Chronic Undernutrition in Ovine Twin Pregnancies Abolishes Differences in Birth Weight Due to Sex: An Evaluation of the Role of Nutritional and Antioxidant Supplementation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Procedure
2.2. Statistical Analysis
3. Results
3.1. Ewes’ BW and BCS during Pregnancy
3.2. Fetal Sex Pair Distribution and Birth Weight
3.3. Effects of Supplementation with Concentrate and/or Antioxidants on Lambs’ Birth Weight in Accordance with Their Co-Twin Sex
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blumrosen, E.; Goldman, R.D.; Blickstein, I. Growth discordance and the effect of a male twin on birth weight of its female co-twin: A population-based study. J. Perinat. Med. 2002, 30, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Onyiriuka, A.N. Birthweight of full-term twin infants in relation to sex-pair. Genet. Med. Biomark. Health Sci. 2011, 3, 123–127. [Google Scholar] [CrossRef]
- Jahanfar, S.; Lim, K. The Impact of Gender on Anthropometric Measures of Twins. Twin Res. Hum. Genet. 2016, 19, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Burfening, P.J. Prenatal and postnatal competition among twin lambs. Anim. Prod. 1972, 15, 61–66. [Google Scholar] [CrossRef]
- Dwyer, C.M.; Calvert, S.K.; Farish, M.; Donbavand, J.; Pickup, H.E. Breed, litter and parity effects on placental weight and placentome number, and consequences for the neonatal behaviour of the lamb. Theriogenology 2005, 63, 1092–1110. [Google Scholar] [CrossRef]
- Korsten, P.; Tim Clutton-Brock, Y.; Pilkington, J.G.; Pemberton, J.M.; Kruuk, L.E.B. Sexual conflict in twins: Male co-twins reduce fitness of female Soay sheep. Biol. Lett. 2009, 5, 663–666. [Google Scholar] [CrossRef]
- Brzozowska, A.; Wojtasiak, N.; Blaszczyk, B.; Stankiewicz, T.; Wieczorek-Dabrowska, M.; Udala, J. The effects of non-genetic factors on the morphometric parameters of sheep placenta and the birth weight of lambs. Large Anim. Rev. 2020, 26, 6749–6753. [Google Scholar]
- Byrne, T.J.; Ludemann, C.I.; Amer, P.R.; Young, M.J. Broadening breeding objectives for maternal and terminal sheep. Livest. Sci. 2012, 144, 20–36. [Google Scholar] [CrossRef]
- Gootwine, E. Invited review: Opportunities for genetic improvement toward higher prolificacy in sheep. Small Rum. Res. 2020, 186, 106090. [Google Scholar] [CrossRef]
- Prakash, V.; Prince, L.L.L.; Sharma, R.C.; Kumar, A. Growth and prolificacy performance of Garole sheep raised under semi-arid conditions. Indian. J. Anim. Sci. 2017, 87, 1264–1268. [Google Scholar] [CrossRef]
- Gootwine, E. Variability in the rate of decline in birth weight as litter size increases in sheep. Anim. Sci. 2005, 81, 393–398. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. Board-invited review: Intrauterine growth retardation: Implications for the animal sciences. J. Anim. Sci. 2006, 84, 2316–2337. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, S.; Suzuki, S.; Chihara, H.; Otsuboa, Y.; Takeshita, T.; Araki, T. Maternal basal metabolic rate in twin pregnancy. Gynecol. Obstet. Investig. 2005, 60, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Goodnight, W.; Newman, R. Optimal nutrition for improved twin pregnancy outcome. Obstet. Gynecol. 2009, 114, 1121–1134. [Google Scholar] [CrossRef] [PubMed]
- Luke, B. The evidence linking maternal nutrition and prematurity. J. Perinat. Med. 2005, 33, 500–505. [Google Scholar] [CrossRef]
- Bricker, L.; Reed, K.; Wood, L.; Neilson, J.P. Nutritional advice for improving outcomes in multiple pregnancies. Cochrane Database Syst. Rev. 2015, 24, CD008867. [Google Scholar] [CrossRef] [PubMed]
- Iñiguez, L. The challenges of research and development of small ruminant production in dry areas. Small Rum. Res. 2011, 98, 12–20. [Google Scholar] [CrossRef]
- FAO. Livestock in Geographic Transition. Available online: http://www.fao.org/3/a0701e/a0701e02.pdf (accessed on 10 August 2022).
