Coccidiosis in Egg-Laying Hens and Potential Nutritional Strategies to Modulate Performance, Gut Health, and Immune Response
Abstract
:Simple Summary
Abstract
1. Introduction
2. Avian Coccidiosis
3. Host–Pathogen Interaction and Immune Responses against Coccidiosis
4. Coccidiosis and Its Effects on Pullets and Laying Hens
4.1. Gut Health and Oxidative Stress
4.2. Growth Performance
4.3. Production Performance
5. Prevention and Control of Coccidiosis
5.1. Biosecurity and Management
5.2. Chemotherapy
5.3. Vaccination
6. Nutritional Intervention for Coccidiosis
6.1. Role of Vitamins
6.1.1. Vitamin D
6.1.2. Vitamin E
6.1.3. Other Vitamins
6.2. Role of Functional Amino Acids
6.2.1. Arginine
6.2.2. Methionine
6.2.3. Other Amino Acids
7. Role of Phytogenic Feed Additives
8. Role of Prebiotics, Probiotics, and Symbiotics
8.1. Probiotics
8.2. Prebiotics
8.3. Synbiotics
8.4. Postbiotics
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-Calculating the Cost of Coccidiosis in Chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef] [PubMed]
- Conway, D.P.; Mckenzie, M.E.; Conway, D.P.; Mckenzie, M.E. Poultry Coccidiosis; Wiley-Blackwell: Oxford, UK, 2007; ISBN 9780813822020. [Google Scholar]
- Su, S.; Miska, K.B.; Fetterer, R.H.; Jenkins, M.C.; Wong, E.A. Expression of Digestive Enzymes and Nutrient Transporters in Eimeria acervulina-Challenged Layers and Broilers. Poult. Sci. 2014, 93, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Abdisa, T.; Hasen, R.; Tagesu, T.; Regea, G.; Tadese, G. Poultry Coccidiosis and Its Prevention, Control. J. Vet. Anim. Res. 2019, 2, 1–6. [Google Scholar]
- Swayne, D.E.; Glisson, J.R.; McDougald, L.R.; Nolan, L.K.; Suarez, D.L.; Nair, V. Diseases of Poultry; Blackwell Pub: Oxford, UK, 2019; ISBN 9781119371199. [Google Scholar]
- Teng, P.Y.; Choi, J.; Tompkins, Y.; Lillehoj, H.; Kim, W. Impacts of Increasing Challenge with Eimeria Maxima on the Growth Performance and Gene Expression of Biomarkers Associated with Intestinal Integrity and Nutrient Transporters. Vet. Res. 2021, 52, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.Y.; Yadav, S.; Castro, F.L.d.S.; Tompkins, Y.H.; Fuller, A.L.; Kim, W.K. Graded Eimeria Challenge Linearly Regulated Growth Performance, Dynamic Change of Gastrointestinal Permeability, Apparent Ileal Digestibility, Intestinal Morphology, and Tight Junctions of Broiler Chickens. Poult. Sci. 2020, 99, 4203–4216. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.D. Coccidiosis in Egg Laying Poultry; Elsevier Inc.: Philadelphia, PA, USA, 2017; ISBN 9780128011515. [Google Scholar]
- Chapman, H.D. Applied Strategies for the Control of Coccidiosis in Poultry. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Soares, R.; Cosstick, T.; Lee, E.H. Control of Coccidiosis in Caged Egg Layers: A Paper Plate Vaccination Method. J. Appl. Poult. Res. 2004, 13, 360–363. [Google Scholar] [CrossRef]
- Rodenburg, T.B.; Tuyttens, F.A.M.; Sonck, B.; De Reu, K.; Herman, L.; Zoons, J. Welfare, Health, and Hygiene of Laying Hens Housed in Furnished Cages and in Alternative Housing Systems. J. Appl. Anim. Welf. Sci. 2005, 8, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Fossum, O.; Jansson, D.S.; Etterlin, P.E.; Vgsholm, I. Causes of Mortality in Laying Hens in Different Housing Systems in 2001 to 2004. Acta Vet. Scand. 2009, 51, 3. [Google Scholar] [CrossRef]
