 2009; pp. 339–342. [Google Scholar]
- De Roy, T.; Espinoza, E.R.; Trillmich, F. Cooperation and opportunism in Galapagos sea lion hunting for shoaling fish. Ecol. Evol. 2021, 11, 9206–9216. [Google Scholar] [CrossRef]
- Swanson, E.M.; Holekamp, K.E.; Lundrigan, B.L.; Arsznov, B.M.; Sakai, S.T. Multiple determinants of whole and regional brain volume among terrestrial carnivorans. PLoS ONE 2012, 7, e38447. [Google Scholar] [CrossRef]
- Johnson-Ulrich, L.; Johnson-Ulrich, Z.; E Holekamp, K. Natural conditions and adaptive functions of problem-solving in the Carnivora. Curr. Opin. Behav. Sci. 2022, 44, 101111. [Google Scholar] [CrossRef]
- Bailey, I.; Myatt, J.P.; Wilson, A.M. Group hunting within the Carnivora: Physiological, cognitive and environmental influences on strategy and cooperation. Behav. Ecol. Sociobiol. 2013, 67, 1–17. [Google Scholar] [CrossRef]
- Cook, P.F.; Berns, G.S.; Colegrove, K.; Johnson, S.; Gulland, F. Postmortem DTI reveals altered hippocampal connectivity in wild sea lions diagnosed with chronic toxicosis from algal exposure. J. Comp. Neurol. 2018, 526, 216–228. [Google Scholar] [CrossRef]
- Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. USA 2012, 109 (Suppl. S1), 10661–10668. [Google Scholar] [CrossRef]
- Yin, D.; Valles, F.E.; Fiandaca, M.S.; Forsayeth, J.; Larson, P.; Starr, P.; Bankiewicz, K.S. Striatal volume differences between non-human and human primates. J. Neurosci. Methods 2009, 176, 200–205. [Google Scholar] [CrossRef]
- Kimura, M. Behaviorally contingent property of movement-related activity of the primate putamen. J. Neurophysiol. 1990, 63, 1277–1296. [Google Scholar] [CrossRef]
- Jürgens, U. Neural pathways underlying vocal control. Neurosci. Biobehav. Rev. 2002, 26, 235–258. [Google Scholar] [CrossRef]
- Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The cognitive functions of the caudate nucleus. Prog. Neurobiol. 2008, 86, 141–155. [Google Scholar] [CrossRef]
- Cook, P.F.; Berns, G. Volumetric and connectivity assessment of the caudate nucleus in California sea lions and coyotes. Anim. Cogn. 2022, 25, 1231–1240. [Google Scholar] [CrossRef]
- Fish, F.E.; Hurley, J.; Costa, D.P. Maneuverability by the sea lion Zalophus californianus: Turning performance of an unstable body design. J. Exp. Biol. 2003, 206, 667–674. [Google Scholar] [CrossRef]
- Postle, B.R.; D’Esposito, M. Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: An event-related fMRI study. Cogn. Brain Res. 1999, 8, 107–115. [Google Scholar] [CrossRef]
- Postle, B.R.; D’Esposito, M. Spatial working memory activity of the caudate nucleus is sensitive to frame of reference. Cogn. Affect. Behav. Neurosci. 2003, 3, 133–144. [Google Scholar] [CrossRef]
- Hocking, D.P.; Salverson, M.; Evans, A.R. Foraging-based enrichment promotes more varied behaviour in captive australian fur seals (Arctocephalus pusillus doriferus). PLoS ONE 2015, 10, e0124615. [Google Scholar] [CrossRef]
- Bashaw, M.J.; Bloomsmith, M.A.; Marr, M.J.; Maple, T.L. To hunt or not to hunt? A feeding enrichment experiment with captive large felids. Zoo Biol. Publ. Affil. Am. Zoo. Aquar. Assoc. 2003, 22, 189–198. [Google Scholar] [CrossRef]
- Fernandez, E.J.; Myers, M.; Hawkes, N.C. The Effects of Live Feeding on Swimming Activity and Exhibit Use in Zoo Humboldt Penguins (Spheniscus humboldti). J. Zoo. Bot. Gard. 2021, 2, 88–100. [Google Scholar] [CrossRef]
- Schusterman, R.J. Perception and determinants of underwater vocalization in the California sea lion. In Les Systemes Sonars Animaux, Biologie et Bionique; Busnel, R.G., Ed.; Laboratoire de Physiologie Acoustique: Jouy-en-Josas, France, 1967; pp. 535–617. [Google Scholar]
- Gläser, N.; Wieskotten, S.; Otter, C.; Dehnhardt, G.; Hanke, W. Hydrodynamic trail following in a California sea lion (Zalophus californianus). J. Comp. Physiol. A 2011, 197, 141–151. [Google Scholar] [CrossRef]
- Marshall, L.; McCormick, W.D.; Cooke, G.M. Perception of the ethical acceptability of live prey feeding to aquatic species kept in captivity. PLoS ONE 2019, 14, e0216777. [Google Scholar] [CrossRef]
- Williams, B.G.; Waran, N.K.; Carruthers, J.; Young, R.J. The Effect of a moving bait on the behaviour of captive cheetahs (Acinonyx jubatus). Anim. Welf. 1996, 5, 271–281. [Google Scholar] [CrossRef]
- Dehnhardt, G.; Mauck, B.; Hanke, W.; Bleckmann, H. Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 2001, 293, 102–104. [Google Scholar] [CrossRef]
