Physiological Effect of Gentle Stroking in Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Heart Rate and Saturation
2.3. Blood Samples
2.4. Biochemical Analysis
- -
- -
- The cortisol levels in the samples were determined with the General Cor (Cortisol) ELISA Kit (ELK Biotechnology CO., LTD., Denver, CO, USA). The procedures followed the manufacturer’s instructions. All samples were measured in triplets. Cortisol concentrations were expressed in ng/mL.
- Superoxide dismutase (SOD) was determined using a commercial Sigma-Aldrich (19160) SOD Determination Kit (Poznań, Poland);
- Catalase (CAT) was determined using a Catalase Assay Kit (219265-1KIT) from Sigma-Aldrich (Poznań, Poland);
- Total antioxidant capacity (TAC) was determined using a Total Antioxidant Capacity Assay Kit (MAK187-1KT) from Sigma-Aldrich (Poznań, Poland);
- Glutathione S-transferase (GST) activities were determined using a Sigma-Aldrich Glutathione-S-Transferase Assay Kit (CS0410);
- Glutathione peroxidase (GPx) activities were determined using a Glutathione Peroxidase Assay Kit from Abcam (ab102530).
- -
- The concentrations of non-enzymatic antioxidants, i.e., albumin, uric acid, urea, and creatinine, were determined with the BioMaxima (Lublin, Poland) monotest.
- -
- The activities of enzymatic biomarkers such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were measured with the kinetic method using monotests from Cormay (Lublin, Poland) according to the manufacturer’s procedure. Lactate dehydrogenase activities were determined using an LDH Assay Kit/Lactate Dehydrogenase Assay Kit (Colorimetric) from Abcam (Gdańsk, Poland).
- Triglycerides and glucose were determined with the colorimetric method using monotests from Cormay (Lublin, Poland).
- Sodium (Na+), calcium (Ca2+), and magnesium (Mg2+) ions were determined using BioMaxima (Lublin, Poland) tests according to the manufacturer’s instructions.
- Glycogen concentrations were measured using a Glycogen Assay Kit (K646-100, BioVision, Milpitas, CA, USA).
2.5. Statistical Analysis
3. Results
3.1. Differences between Breeds
3.2. Differences between Groups
3.3. Differences between Groups within Breeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lange, A.; Waiblinger, S.; Heinke, A.; Barth, K.; Futschik, A.; Lürzel, S. Gentle interactions with restrained and free-moving cows: Effects on the improvement of the animal-human relationship. PLoS ONE 2020, 15, e0242873. [Google Scholar] [CrossRef]
- Muhammad, M.; Stokes, J.E.; Manning, L. Positive Aspects of Welfare in Sheep: Current Debates and Future Opportunities. Animals 2022, 12, 3265. [Google Scholar] [CrossRef]
- Lange, A.; Franzmayr, S.; Wisenöcker, V.; Futschik, A.; Waiblinger, S.; Lürzel, S. Effects of Different Stroking Styles on Behaviour and Cardiac Parameters in Heifers. Animals 2020, 10, 426. [Google Scholar] [CrossRef]