- Kaufmann-Bat, M.; Hoop, R.K. Diseases in Chicks and Laying Hens during the First 12 Years after Battery Cages Were Banned in Switzerland. Vet. Rec. 2009, 164, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Lunden, A.; Thebo, P.; Gunnarsson, S.; Hooshmand-Rad, P.; Tauson, R.; Uggla, A. Eimeria Infections in Litter-Based, High Stocking Density Systems for Loose-Housed Laying Hens in Sweden. Br. Poult. Sci. 2000, 41, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Price, K.R. Use of Live Vaccines for Coccidiosis Control in Replacement Layer Pullets. J. Appl. Poult. Res. 2012, 21, 679–692. [Google Scholar] [CrossRef]
- Blake, D.P.; Vrba, V.; Xia, D.; Jatau, I.D.; Spiro, S.; Nolan, M.J.; Underwood, G.; Tomley, F.M. Genetic and Biological Characterisation of Three Cryptic Eimeria Operational Taxonomic Units That Infect Chickens (Gallus gallus domesticus). Int. J. Parasitol. 2021, 51, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M.W.; Smith, A.L.; Tomley, F.M. The Biology of Avian Eimeria with an Emphasis on Their Control by Vaccination. Adv. Parasitol. 2005, 60, 285–330. [Google Scholar] [PubMed]
- Lee, Y.; Lu, M.; Lillehoj, H.S. Coccidiosis: Recent Progress in Host Immunity and Alternatives to Antibiotic Strategies. Vaccines 2022, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Shivaramaiah, C.; Barta, J.R.; Hernandez-Velasco, X.; Téllez, G.; Hargis, B.M. Coccidiosis: Recent Advancements in the Immunobiology of Eimeria Species, Preventive Measures, and the Importance of Vaccination as a Control Tool against These Apicomplexan Parasites. Vet. Med. Res. Rep. 2014, 5, 23–34. [Google Scholar]
- Lillehoj, H.S.; Lillehoj, E.P. Avian Coccidiosis. A Review of Acquired Intestinal Immunity and Vaccination Strategies. Avian Dis. 2000, 44, 408–425. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, H.S.; Trout, J.M. Coccidia: A Review of Recent Advances on Immunity and Vaccine Development. Avian Pathol. 1993, 22, 3–31. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.H.; Lillehoj, H.S.; Lillehoj, E.P. Intestinal Immune Responses to Coccidiosis. Dev. Comp. Immunol. 2000, 24, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Wallach, M.; Smith, N.C.; Petracca, M.; Miller, C.M.D.; Eckert, J.; Braun, R. Eimeria Maxima Gametocyte Antigens: Potential Use in a Subunit Maternal Vaccine against Coccidiosis in Chickens. Vaccine 1995, 13, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Wallach, M.; Pillemer, G.; Yarus, S.; Halabi, A.; Pugatsch, T.; Mencher, D. Passive Immunization of Chickens against Eimeria Maxima Infection with a Monoclonal Antibody Developed against a Gametocyte Antigen. Infect. Immun. 1990, 58, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, H.S.; Trout, J.M. Avian Gut-Associated Lymphoid Tissues and Intestinal Immune Responses to Eimeria Parasites. Clin. Microbiol. Rev. 1996, 9, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; Regmi, P.; Applegate, T.; Chai, L.; Kim, W.K.; Sharma, M.K.; Regmi, P.; Applegate, T.; Chai, L.; Kim, W.K. Osteoimmunology: A Link between Gastrointestinal Diseases and Skeletal Health in Chickens. Animals 2023, 13, 1816. [Google Scholar] [CrossRef] [PubMed]