- Covacevich, C.N.; Ruz, J.E. Praderas en la zona austral: XII Región (Magallanes). In Praderas para Chile, 2nd ed.; Ruiz, N.I., Ed.; Ministerio de Agricultura, Instituto de Investigaciones Agropecuarias INIA: Santiago, Chile, 1996; pp. 639–655. [Google Scholar]
- NRC. Nutrient requirements of small ruminants: Sheep, goats, cervids, and new world camelids. In National Research Council, Committee on the Nutrient Requirements of Small Ruminants, Board on Agriculture, Division on Earth, and Life Studies NRC; The National Academic Press: Washington, DC, USA, 2007; pp. 244–270. [Google Scholar]
- Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; De los Reyes, M.; González-Bulnes, A.; Parraguez, V.H. Hypoxia and oxidative stress are associated with reduced fetal growth in twin and undernourished sheep pregnancies. Animals 2018, 8, 21. [Google Scholar] [CrossRef]
- Parraguez, V.H.; Sales, F.; Peralta, O.A.; Narbona, E.; Lira, R.; De los Reyes, M.; González-Bulnes, A. Supplementation of underfed twin-bearing ewes with herbal vitamins C and E: Impacts on birth weight, postnatal growth, and pre-weaning survival of the lambs. Animals 2020, 10, 652. [Google Scholar] [CrossRef]
- Parraguez, V.H.; Sales, F.; Peralta, O.A.; De los Reyes, M.; Gonzalez-Bulnes, S. Oxidative stress and fetal growth restriction set up earlier in undernourished sheep twin pregnancies: Prevention with antioxidant and nutritional supplementation. Antioxidants 2022, 11, 1287. [Google Scholar] [CrossRef]
- Li, H.-P.; Chen, X.; Li, M.-Q. Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta. Int. J. Clin. Exp. Pathol. 2013, 6, 650–659. [Google Scholar] [PubMed]
- Biri, A.; Bozkurt, N.; Turp, A.; Kavutcu, M.; Himmetoglu, Ö.; Durak, İ. Role of oxidative stress in intrauterine growth restriction. Gynecol. Obstet. Investig. 2007, 64, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Narang, M.; Banerjee, B.; Basu, S. Oxidative stress in term small for gestational age neonates born to undernourished mothers: A case control study. BMC Pediatr. 2004, 4, 14. [Google Scholar] [CrossRef]
- Kamath, U.; Rao, G.; Kamath, S.U.; Rai, L. Maternal and fetal indicators of oxidative stress during intrauterine growth retardation (IUGR). Indian. J. Clin. Biochem. 2006, 21, 111. [Google Scholar] [CrossRef] [PubMed]
- Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; Lira, R.; De los Reyes, M.; González-Bulnes, A.; Parraguez, V.H. Maternal supplementation with antioxidant vitamins in sheep results in increased transfer to the fetus and improvement of fetal antioxidant status and development. Antioxidants 2019, 8, 59. [Google Scholar] [CrossRef]
- Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; González-Bulnes, A.; Parraguez, V.H. Rapid Communication: Maternal melatonin implants improve fetal oxygen supply and body weight at term in sheep pregnancies. J. Anim. Sci. 2019, 97, 839–845. [Google Scholar] [CrossRef]
- Jefferies, B.C. Body condition scoring and its use in management. Tasman. J. Agric. 1961, 32, 19–21. [Google Scholar]