- Napolitano, F.; Bragaglio, A.; Sabia, E.; Serrapica, F.; Braghieri, A.; De Rosa, G. The human−animal relationship in dairy animals. J. Dairy Res. 2020, 87, 47–52. [Google Scholar] [CrossRef]
- Valent, D.; Arroyo, L.; Peña, R.; Yu, K.; Carreras, R.; Mainau, E.; Velarde, A.; Bassols, A. Effects on pig immunophysiology, PBMC proteome and brain neurotransmitters caused by group mixing stress and human-animal relationship. PLoS ONE 2017, 12, e0176928. [Google Scholar] [CrossRef]
- Chaumont, S.; Freitas-de-Melo, A.; Pinto-Santini, L.; Menant, O.; Zambra, N.; Ungerfeld, R. Rams recognize and prefer the human who regularly brushed them. Appl. Anim. Behav. Sci. 2021, 236, 105250. [Google Scholar] [CrossRef]
- Rault, J.-L.; Waiblinger, S.; Boivin, X.; Hemsworth, P. The Power of a Positive Human–Animal Relationship for Animal Welfare. Front. Vet. Sci. 2020, 7, 590867. [Google Scholar] [CrossRef] [PubMed]
- Sokołowski, J.; Janicka, K.; Zięba, G.; Junkuszew, A.; Rozempolska-Rucińska, I. Effect of gentle physical contact on behavioural indicators in sheep. Animal 2023, 17, 100924. [Google Scholar] [CrossRef] [PubMed]
- Löken, L.S.; Wessberg, J.; Morrison, I.; McGlone, F.; Olausson, H. Coding of pleasant touch by unmyelinated afferents in humans. Nat. Neurosci. 2009, 12, 547–548. [Google Scholar] [CrossRef]
- Wu, A. Social buffering of stress—Physiological and ethological perspectives. Appl. Anim. Behav. Sci. 2021, 239, 105325. [Google Scholar] [CrossRef]
- Magon, N.; Kalra, S. The orgasmic history of oxytocin: Love, lust, and labor. Indian. J. Endocr. Metab. 2011, 15, 156. [Google Scholar] [CrossRef]
- Poisbeau, P.; Grinevich, V.; Charlet, A. Oxytocin Signaling in Pain: Cellular, Circuit, System, and Behavioral Levels. Curr. Top. Behav. Neurosci. 2018, 35, 193–211. [Google Scholar] [CrossRef]
- Coulon, M.; Nowak, R.; Andanson, S.; Ravel, C.; Marnet, P.G.; Boissy, A.; Boivin, X. Human–lamb bonding: Oxytocin, cortisol and behavioural responses of lambs to human contacts and social separation. Psychoneuroendocrinology 2013, 38, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Lürzel, S.; Windschnurer, I.; Futschik, A.; Palme, R.; Waiblinger, S. Effects of gentle interactions on the relationship with humans and on stress-related parameters in group-housed calves. Anim. Welf. 2013, 24, 475–484. [Google Scholar] [CrossRef]
- Probst, J.K.; Spengler Neff, A.; Leiber, F.; Kreuzer, M.; Hillmann, E. Gentle touching in early life reduces avoidance distance and slaughter stress in beef cattle. Appl. Anim. Behav. Sci. 2012, 139, 42–49. [Google Scholar] [CrossRef]
- De Oliveira, D.; Paranhos Da Costa, M.J.R.; Zupan, M.; Rehn, T.; Keeling, L.J. Early human handling in non-weaned piglets: Effects on behaviour and body weight. Appl. Anim. Behav. Sci. 2015, 164, 56–63. [Google Scholar] [CrossRef]