- Murphy, C.T.; Reichmuth, C.; Mann, D. Vibrissal sensitivity in a harbor seal (Phoca vitulina). J. Exp. Biol. 2015, 218, 2463–2471. [Google Scholar] [CrossRef]
- Wang, H.; Yue, Q.; Liu, J. Research on pursuit-evasion games with multiple heterogeneous pursuers and a high speed evader. In Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; pp. 4366–4370. [Google Scholar]
- Wan, K.; Wu, D.; Zhai, Y.; Li, B.; Gao, X.; Hu, Z. An improved approach towards multi-agent pursuit–evasion game decision-making using deep reinforcement learning. Entropy 2021, 23, 1433. [Google Scholar] [CrossRef]
- Hastie, G.; Rosen, D.; Trites, A. Studying diving energetics of trained Steller sea lions in the open ocean. In Sea Lions of the World; Alaska Sea Grant College Program; University of Alaska Fairbanks: Fairbanks, AK, USA, 2006; pp. 193–204. [Google Scholar]
- Skinner, B.F. How to teach animals. Sci. Am. 1951, 185, 26–29. [Google Scholar] [CrossRef]
- Cook, P.F.; Reichmuth, C.; Rouse, A.A.; Libby, L.A.; Dennison, S.E.; Carmichael, O.T.; Kruse-Elliott, K.T.; Bloom, J.; Singh, B.; Fravel, V.A.; et al. Algal toxin impairs sea lion memory and hippocampal connectivity, with implications for strandings. Science 2015, 350, 1545–1547. [Google Scholar] [CrossRef]
- Wong, P.T. Frustration, exploration, and learning. Can. Psychol. Rev./Psychol. Can. 1979, 20, 133. [Google Scholar] [CrossRef]
- Pryor, K.W.; Haag, R.; O’Reilly, J. The creative porpoise: Training for novel behavior 1. J. Exp. Anal. Behav. 1969, 12, 653–661. [Google Scholar] [CrossRef]
- Schusterman, R.J.; Reichmuth, C. Novel sound production via contingency learning in the Pacific walrus (Odobenus rosmarus divergens). Anim. Cogn. 2007, 11, 319–327. [Google Scholar] [CrossRef]
- McGowan, R.T.S.; Robbins, C.T.; Alldredge, J.R.; Newberry, R.C. Contrafreeloading in grizzly bears: Implications for captive foraging enrichment. Zoo Biol. 2010, 29, 484–502. [Google Scholar] [CrossRef]
- Osborne, S.R. The free food (contrafreeloading) phenomenon: A review and analysis. Anim. Learn. Behav. 1977, 5, 221–235. [Google Scholar] [CrossRef]
- Spinka, M.; Wemelsfelder, F. Environmental challenge and animal agency. In Animal Welfare; CAB International: Wallingford, UK, 2011. [Google Scholar]
- Oliff, H.S.; Berchtold, N.C.; Isackson, P.; Cotman, C.W. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Mol. Brain Res. 1998, 61, 147–153. [Google Scholar] [CrossRef]
- Ma, C.-L.; Ma, X.-T.; Wang, J.-J.; Liu, H.; Chen, Y.-F.; Yang, Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav. Brain Res. 2017, 317, 332–339. [Google Scholar] [CrossRef]
- van Praag, H.; Shubert, T.; Zhao, C.; Gage, F.H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 2005, 25, 8680–8685. [Google Scholar] [CrossRef]
- Simeone, C.; Fauquier, D.; Skidmore, J.; Cook, P.; Colegrove, K.; Gulland, F.; Dennison, S.; Rowles, T.K. Clinical signs and mortality of non-released stranded California sea lions housed in display facilities: The suspected role of prior exposure to algal toxins. Vet. Rec. 2019, 185, 304. [Google Scholar] [CrossRef]
- Gomes, F.N.; Da Silva, S.G.; Cavalheiro, E.; Arida, R. Beneficial influence of physical exercise following status epilepticus in the immature brain of rats. Neuroscience 2014, 274, 69–81. [Google Scholar] [CrossRef]
- Schmitt, T.L.; Leger, J.S.; Inglis, B.A.; Michal, I.; Stedman, N.; Nollens, H.H.; Dennison-Gibby, S.; Herrick, K.; Clarke, E.O.; Mena, A.; et al. Twenty years of managed epilepsy for a stranded male Guadalupe fur seal (Arctocephalus townsendi) secondary to suspect domoic acid toxicosis. J. Zool. Bot. Gard. 2023, 4, 665–679. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cook, P.F.; Reichmuth, C. An Ecological and Neural Argument for Developing Pursuit-Based Cognitive Enrichment for Sea Lions in Human Care. Animals 2024, 14, 797. https://doi.org/10.3390/ani14050797
Cook PF, Reichmuth C. An Ecological and Neural Argument for Developing Pursuit-Based Cognitive Enrichment for Sea Lions in Human Care. Animals. 2024; 14(5):797. https://doi.org/10.3390/ani14050797
Chicago/Turabian StyleCook, Peter F., and Colleen Reichmuth. 2024. "An Ecological and Neural Argument for Developing Pursuit-Based Cognitive Enrichment for Sea Lions in Human Care" Animals 14, no. 5: 797. https://doi.org/10.3390/ani14050797
APA StyleCook, P. F., & Reichmuth, C. (2024). An Ecological and Neural Argument for Developing Pursuit-Based Cognitive Enrichment for Sea Lions in Human Care. Animals, 14(5), 797. https://doi.org/10.3390/ani14050797