- Fathima, S.; Al Hakeem, W.G.; Shanmugasundaram, R.; Selvaraj, R.K. Necrotic Enteritis in Broiler Chickens: A Review on the Pathogen, Pathogenesis, and Prevention. Microorganisms 2022, 10, 1958. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, H.S.; Choi, K.D. Recombinant Chicken Interferon-Gamma-Mediated Inhibition of Eimeria tenella Development in Vitro and Reduction of Oocyst Production and Body Weight Loss Following Eimeria acervulina Challenge Infection. Avian Dis. 1998, 42, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.E.; Hesketh, P.; Rennie, M. Coccidiosis: Rapid Depletion of Circulating Lymphocytes after Challenge of Immune Chickens with Parasite Antigens. Infect. Immun. 1984, 45, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, H.S.; Min, W.; Dalloul, R.A. Recent Progress on the Cytokine Regulation of Intestinal Immune Responses to Eimeria. Poult. Sci. 2004, 83, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Sharma, M.K.; Tompkins, Y.H.; Teng, P.Y.; Kim, W.K. Impacts of Varying Methionine to Cysteine Supplementation Ratios on Growth Performance, Oxidative Status, Intestinal Health, and Gene Expression of Immune Response and Methionine Metabolism in Broilers under Eimeria Spp. Challenge. Poult. Sci. 2024, 103, 103300. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.A.; McCraw, B.M. Mucosal Morphology and Cellular Renewal in the Intestine of Chickens Following a Single Infection of Eimeria acervulina. J. Parasitol. 1973, 59, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Major, P.; Tóth, Š.; Goldová, M.; Révajová, V.; Kožárová, I.; Levkut, M.; Mojžišová, J.; Hisira, V.; Mihok, T. Dynamic of Apoptosis of Cells in Duodenal Villi Infected with Eimeria acervulina in Broiler Chickens. Biologia 2011, 66, 696–700. [Google Scholar] [CrossRef]
- Sharma, M.K.; Liu, G.; White, D.L.; Kim, W.K. Graded Levels of Eimeria Infection Linearly Reduced the Growth Performance, Altered the Intestinal Health, and Delayed the Onset of Egg Production of Hy-Line W-36 Laying Hens When Infected at the Prelay Stage. Poult. Sci. 2024, 103, 103174. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; Liu, G.; White, D.L.; Tompkins, Y.H.; Kim, W.K. Effects of Mixed Eimeria Challenge on Performance, Body Composition, Intestinal Health, and Expression of Nutrient Transporter Genes of Hy-Line W-36 Pullets (0–6 Wks of Age). Poult. Sci. 2022, 101, 102083. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; Singh, A.K.; Goo, D.; Choppa, V.S.R.; Ko, H.; Shi, H.; Kim, W.K. Graded Levels of Eimeria Infection Modulated Gut Physiology and Temporarily Ceased the Egg Production of Laying Hens at Peak Production. Poult. Sci. 2024, 103, 103229. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Goo, D.; Sharma, M.K.; Ko, H.; Liu, G.; Paneru, D.; Choppa, V.S.R.; Lee, J.; Kim, W.K. Effects of Different Eimeria Inoculation Doses on Growth Performance, Daily Feed Intake, Gut Health, Gut Microbiota, Foot Pad Dermatitis, and Eimeria Gene Expression in Broilers Raised in Floor Pens for 35 Days. Animals 2023, 13, 2237. [Google Scholar] [CrossRef] [PubMed]
- Hansen, V.L.; Kahl, S.; Proszkowiec-Weglarz, M.; Jiménez, S.C.; Vaessen, S.F.C.; Schreier, L.L.; Jenkins, M.C.; Russell, B.; Miska, K.B. The Effects of Tributyrin Supplementation on Weight Gain and Intestinal Gene Expression in Broiler Chickens during Eimeria Maxima-Induced Coccidiosis. Poult. Sci. 2021, 100, 100984. [Google Scholar] [CrossRef] [PubMed]