- Caroprese, M.; Napolitano, F.; Albenzio, M.; Annicchiarico, G.; Musto, M.; Sevi, A. Influence of gentling on lamb immune response and human–lamb interactions. Appl. Anim. Behav. Sci. 2006, 99, 118–131. [Google Scholar] [CrossRef]
- Schiavone, S.; Jaquet, V.; Trabace, L.; Krause, K.-H. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology. Antioxid. Redox Signal. 2013, 18, 1475–1490. [Google Scholar] [CrossRef]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Leite, L.O.; Bezerra, B.M.O.; Kogitzki, T.R.; Polo, G.; Freitas, V.J.D.F.; Hötzel, M.J.; Nunes-Pinheiro, D.C.S. Impact of massage on goats on the human-animal relationship and parameters linked to physiological response. Cienc. Rural. 2020, 50, e20200105. [Google Scholar] [CrossRef]
- Rozempolska-Rucińska, I.; Kasperek, K.; Drabik, K.; Zięba, G.; Ziemiańska, A. Behavioural Variability in Chicks vs. the Pattern of Behaviour in Adult Hens. Animals 2020, 10, 269. [Google Scholar] [CrossRef] [PubMed]
- McBride, S.D.; Perentos, N.; Morton, A.J. Understanding the concept of a reflective surface: Can sheep improve navigational ability through the use of a mirror? Anim. Cogn. 2015, 18, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Kozak, A.; Kasperek, K.; Zięba, G.; Rozempolska-Rucińska, I. Variability of laying hen behaviour depending on the breed. Asian-Australas. J. Anim. Sci. 2019, 32, 1062–1068. [Google Scholar] [CrossRef]
- Doyle, R.E. Sheep cognition and its implications for welfare. In Advances in Sheep Welfare; Ferguson, D.M., Lee, C., Fisher, A., Eds.; Woodhead Publishing: Duxford, UK, 2017; pp. 55–71. [Google Scholar]
- Cockrem, J.F. Stress, corticosterone responses and avian personalities. J. Ornithol. 2007, 148, 169–178. [Google Scholar] [CrossRef]
- Désiré, L.; Boissy, A.; Veissier, I. Emotions in farm animals: A new approach to animal welfare in applied ethology. Behav. Process. 2002, 60, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Schacterle, G.R.; Pollack, R.L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal. Biochem. 1973, 51, 654–655. [Google Scholar] [CrossRef]
- SAS. SAS/STAT® 15.3 User’s Guide; STAT Institute: Cary, NC, USA, 2023. [Google Scholar]
- Hefnawy, A.; Helal, M.A.Y.; Sabek, A.; Shousha, S. Clinical, behavioral and biochemical alterations due to shearing stress in Ossimi sheep. J. Vet. Med. Sci. 2018, 80, 1281–1286. [Google Scholar] [CrossRef]
- Nagy, O.; Tóthová, C.; Nagyová, V.; Kováč, G. Comparison of serum protein electrophoretic pattern in cows and small ruminants. Acta Vet. Brno 2015, 84, 187–195. [Google Scholar] [CrossRef]
- Arfuso, F.; Fazio, F.; Chikhi, L.; Aymond, G.; Piccione, G.; Giannetto, C. Acute Stress Response of Sheep to Shearing Procedures: Dynamic Change of Cortisol Concentration and Protein Electrophoretic Pattern. Animals 2022, 12, 862. [Google Scholar] [CrossRef]