- Lira, R. Suplementación estratégica. In Bases para la Producción Ovina en Magallanes; Strauch, O., Lira, R., Eds.; INIA Kampenaike: Punta Arenas, Chile, 2012; pp. 92–103. [Google Scholar]
- Van der Linden, D.S.; Kenyon, P.R.; Jenkinson, C.M.C.; Peterson, S.W.; Blair, H.T. Carry-over effects of ewe nutrition and birth rank during the previous pregnancy on the milking performance during the subsequent lactation of Romney ewes. Anim. Prod. Sci. 2011, 51, 102–110. [Google Scholar] [CrossRef]
- Aiken, C.E.; Ozanne, S.E. Sex differences in developmental programming models. Reproduction 2013, 145, R1–R13. [Google Scholar] [CrossRef]
- Jansson, T.; Powell, T.L. Role of the placenta in fetal programming: Underlying mechanisms and potential interventional approaches. Clin. Sci. 2007, 113, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Óvilo, C.; Gonzalez-Bulnes, A.; Benitez, R.; Ayuso, M.; Barbero, A.; Pérez-Solana, M.L.; Barragán, C.; Astiz, S.; Fernández, A.; López-Bote, C. Prenatal programming in an obese swine model: Sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression. Br. J. Nutr. 2014, 111, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Rexhepaj, R.; Boini, K.M.; Huang, D.Y.; Amann, K.; Artunc, F.; Wang, K.; Brosens, J.J.; Kuhl, D.; Lang, F. Role of maternal glucocorticoid inducible kinase SGK1 in fetal programming of blood pressure in response to prenatal diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R2008–R2013. [Google Scholar] [CrossRef]
- Fowden, A.L.; Moore, T. Maternal-fetal resource allocation: Co-operation and conflict. Placenta 2012, 33, e11–e15. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Tello, J.; Arias-Alvarez, M.; Jimenez-Martinez, M.A.; García-García, R.M.; Rodriguez, M.; Gonzalez, P.L.L.; Bermejo-Poza, R.; Gonzalez-Bulnes, A.; Rebollar, P.G. Competition for materno-fetal resource partitioning in a rabbit model of undernourished pregnancy. PLoS ONE 2017, 12, e0169194. [Google Scholar] [CrossRef] [PubMed]
- Rickard, I.J.; Russell, A.F.; Lummaa, V. Producing sons reduces lifetime reproductive success of subsequent offspring in pre-industrial Finns. Proc. R. Soc. B Boil. Sci. 2007, 274, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Mathews, F.; Johnson, P.J.; Neil, A. You are what your mother eats: Evidence for maternal preconception diet influencing foetal sex in humans. Proc. R. Soc. B Boil. Sci. 2008, 275, 1661–1668. [Google Scholar] [CrossRef]
- Ozaki, T.; Nishina, H.; Hanson, M.A.; Poston, L. Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J. Physiol. 2001, 530 Pt 1, 141–152. [Google Scholar] [CrossRef]
- Loria, A.; Reverte, V.; Salazar, F.; Saez, F.; Llinas, M.T.; Salazar, F.J. Sex and age differences of renal function in rats with reduced ANG II activity during the nephrogenic period. Am. J. Physiol. Renal Physiol. 2007, 293, F506–F510. [Google Scholar] [CrossRef]