- Morris, B.C.; Danforth, H.D.; Caldwell, D.J.; Pierson, F.W.; McElroy, A.P. Intestinal Mucosal Mast Cell Immune Response and Pathogenesis of Two Eimeria acervulina Isolates in Broiler Chickens. Poult. Sci. 2004, 83, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Belote, B.L.; Soares, I.; Tujimoto-Silva, A.; Sanches, A.W.D.; Kraieski, A.L.; Santin, E. Applying I See inside Histological Methodology to Evaluate Gut Health in Broilers Challenged with Eimeria. Vet. Parasitol. 2019, 276, 100004. [Google Scholar] [CrossRef] [PubMed]
- Cliffe, L.J.; Humphreys, N.E.; Lane, T.E.; Potten, C.S.; Booth, C.; Grencis, R.K. Immunology—Accelerated Intestinal Epithelial Cell Turnover: A New Mechanism of Parasite Expulsion. Science 2005, 308, 1463–1465. [Google Scholar] [CrossRef] [PubMed]
- Ulluwishewa, D.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Wells, J.M.; Roy, N.C. Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components. J. Nutr. 2011, 141, 769–776. [Google Scholar] [CrossRef]
- Yadav, S.; Teng, P.Y.; Souza dos Santos, T.; Gould, R.L.; Craig, S.W.; Lorraine Fuller, A.; Pazdro, R.; Kim, W.K. The Effects of Different Doses of Curcumin Compound on Growth Performance, Antioxidant Status, and Gut Health of Broiler Chickens Challenged with Eimeria Species. Poult. Sci. 2020, 99, 5936–5945. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, N.V.; Gabrashanska, M.; Georgieva, N.V.; Gabrashanska, M.; Koinarski, V.; Ermidou-Pollet, S. Antioxidant Status in Eimeria acervulina Infected Chickens after Dietary Selenium Treatment. Trace Elem. Electrolytes 2011, 28, 42. [Google Scholar] [CrossRef]
- Idris, M.; Abbas, R.Z.; Masood, S.; Rehman, T.; Farooq, U.; Babar, W.; Hussain, R.; Raza, A.; Riaz, U. World’s Poultry Science Journal The Potential of Antioxidant Rich Essential Oils against Avian Coccidiosis. Poult. Sci. J. 2017, 73, 89–104. [Google Scholar]
- Tompkins, Y.H.; Choi, J.; Teng, P.Y.; Yamada, M.; Sugiyama, T.; Kim, W.K. Reduced Bone Formation and Increased Bone Resorption Drive Bone Loss in Eimeria Infected Broilers. Sci. Rep. 2023, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.Y.; Liu, G.; Choi, J.; Yadav, S.; Wei, F.; Kim, W.K. Effects of Levels of Methionine Supplementations in Forms of L- or DL-Methionine on the Performance, Intestinal Development, Immune Response, and Antioxidant System in Broilers Challenged with Eimeria spp. Poult. Sci. 2023, 102, 102586. [Google Scholar] [CrossRef]
- Tompkins, Y.H.; Teng, P.; Pazdro, R.; Kim, W.K. Long Bone Mineral Loss, Bone Microstructural Changes and Oxidative Stress after Eimeria Challenge in Broilers. Front. Physiol. 2022, 13, 945740. [Google Scholar] [CrossRef] [PubMed]
- Galli, G.M.; Baldissera, M.D.; Griss, L.G.; Souza, C.F.; Fortuoso, B.F.; Boiago, M.M.; Gris, A.; Mendes, R.E.; Stefani, L.M.; da Silva, A.S. Intestinal Injury Caused by Eimeria spp. Impairs the Phosphotransfer Network and Gain Weight in Experimentally Infected Chicken Chicks. Parasitol. Res. 2019, 118, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Conway, D.P.; Sasai, K.; Gaafar, S.M.; Smothers, C.D. Effects of Different Levels of Oocyst Inocula of Eimeria acervulina, E. Tenella, and E. Maxima on Plasma Constituents, Packed Cell Volume, Lesion Scores, and Performance in Chickens. Avian Dis. 1993, 37, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Kipper, M.; Andretta, I.; Lehnen, C.R.; Lovatto, P.A.; Monteiro, S.G. Meta-Analysis of the Performance Variation in Broilers Experimentally Challenged by Eimeria spp. Vet. Parasitol. 2013, 196, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bun, S.D.; Guo, Y.M.; Guo, F.C.; Ji, F.J.; Cao, H. Influence of Organic Zinc Supplementation on the Antioxidant Status and Immune Responses of Broilers Challenged with Eimeria tenella. Poult. Sci. 2011, 90, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N. Effect of Supplementing Feed with Oregano and/or α-Tocopheryl Acetate on Growth of Broiler Chickens and Oxidative Stability of Meat. Artic. J. Anim. Feed. Sci. 2005, 14, 521–535. [Google Scholar]