- Ognik, K.; Krauze, M. The potential for using enzymatic assays to assess the health of turkeys. World’s Poult. Sci. 2016, 72, 535–550. [Google Scholar] [CrossRef]
- Czerska, M.; Mikołajewska, K.; Zieliński, M.; Gromadzińska, J.; Wąsowicz, W. Today’s oxidative stress markers. Med. Pract. 2015, 66, 393–405. [Google Scholar] [CrossRef]
- Venditti, P.; Meo, S.D. Thyroid hormone-induced oxidative stress. Cell. Mol. Life Sci. 2006, 63, 414–434. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.C.; Corsi, D.; Cavi, N.; Bruni, N.; Dosio, F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021, 26, 1844. [Google Scholar] [CrossRef]
- Ognik, K.; Patkowski, K.; Gruszecki, T.; Kostro, K. Redox status in the blood of ewes in the perinatal period and during lactation. Bull. Vet. Inst. Pulawy 2015, 59, 557–562. [Google Scholar] [CrossRef]
- Szeligowska, N.; Cholewińska, P.; Smoliński, J.; Wojnarowski, K.; Pokorny, P.; Czyż, K.; Pogoda-Sewerniak, K. Glutathione S-transferase (GST) and cortisol levels vs. microbiology of the digestive system of sheep during lambing. BMC Vet. Res. 2022, 18, 107. [Google Scholar] [CrossRef]
- Deger, Y.; Ertekin, A.; Deger, S.; Mert, H. Lipid peroxidation and antioxidant potential of sheep liver infected naturally with distomatosis. Türkiye Parazitol. Derg. 2008, 32, 23–26. [Google Scholar]
- Kędzierska, K.; Bober, J.; Kwiatkowska, E.; Stachowska, E.; Olszewska, M.; Chlubek, D.; Ciechanowski, K. Oxidative stress and trace elements affect the activity of sodium transporting systems in a cellular membrane of a erythrocyte. Anns. Acad. Med. Stetin. 2008, 54, 105–114. [Google Scholar]
- Roy, D. Role of reactive oxygen species on the formation of the novel diagnostic marker ischaemia modified albumin. Heart 2006, 92, 113–114. [Google Scholar] [CrossRef]
- Rubio, C.P.; Contreras-Aguilar, M.D.; Quiles, A.; López-Arjona, M.; Cerón, J.J.; Martínez-Subiela, S.; Hevia, M.L.; Escribano, D.; Tecles, F. Biomarkers of oxidative stress in saliva of sheep: Analytical performance and changes after an experimentally induced stress. Res. Vet. Sci. 2019, 123, 71–76. [Google Scholar] [CrossRef]
- Autukaité, J.; Poškienė, I.; Juozaitienė, V.; Antanaitis, R.; Baumgartner, W.; Žilinskas, H. The Influence of Thermal Stress on Serum Biochemical Profile in Sheep. IJAR 2021, 55, 647–651. [Google Scholar] [CrossRef]
- Čukić, A.; Rakonjac, S.; Djoković, R.; Cincović, M.; Bogosavljević-Bošković, S.; Petrović, M.; Savić, Ž.; Andjušić, L.; Andjelić, B. Influence of Heat Stress on Body Temperatures Measured by Infrared Thermography, Blood Metabolic Parameters and Its Correlation in Sheep. Metabolites 2023, 13, 957. [Google Scholar] [CrossRef]