- Wilcoxon, J.S.; Schwartz, J.; Aird, F.; Redei, E.E. Sexually dimorphic effects of maternal alcohol intake and adrenalectomy on left ventricular hypertrophy in rat offspring. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E31–E39. [Google Scholar] [CrossRef]
- Vickers, M.H.; Clayton, Z.E.; Yap, C.; Sloboda, D.M. Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function. Endocrinology 2011, 152, 1378–1387. [Google Scholar] [CrossRef]
- Torres-Rovira, L.; Tarrade, A.; Astiz, S.; Mourier, E.; Perez-Solana, M.; de la Cruz, P.; Gomez-Fidalgo, E.; Sanchez-Sanchez, R.; Chavatte-Palmer, C.; Ganzalez-Bulnes, A. Sex and breed-dependent organ development and metabolic responses in foetuses from lean and obese/leptin resistant swine. PLoS ONE 2013, 8, e66728. [Google Scholar] [CrossRef]
- Gonzalez-Bulnes, A.; Torres-Rovira, L.; Astiz, S.; Ovilo, C.; Sanchez-Sanchez, R.; Gomez-Fidalgo, E.; Perez-Solana, M.; Martin-Lluch, M.; Garcia-Contreras, C.; Vasquez-Gomez, M. Fetal sex modulates developmental response to maternal malnutrition. PLoS ONE 2015, 10, e0142158. [Google Scholar] [CrossRef] [PubMed]
- Cogollos, L.; Garcia-Contreras, C.; Vazquez-Gomez, M.; Astiz, S.; Sanchez-Sanchez, R.; Gomez-Fidalgo, E.; Ovilo, C.; Isabel, B.; Gonzalez-Bulnes, A. Effects of fetal genotype and sex on developmental response to maternal malnutrition. Reprod. Fertil. Dev. 2017, 29, 1155–1168. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Contreras, C.; Vazquez-Gomez, M.; Barbero, A.; Pesantez, J.L.; Zinellu, A.; Berlinguer, F.; Gonzalez-Añover, P.; Gonzalez, J.; Encinas, T.; Torres-Rovira, L.; et al. Polyphenols and IUGR Pregnancies: Effects of maternal hydroxytyrosol supplementation on placental gene expression and fetal antioxidant status, DNA-methylation and phenotype. Int. J. Mol. Sci. 2019, 20, 1187. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, B.; Vural, T.; Gölbaşı, C.; Gölbaşı, H.; Bayraktar, M.G. Effect of co-twin fetal sex on fetal anthropometry and birth time in twin pregnancies. J. Obstet. Gynaecol. Can. 2021, 43, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Luke, B.; Hediger, M.; Min, S.J.; Brown, M.B.; Misiunas, R.B.; Gonzalez-Quintero, V.H.; Nugent, C.; Witter, F.R.; Newman, R.B.; Hankins, G.D.; et al. Gender mix in twins and fetal growth, length of gestation and adult cancer risk. Paediatr. Perinat. Epidemiol. 2005, 19 (Suppl. S1), 41–47. [Google Scholar] [CrossRef] [PubMed]
- Jelenkovic, A.; Sund, R.; Yokoyama, Y.; Hur, Y.M.; Ullemar, V.; Almqvist, C.; Magnusson, P.K.; Willemsen, G.; Bartels, M.; Beijsterveldt, C.E.V.; et al. Birth size and gestational age in oppo-site-sex twins as compared to same-sex twins: An individual-based pooled analysis of 21 co-horts. Sci. Rep. 2018, 8, 6300. [Google Scholar] [CrossRef]
- Derom, R.; Derom, C.; Loos, R.J.; Thiery, E.; Vlietinck, R.; Fryns, J.P. Gender mix: Does it modify birth-weight--outcome association? Paediatr. Perinat. Epidemiol. 2005, 19 (Suppl. S1), 37–40. [Google Scholar] [CrossRef]
Total Diet | |||
---|---|---|---|
Group | Base Diet | Concentrate Supplementation | Premix Antioxidant Supplementation |
C | Grazing on natural prairie | 50 g | None |