- Iuspa, M.A.M.; Soares, I.; Belote, B.L.; Kawazoe, U.; Santin, E. Comparing Performance and Resistance of Two Broilers Breeds Challenged by Eimeria acervulina. Vet. Parasitol. 2020, 287, 109235. [Google Scholar] [CrossRef] [PubMed]
- Rochell, S.J.; Parsons, C.M.; Dilger, R.N. Effects of Eimeria acervulina Infection Severity on Growth Performance, Apparent Ileal Amino Acid Digestibility, and Plasma Concentrations of Amino Acids, Carotenoids, and A1-Acid Glycoprotein in Broilers. Poult. Sci. 2016, 95, 1573–1581. [Google Scholar] [CrossRef]
- Choi, J.; Ko, H.; Tompkins, Y.H.; Teng, P.Y.; Lourenco, J.M.; Callaway, T.R.; Kim, W.K. Effects of Eimeria tenella Infection on Key Parameters for Feed Efficiency in Broiler Chickens. Animals 2021, 11, 3428. [Google Scholar] [CrossRef] [PubMed]
- Hegde, K.S.; Reid, W.M. Effects of Six Single Species of Coccidia on Egg Production and Culling Rate of Susceptible Layers. Poult. Sci. 1969, 48, 928–932. [Google Scholar] [CrossRef] [PubMed]
- Fitz-coy, A.S.H.; Edgar, S.A.; Edgar, S.A. Effects of Eimeria mitis on Egg Production of Single-Comb White Leghorn Hens. Am. Assoc. Avian Pathol. Stable JSTOR 2020, 36, 718–721. [Google Scholar] [CrossRef]
- McDougald, L.R.; Fuller, A.L.; McMurray, B.L. An Outbreak of Eimeria necatrix Coccidiosis in Breeder Pullets: Analysis of Immediate and Possible Long-Term Effects on Performance. Avian Dis. 1990, 34, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, R.L. Studies on Coccidiosis. Poult. Sci. 1934, 13, 148–154. [Google Scholar] [CrossRef]
- Adams, C.; Vahl, H.A.; Veldman, A. Interaction between Nutrition and Eimeria acervulina Infection in Broiler Chickens: Diet Compositions That Improve Fat Digestion during Eimeria acervulina Infection. Br. J. Nutr. 1996, 75, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lin, X.; Mi, Y.; Li, J.; Zhang, C. Grape Seed Proanthocyanidin Extract Prevents Ovarian Aging by Inhibiting Oxidative Stress in the Hens. Oxid. Med. Cell Longev. 2018, 2018, 9390810. [Google Scholar] [CrossRef]
- Zhu, M.; Miao, S.; Zhou, W.; Elnesr, S.S.; Dong, X.; Zou, X. MAPK, AKT/FoxO3a and MTOR Pathways Are Involved in Cadmium Regulating the Cell Cycle, Proliferation and Apoptosis of Chicken Follicular Granulosa Cells. Ecotoxicol. Environ. Saf. 2021, 214, 112091. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.D. Milestones in Avian Coccidiosis Research: A Review. Poult. Sci. 2014, 93, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Hauck, R.; Macklin, K.S. Vaccination Against Poultry Parasites. Avian Dis. 2023, 67, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Kiess, A.; Adhikari, R.; Jha, R. An Approach to Alternative Strategies to Control Avian Coccidiosis and Necrotic Enteritis. J. Appl. Poult. Res. 2020, 29, 515–534. [Google Scholar] [CrossRef]
- Good, E.; Practice, C. Guidance for Industry Guidance for Industry. Fed. Regist. 2004, 505, 79. [Google Scholar]
- Cervantes, H.M.; McDougald, L.R. Raising Broiler Chickens without Ionophore Anticoccidials. J. Appl. Poult. Res. 2023, 32, 100347. [Google Scholar] [CrossRef]