- Yeruham, I.; Hadani, A.; Galker, F.; Avidar, Y.; Bogin, E. Clinical, Clinico-Pathological and Serological Studies of Babesia ovis in Experimentally Infected Sheep. J. Vet. Med. Ser. B 1998, 45, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Breikaa, R.M.; Algandaby, M.M.; El-Demerdash, E.; Abdel-Naim, A.B. Biochanin A Protects against Acute Carbon Tetrachloride-Induced Hepatotoxicity in Rats. Biosci. Biotechnol. Biochem. 2013, 77, 909–916. [Google Scholar] [CrossRef]
- Balıkcı, E.; Yıldız, A.; Gürdoğan, F. Blood metabolite concentrations during pregnancy and postpartum in Akkaraman ewes. Small Rumin. Res. 2007, 67, 247–251. [Google Scholar] [CrossRef]
- Aytekin, I.; Aksit, H.; Sait, A.; Kaya, F.; Aksit, D.; Gokmen, M.; Baca, A.U. Evaluation of oxidative stress via total antioxidant status, sialic acid, malondialdehyde and RT-PCR findings in sheep affected with bluetongue. Vet. Rec. Open 2015, 2, e000054. [Google Scholar] [CrossRef] [PubMed]
- Ermak, G.; Davies, K.J.A. Calcium and oxidative stress: From cell signaling to cell death. Mol. Immunol. 2002, 38, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Casamassima, D.; Pizzo, R.; Palazzo, M.; D’Alessandro, A.G.; Martemucci, G. Effect of water restriction on productive performance and blood parameters in comisana sheep reared under intensive condition. Small Rumin. Res. 2008, 78, 169–175. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Murray, R.K.; Granner, D.K.; Rodwell, V.W. Biochemia Harpera Ilustrowana; Wydawnictwo Lekarskie PZWL: Warsaw, Poland, 2008; pp. 195–198. [Google Scholar]
- Gardner, G.E.; McGilchrist, P.; Pethick, D.W. Ruminant glycogen metabolism. Anim. Prod. Sci. 2014, 54, 1575. [Google Scholar] [CrossRef]
- Seal, S.V.; Turner, J.D. The ‘Jekyll and Hyde’ of Gluconeogenesis: Early Life Adversity, Later Life Stress, and Metabolic Disturbances. Int. J. Mol. Sci. 2021, 22, 3344. [Google Scholar] [CrossRef] [PubMed]
- Shivakumar, K.; Prakash Kumar, B. Magnesium deficiency enhances oxidative stress and collagen synthesis in vivo in the aorta of rats. Int. J. Biochem. Cell Biol. 1997, 29, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Zheltova, A.A.; Kharitonova, M.V.; Iezhitsa, I.N.; Spasov, A.A. Magnesium deficiency and oxidative stress: An update. BioMed 2016, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Gardner, G.E.; Jacob, R.H.; Pethick, D.W. The effect of magnesium oxide supplementation on muscle glycogen metabolism before and after exercise and at slaughter in sheep. Aust. J. Agric. Res. 2001, 52, 723. [Google Scholar] [CrossRef]
- Schmied, C.; Boivin, X.; Scala, S.; Waiblinger, S. Effect of previous stroking on reactions to a veterinary procedure: Behaviour and heart rate of dairy cows. Interact. Stud. 2010, 11, 467–481. [Google Scholar] [CrossRef]