N | Grazing on natural prairie | 450 g | None |
A | Grazing on natural prairie | None | 50 g |
NA | Grazing on natural prairie | 400 g | 50 g |
BW (Kg) | BCS | |||||
---|---|---|---|---|---|---|
Group | Initial | Final | p-Value | Initial | Final | p-Value |
C | 62.0 ± 1.2 a | 61.1 ± 1.5 b | ns | 2.2 ± 0.1 a | 1.2 ± 0.1 b | 0.01 |
N | 60.4 ± 1.1 a | 72.8 ± 1.0 a | <0.001 | 2.0 ± 0.2 a | 1.9 ± 0.2 a | ns |
A | 60.9 ± 1.6 a | 58.7 ± 1.1 b | ns | 2.5 ± 0.3 a | 1.0 ± 0.0 b | <0.001 |
NA | 60.5 ± 1.3 a | 70.2 ± 1.3 a | <0.001 | 2.4 ± 0.2 a | 2.1 ± 0.2 a | ns |
Sex Pairs (%) | Birthweight (kg) | ||||||
---|---|---|---|---|---|---|---|
Group | n | FM | FF | MM | Females | Males | p-Value |
C | 23 | 52.2 | 21.7 | 26.1 | 3.34 ± 0.12 b | 3.38 ± 0.15 c | ns |
N | 33 | 45.5 | 36.4 | 18.1 | 3.85 ± 0.10 a | 4.21 ± 0.10 ab | 0.015 |
A | 20 | 43.7 | 31.3 | 25.0 | 3.65 ± 0.17 ab | 3.89 ± 0.10 b | 0.067 |
NA | 20 | 50.0 | 30.0 | 20.0 | 4.01 ± 0.09 a | 4.56 ± 0.13 a | 0.038 |
Lamb’s Birth Weight (Kg) | p-Value | ||||
---|---|---|---|---|---|
Lamb Sex | C | N | A | NA | |
F(M) | 3.35 ± 0.15 b | 4.03 ± 0.26 a-2 | 3.38 ± 0.10 b-3 | 3.98 ± 0.10 a-2 | <0.001 |
F(F) | 3.33 ± 0.18 c | 3.74 ± 0.13 bc-2 | 3.83 ± 0.26 bc-2,3 | 4.03 ± 0.14 ab-2,3 | 0.059 |
M(F) | 3.37 ± 0.24 b | 4.48 ± 0.13 a-1 | 4.09 ± 0.18 a-1,2 | 4.39 ± 0.13 a-1,3 | <0.001 |
M(M) | 3.40 ± 0.17 b | 3.72 ± 0.01 b-2 | 3.86 ± 0.15 b-2,3 | 4.77 ± 0.26 a-1 | <0.001 |
p-value | 0.207 | <0.001 | 0.077 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sales, F.; Peralta, Ó.A.; De los Reyes, M.; Sandoval, C.; Martínez-Ros, P.; Rojas, C.; Gonzáles-Bulnes, A.; Parraguez, V.H. Chronic Undernutrition in Ovine Twin Pregnancies Abolishes Differences in Birth Weight Due to Sex: An Evaluation of the Role of Nutritional and Antioxidant Supplementation. Animals 2024, 14, 974. https://doi.org/10.3390/ani14060974
Sales F, Peralta ÓA, De los Reyes M, Sandoval C, Martínez-Ros P, Rojas C, Gonzáles-Bulnes A, Parraguez VH. Chronic Undernutrition in Ovine Twin Pregnancies Abolishes Differences in Birth Weight Due to Sex: An Evaluation of the Role of Nutritional and Antioxidant Supplementation. Animals. 2024; 14(6):974. https://doi.org/10.3390/ani14060974
Chicago/Turabian StyleSales, Francisco, Óscar A. Peralta, Mónica De los Reyes, Camila Sandoval, Paula Martínez-Ros, Carolina Rojas, Antonio Gonzáles-Bulnes, and Víctor H. Parraguez. 2024. "Chronic Undernutrition in Ovine Twin Pregnancies Abolishes Differences in Birth Weight Due to Sex: An Evaluation of the Role of Nutritional and Antioxidant Supplementation" Animals 14, no. 6: 974. https://doi.org/10.3390/ani14060974
APA StyleSales, F., Peralta, Ó. A., De los Reyes, M., Sandoval, C., Martínez-Ros, P., Rojas, C., Gonzáles-Bulnes, A., & Parraguez, V. H. (2024). Chronic Undernutrition in Ovine Twin Pregnancies Abolishes Differences in Birth Weight Due to Sex: An Evaluation of the Role of Nutritional and Antioxidant Supplementation. Animals, 14(6), 974. https://doi.org/10.3390/ani14060974