- Martins, R.R.; Silva, L.J.G.; Pereira, A.M.P.T.; Esteves, A.; Duarte, S.C.; Pena, A. Coccidiostats and Poultry: A Comprehensive Review and Current Legislation. Foods 2022, 11, 2738. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.K.; Galloway, R.B.; White, S.L. Effect of Ionophores on Survival, Penetration, and Development of Eimeria tenella Sporozoites In Vitro. J. Parasitol. 1981, 67, 511–516. [Google Scholar] [CrossRef]
- Chapman, H.D. Biochemical, Genetic and Applied Aspects of Drug Resistance in Eimeria Parasites of the Fowl. Avian Pathol. 1997, 26, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Beach, J.R.; Corl, J.C. Studies in the Control of Avian Coccidiosis. Poult. Sci. 1925, 4, 83–93. [Google Scholar] [CrossRef]
- McDonald, V.; Shirley, M.W. Past and Future: Vaccination against Eimeria. Parasitology 2009, 136, 1477–1489. [Google Scholar] [CrossRef]
- Chapman, H.D.; Blake, D.P. Genetic Selection of Eimeria Parasites in the Chicken for Improvement of Poultry Health: Implications for Drug Resistance and Live Vaccine Development. Avian Pathol. 2022, 51, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Dalloul, R.A.; Lillehoj, H.S. Poultry Coccidiosis: Recent Advancements in Control Measures and Vaccine Development. Expert. Rev. Vaccines 2006, 5, 143–163. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.D.; Cherry, T.E.; Danforth, H.D.; Richards, G.; Shirley, M.W.; Williams, R.B. Sustainable Coccidiosis Control in Poultry Production: The Role of Live Vaccines. Int. J. Parasitol. 2002, 32, 617–629. [Google Scholar] [CrossRef]
- Sharman, P.A.; Smith, N.C.; Wallach, M.G.; Katrib, M. Chasing the Golden Egg: Vaccination against Poultry Coccidiosis. Parasite Immunol. 2010, 32, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Dalloul, R.A.; Lillehoj, H.S. Recent Advances in Immunomodulation and Vaccination Strategies against Coccidiosis. Avian Dis. 2005, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Bloomfield, S.A.; Ricke, S.C. Effects of Age, Vitamin D3, and Fructooligosaccharides on Bone Growth and Skeletal Integrity of Broiler Chicks. Poult. Sci. 2011, 90, 2425–2432. [Google Scholar] [CrossRef] [PubMed]
- White, D.; Chen, C.; Kim, W.K. Effect of the Combination of 25-Hydroxyvitamin D3 and Higher Level of Calcium and Phosphorus in the Diets on Bone 3D Structural Development in Pullets. Front. Physiol. 2023, 14, 1056481. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Turner, B.; Applegate, T.J.; Litta, G.; Kim, W.K. Role of Long-Term Supplementation of 25-Hydroxyvitamin D3 on Laying Hen Bone 3-Dimensional Structural Development. Poult. Sci. 2020, 99, 5771–5782. [Google Scholar] [CrossRef] [PubMed]
- Fritts, C.A.; Waldroup, P.W. Effect of Source and Level of Vitamin D on Live Performance and Bone Development in Growing Broilers. J. Appl. Poult. Res. 2003, 12, 45–52. [Google Scholar] [CrossRef]
- Oikeh, I.; Sakkas, P.; Blake, D.P.; Kyriazakis, I. Interactions between Dietary Calcium and Phosphorus Level, and Vitamin D Source on Bone Mineralization, Performance, and Intestinal Morphology of Coccidia-Infected Broilers. Poult. Sci. 2019, 98, 5679–5690. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, P.; Oikeh, I.; Blake, D.P.; Smith, S.; Kyriazakis, I. Dietary Vitamin D Improves Performance and Bone Mineralisation, but Increases Parasite Replication and Compromises Gut Health in Eimeria-Infected Broilers. Br. J. Nutr. 2019, 122, 676–688. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Shanmugasundaram, R.; McDonald, J.; Selvaraj, R.K. Effect of In Vitro and In Vivo 25-Hydroxyvitamin D Treatment on Macrophages, T Cells, and Layer Chickens during a Coccidia Challenge. J. Anim. Sci. 2015, 93, 2894–2903. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, H.M.A.; Kvietys, P.R.; AlKattan, W.; Al Anouti, F.; Elahi, M.A.; Karras, S.N.; Grant, W.B. Vitamin D and Intestinal Homeostasis: Barrier, Microbiota, and Immune Modulation. J. Steroid Biochem. Mol. Biol. 2020, 200, 105663. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.W.; Christakos, S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol. Metab. Clin. N. Am. 2017, 46, 815. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Selvaraj, R.K. In Vitro 25-Hydroxycholecalciferol Treatment of Lipopolysaccharide-Stimulated Chicken Macrophages Increases Nitric Oxide Production and MRNA of Interleukin-1beta and 10. Vet. Immunol. Immunopathol. 2014, 161, 265–270. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Morris, A.; Selvaraj, R.K. Effect of 25-Hydroxycholecalciferol Supplementation on Turkey Performance and Immune Cell Parameters in a Coccidial Infection Model. Poult. Sci. 2019, 98, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Upadhaya, S.D.; Cho, S.H.; Chung, T.K.; Kim, I.H. Anti-Coccidial Effect of Essential Oil Blends and Vitamin D on Broiler Chickens Vaccinated with Purified Mixture of Coccidian Oocyst from Eimeria tenella and Eimeria maxima. Poult. Sci. 2019, 98, 2919–2926. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Jimenez, H.; Gardner, K.; Al-Jumaa, Y.; Padgett, J.C.; Bailey, C.A. Partial Replacement of Dietary Cholecalciferol with 25-Hydroxycholecalciferol on Broiler Chickens Subjected to a Coccidiosis Vaccine Challenge. J. Appl. Poult. Res. 2019, 28, 743–754. [Google Scholar] [CrossRef]
- Suarez, J.C.; Knape, K.; Ali, N.A.; Aljuboori, J.; Al-Alwani, T.; Gutierrez, O.; Carey, J.B. Dietary Supplementation of 25-Hydroxycholecalciferol and Its Impact on Performance, Intestinal Morphology, and Vitamin D Status in Broilers Subjected to Coccidiosis Vaccine. J. Appl. Poult. Res. 2023, 32, 100360. [Google Scholar] [CrossRef]
- Lopes, T.S.B.; Shi, H.; White, D.; Araújo, I.C.S.; Kim, W.K. Effects of 25-Hydroxycholecalciferol on Performance, Gut Health, and Bone Quality of Broilers Fed with Reduced Calcium and Phosphorus Diet during Eimeria Challenge. Poult. Sci. 2024, 103, 103267. [Google Scholar] [CrossRef] [PubMed]
- Grzesiak, M. Vitamin D3 Action within the Ovary—An Updated Review. Physiol. Res. 2020, 69, 371. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wolf, S.; Green, O.; Xu, J. Vitamin D in Follicular Development and Oocyte Maturation. Reproduction 2021, 161, R129–R137. [Google Scholar] [CrossRef] [PubMed]
- Ruschkowski, S.R.; Hart, L.E. Ionic and Endocrine Characteristics of Reproductive Failure in Calcium-Deficient and Vitamin D-Deficient Laying Hens. Poult. Sci. 1992, 71, 1722–1732. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, X.; Zeng, Q.; Bai, S.; Zhang, K.; Mao, X.; Xu, S.; Zhuo, Y.; Xuan, Y.; Peng, H.; et al. Dietary 25-Hydroxyvitamin D Improves Productive Performance and Intestinal Health of Laying Hens under Escherichia Coli Lipopolysaccharide Challenge. Poult. Sci. 2023, 102, 102371. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Ma, Q.; Wang, Z.; Guo, Y. Dietary Vitamin D3 Supplementation Protects Laying Hens against Lipopolysaccharide-Induced Immunological Stress. Nutr. Metab. 2018, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; Liu, G.; White, D.L.; Tompkins, Y.H.; Kim, W.K. Graded Levels of Eimeria Challenge Altered the Microstructural Architecture and Reduced the Cortical Bone Growth of Femur of Hy-Line W-36 Pullets at Early Stage of Growth (0–6 Wk of Age). Poult. Sci. 2023, 102, 102888. [Google Scholar] [CrossRef] [PubMed]