- Serrapica, M.; Boivin, X.; Coulon, M.; Braghieri, A.; Napolitano, F. Positive perception of human stroking by lambs: Qualitative behaviour assessment confirms previous interpretation of quantitative data. Appl. Anim. Behav. Sci. 2017, 187, 31–37. [Google Scholar] [CrossRef]
Trait | BCP | SW | p | ||
---|---|---|---|---|---|
LSMEAN | SE | LSMEAN | SE | ||
Protein [mg/mL] | 42.87 | 0.28 | 44.31 | 0.31 | 0.002 |
Cortisol [ng/mL] | 94.30 | 0.33 | 97.26 | 0.36 | <0.000 |
SOD [U/mg] | 66.86 | 0.51 | 72.42 | 0.55 | <0.000 |
CAT [U/mg] | 15.04 | 0.36 | 13.96 | 0.39 | 0.055 |
GST [U/mg] | 157.72 | 0.51 | 165.39 | 0.56 | <0.000 |
GPx [U/mg] | 44.13 | 0.53 | 48.61 | 0.58 | <0.000 |
TAC [mM Trolox] | 1.92 | 0.02 | 2.09 | 0.03 | <0.000 |
Albumins [g/dL] | 3.37 | 0.02 | 3.48 | 0.03 | 0.004 |
Uric acid [mg/dL] | 0.34 | 0.00 | 0.32 | 0.00 | 0.057 |
Urea [mg/dL] | 43.69 | 0.29 | 47.64 | 0.32 | <0.000 |
Creatinine [mg/dL] | 0.96 | 0.01 | 0.90 | 0.01 | 0.001 |
AST [U/L] | 206.89 | 0.38 | 210.01 | 0.41 | <0.000 |
ALP [U/L] | 209.18 | 0.73 | 211.30 | 0.80 | 0.061 |
ALT [U/L] | 36.20 | 0.35 | 37.56 | 0.38 | 0.013 |
LDH [mU/mL] | 3.45 | 0.02 | 3.76 | 0.02 | <0.000 |
Triglycerides [mM/L] | 0.36 | 0.00 | 0.38 | 0.00 | 0.022 |
Glucose [mM/L] | 1.93 | 0.03 | 1.97 | 0.03 | 0.355 |
Glycogen [µg/µL] | 0.15 | 0.00 | 0.16 | 0.00 | 0.002 |
Na+ [mM/L] | 134.67 | 0.22 | 132.27 | 0.24 | <0.000 |
Ca2+ [mM/L] | 2.26 | 0.02 | 1.93 | 0.02 | <0.000 |
Mg2+ [mM/L] | 1.30 | 0.01 | 1.34 | 0.01 | <0.000 |
ATPase [µM/mg] | 2.02 | 0.02 | 2.26 | 0.02 | <0.000 |
Trait | Estimate BCP vs. SW | SE | Probt | AdjLower | AdjUpper |
---|---|---|---|---|---|
HR1_1 [bpm] | −4.75 | 8.69 | 0.589 | −22.57 | 13.08 |
HR1_20 [bpm] | 1.27 | 9.68 | 0.896 | −18.59 | 21.14 |
HR4_1 [bpm] | 7.57 | 6.13 | 0.227 | −5.00 | 20.15 |
HR4_20 [bpm] | 0.81 | 6.54 | 0.902 | −12.61 | 14.23 |
S1_1 [%] | −5.75 | 2.25 | 0.017 | −10.36 | −1.13 |
S1_20 [%] | −4.46 | 3.07 | 0.157 | −10.75 | 1.83 |
S4_1 [%] | −0.90 | 1.11 | 0.428 | −3.18 | 1.39 |
S4_20 [%] | −1.34 | 1.54 | 0.390 | −4.50 | 1.81 |
Trait | BCP | SW | p | ||
---|---|---|---|---|---|
LSMEAN | SE | LSMEAN | SE | ||
Protein [mg/mL] | 41.01 | 0.26 | 46.16 | 0.33 | <0.000 |
Cortisol [ng/mL] | 100.20 | 0.30 | 91.36 | 0.39 | <0.000 |
SOD [U/mg] | 61.80 | 0.46 | 77.48 | 0.59 | <0.000 |
CAT [U/mg] | 17.21 | 0.33 | 11.79 | 0.42 | <0.000 |
GST [U/mg] | 173.81 | 0.47 | 149.30 | 0.60 | <0.000 |
GPx [U/mg] | 49.54 | 0.48 | 43.21 | 0.62 | <0.000 |
TAC [mM Trolox] | 1.76 | 0.02 | 2.25 | 0.03 | <0.000 |
Albumins [g/dL] | 3.57 | 0.02 | 3.29 | 0.03 | <0.000 |
Uric acid [mg/dL] | 0.32 | 0.00 | 0.34 | 0.00 | <0.000 |
Urea [mg/dL] | 46.63 | 0.27 | 44.70 | 0.34 | <0.000 |
Creatinine [mg/dL] | 0.92 | 0.01 | 0.94 | 0.01 | 0.262 |
AST [U/L] | 232.81 | 0.35 | 184.09 | 0.44 | <0.000 |
ALP [U/L] | 217.55 | 0.67 | 202.93 | 0.85 | <0.000 |
ALT [U/L] | 42.00 | 0.32 | 31.77 | 0.40 | <0.000 |
LDH [mU/mL] | 3.67 | 0.02 | 3.53 | 0.02 | <0.000 |
Triglycerides [mM/L] | 0.43 | 0.00 | 0.31 | 0.00 | <0.000 |
Glucose [mM/L] | 1.69 | 0.02 | 2.21 | 0.03 | <0.000 |
Glycogen [µg/µL] | 0.18 | 0.00 | 0.13 | 0.00 | <0.000 |
Na+ [mM/L] | 131.66 | 0.20 | 135.28 | 0.25 | <0.000 |
Ca2+ [mM/L] | 2.20 | 0.02 | 1.99 | 0.02 | <0.000 |
Mg2+ [mM/L] | 1.35 | 0.01 | 1.28 | 0.01 | <0.000 |
ATPase [µM/mg] | 1.92 | 0.02 | 2.37 | 0.03 | <0.000 |
Trait | Estimate E vs. C | SE | Probt | AdjLower | AdjUpper |
---|---|---|---|---|---|
HR1_1 [bpm] | −6.32 | 8.69 | 0.473 | −24.14 | 11.51 |
HR1_20 [bpm] | −4.94 | 9.68 | 0.614 | −24.80 | 14.92 |
HR4_1 [bpm] | −42.80 | 6.13 | 0.000 | −55.38 | −30.22 |
HR4_20 [bpm] | −53.48 | 6.54 | 0.000 | −66.90 | −40.05 |
S1_1 [%] | −0.96 | 2.25 | 0.672 | −5.58 | 3.65 |
S1_20 [%] | 1.90 | 3.07 | 0.540 | −4.39 | 8.19 |
S4_1 [%] | −0.53 | 1.11 | 0.641 | −2.81 | 1.76 |
S4_20 [%] | 2.10 | 1.54 | 0.184 | −1.06 | 5.26 |
Trait | Group E | Group C | p | ||
---|---|---|---|---|---|
LSMEAN | SE | LSMEAN | SE | ||
Protein_BCP [mg/mL] | 40.42 | 0.38 | 45.32 | 0.43 | <0.000 |
Cortisol_BCP [ng/mL] | 98.42 | 0.44 | 90.18 | 0.50 | <0.000 |
SOD_BCP [U/mg] | 58.06 | 0.67 | 75.65 | 0.76 | <0.000 |
CAT_BCP [U/mg] | 18.21 | 0.48 | 11.87 | 0.54 | <0.000 |
GST_BCP [U/mg] | 172.30 | 0.68 | 143.14 | 0.77 | <0.000 |
GPx_BCP [U/mg] | 46.74 | 0.70 | 41.53 | 0.80 | <0.000 |
TAC_BCP [mM Trolox] | 1.68 | 0.03 | 2.15 | 0.04 | <0.000 |
Albumins_BCP [g/dL] | 3.51 | 0.03 | 3.23 | 0.04 | <0.000 |
Uric acid_BCP [mg/dL] | 0.32 | 0.00 | 0.35 | 0.01 | 0.002 |
Urea_BCP [mg/dL] | 44.18 | 0.39 | 43.20 | 0.44 | 0.107 |
Creatinine_BCP [mg/dL] | 0.95 | 0.01 | 0.96 | 0.02 | 0.855 |
AST_BCP [U/L] | 231.28 | 0.50 | 182.51 | 0.57 | <0.000 |
ALP_BCP [U/L] | 217.65 | 0.97 | 200.71 | 1.10 | <0.000 |
ALT_BCP [U/L] | 40.92 | 0.46 | 31.47 | 0.52 | <0.000 |
LDH_BCP [mU/mL] | 3.52 | 0.02 | 3.38 | 0.03 | <0.000 |
Triglycerides_BCP [mM/L] | 0.42 | 0.01 | 0.31 | 0.01 | <0.000 |
Glucose_BCP [mM/L] | 1.60 | 0.03 | 2.26 | 0.04 | <0.000 |
Glycogen_BCP [µg/µL] | 0.17 | 0.00 | 0.12 | 0.00 | <0.000 |
Na+_BCP [mM/L] | 132.03 | 0.29 | 137.32 | 0.33 | <0.000 |
Ca2+_BCP [mM/L] | 2.35 | 0.02 | 2.16 | 0.03 | <0.000 |
Mg2+_BCP [mM/L] | 1.34 | 0.01 | 1.26 | 0.01 | <0.000 |
ATPase_BCP [µM/mg] | 1.79 | 0.03 | 2.26 | 0.03 | <0.000 |
Protein_SW [mg/mL] | 41.60 | 0.36 | 47.01 | 0.51 | <0.000 |
Cortisol_SW [ng/mL] | 101.97 | 0.42 | 92.55 | 0.59 | <0.000 |
SOD_SW [U/mg] | 65.54 | 0.64 | 79.30 | 0.90 | <0.000 |
CAT_SW [U/mg] | 16.21 | 0.46 | 11.71 | 0.64 | <0.000 |
GST_SW [U/mg] | 175.32 | 0.65 | 155.46 | 0.91 | <0.000 |
GPx_SW [U/mg] | 52.34 | 0.67 | 44.88 | 0.94 | <0.000 |
TAC_SW [mM Trolox] | 1.84 | 0.03 | 2.34 | 0.04 | <0.000 |
Albumins_SW [g/dL] | 3.62 | 0.03 | 3.35 | 0.04 | <0.000 |
Uric acid_SW [mg/dL] | 0.31 | 0.00 | 0.34 | 0.01 | 0.006 |
Urea_SW [mg/dl] | 49.08 | 0.37 | 46.19 | 0.52 | 0.000 |
Creatinine_SW [mg/dL] | 0.88 | 0.01 | 0.91 | 0.02 | 0.177 |
AST_SW [U/L] | 234.35 | 0.48 | 185.68 | 0.67 | <0.000 |
ALP_SW [U/L] | 217.44 | 0.92 | 205.15 | 1.30 | <0.000 |
ALT_SW [U/L] | 43.07 | 0.44 | 32.06 | 0.62 | <0.000 |
LDH_SW [mU/mL] | 3.83 | 0.02 | 3.69 | 0.03 | 0.001 |
Triglycerides_SW [mM/L] | 0.44 | 0.00 | 0.32 | 0.01 | <0.000 |
Glucose_SW [mM/L] | 1.78 | 0.03 | 2.16 | 0.05 | <0.000 |
Glycogen_SW [µg/µL] | 0.18 | 0.00 | 0.14 | 0.00 | <0.000 |
Na+_SW [mM/L] | 131.30 | 0.27 | 133.23 | 0.39 | <0.000 |
Ca2+_SW [mM/L] | 2.04 | 0.02 | 1.83 | 0.03 | <0.000 |
Mg2+_SW [mM/L] | 1.37 | 0.01 | 1.31 | 0.01 | <0.000 |
ATPase_SW [µM/mg] | 2.04 | 0.03 | 2.47 | 0.04 | <0.000 |
Trait | Estimate E vs. C | SE | Probt | AdjLower | AdjUpper |
---|---|---|---|---|---|
BCP_HR1_1 [bpm] | −13.24 | 11.76 | 0.270 | −45.43 | 18.96 |
BCP_HR1_20 [bpm] | −9.38 | 13.11 | 0.480 | −45.26 | 26.50 |
BCP_HR4_1 [bpm] | −69.79 | 8.30 | 0.000 | −92.51 | −47.08 |
BCP_HR4_20 [bpm] | −52.95 | 8.86 | 0.000 | −77.20 | −28.71 |
BCP_S1_1 [bpm] | −2.83 | 3.05 | 0.362 | −11.16 | 5.51 |
BCP_S1_20 [bpm] | 0.30 | 4.15 | 0.943 | −11.06 | 11.66 |
BCP_S4_1 [bpm] | −0.65 | 1.51 | 0.669 | −4.78 | 3.48 |
BCP_S4_20 [bpm] | 2.70 | 2.08 | 0.206 | −3.01 | 8.40 |
SW_HR1_1 [%] | 0.60 | 12.79 | 0.963 | −34.39 | 35.59 |
SW_HR1_20 [%] | −0.50 | 14.25 | 0.972 | −39.49 | 38.49 |
SW_HR4_1 [%] | −15.80 | 9.02 | 0.091 | −40.49 | 8.89 |
SW_HR4_20 [%] | −54.00 | 9.63 | 0.000 | −80.35 | −27.65 |
SW_S1_1 [%] | 0.90 | 3.31 | 0.788 | −8.16 | 9.96 |
SW_S1_20 [%] | 3.50 | 4.51 | 0.445 | −8.85 | 15.85 |
SW_S4_1 [%] | −0.40 | 1.64 | 0.809 | −4.88 | 4.08 |
SW_S4_20 [%] | 1.50 | 2.27 | 0.514 | −4.70 | 7.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicka, K.; Masier, P.; Nazar, P.; Staniszewska, P.; Zięba, G.; Strachecka, A.; Rozempolska-Rucińska, I. Physiological Effect of Gentle Stroking in Lambs. Animals 2024, 14, 887. https://doi.org/10.3390/ani14060887
Janicka K, Masier P, Nazar P, Staniszewska P, Zięba G, Strachecka A, Rozempolska-Rucińska I. Physiological Effect of Gentle Stroking in Lambs. Animals. 2024; 14(6):887. https://doi.org/10.3390/ani14060887
Chicago/Turabian StyleJanicka, Kamila, Patrycja Masier, Paulina Nazar, Patrycja Staniszewska, Grzegorz Zięba, Aneta Strachecka, and Iwona Rozempolska-Rucińska. 2024. "Physiological Effect of Gentle Stroking in Lambs" Animals 14, no. 6: 887. https://doi.org/10.3390/ani14060887
APA StyleJanicka, K., Masier, P., Nazar, P., Staniszewska, P., Zięba, G., Strachecka, A., & Rozempolska-Rucińska, I. (2024). Physiological Effect of Gentle Stroking in Lambs. Animals, 14(6), 887. https://doi.org/10.3390/ani14060887