- Konjufca, V.K.; Bottje, W.G.; Bersi, T.K.; Erf, G.F. Influence of Dietary Vitamin E on Phagocytic Functions of Macrophages in Broilers. Poult. Sci. 2004, 83, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.C.; Fetterer, R.H. Interaction of Dietary Vitamin E with Eimeria maxima Infections in Chickens. Poult. Sci. 2002, 81, 41–48. [Google Scholar] [CrossRef]
- Fu, Z.; Zhong, T.; Wan, X.; Xu, L.; Yang, H.; Han, H.; Wang, Z.; Fu, Z.; Zhong, T.; Wan, X.; et al. Effects of Dietary Vitamin E Supplementation on Reproductive Performance, Egg Characteristics, Antioxidant Capacity, and Immune Status in Breeding Geese during the Late Laying Period. Antioxidants 2022, 11, 2070. [Google Scholar] [CrossRef] [PubMed]
- Tappel, A.L. Vitamin E and free radical peroxidation of lipids. Ann. N. Y. Acad. Sci. 1972, 203, 12–28. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Lin, H.; Wang, X.J.; Song, Z.G.; Jiao, H.C. Vitamin E Supplementation Alleviates the Oxidative Stress Induced by Dexamethasone Treatment and Improves Meat Quality in Broiler Chickens. Poult. Sci. 2010, 89, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Atkinson, J. Vitamin E, Antioxidant and Nothing More. Free Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Colnago, G.L.; Jensen, L.S.; Long, P.L. Effect of Selenium and Vitamin E on the Development of Immunity to Coccidiosis in Chickens. Poult. Sci. 1984, 63, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamadani, A.A.; Al-Dhanki, Z.T.M. Effect of Locally Produced Dual Virulent Coccidian Vaccine and Supplementation of Vitamin A and E on Performance, Some Physiological Traits, Protein and Fat Digestibility of Broiler. Al-Anbar J. Vet. Sci. 2013, 6, 80–95. [Google Scholar]
- Perez-Carbajal, C.; Caldwell, D.; Farnell, M.; Stringfellow, K.; Pohl, S.; Casco, G.; Pro-Martinez, A.; Ruiz-Feria, C.A. Immune Response of Broiler Chickens Fed Different Levels of Arginine and Vitamin E to a Coccidiosis Vaccine and Eimeria Challenge. Poult. Sci. 2010, 89, 1870–1877. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Zhao, L.H.; Mosenthin, R.; Zhang, J.Y.; Ji, C.; Ma, Q.G. Protective Effect of Vitamin E on Laying Performance, Antioxidant Capacity, and Immunity in Laying Hens Challenged with Salmonella Enteritidis. Poult. Sci. 2019, 98, 5847–5854. [Google Scholar] [CrossRef] [PubMed]
- da Silva, I.C.M.; Ribeiro, A.M.L.; Canal, C.W.; Vieira, M.M.; Pinheiro, C.C.; Gonçalves, T.; de Moraes, M.L.; Ledur, V.S. Effect of Vitamin E Levels on the Cell-Mediated Immunity of Broilers Vaccinated against Coccidiosis. Braz. J. Poult. Sci. 2011, 13, 53–56. [Google Scholar] [CrossRef]
- Jafari, R.A. Effect of Dietary Vitamin E on Eimeria tenella-Induced Oxidative Stress in Broiler Chickens. Afr. J. Biotechnol. 2012, 11. [Google Scholar]
- Dominguez, P.A.; Pro-Martinez, A.; Narciso-Gaytán, C.; Hernández-Cázares, A.; Sosa-Montes, E.; Perez-Hernandez, P.; Caldwell, D.; Ruiz-Feria, C.A. Supplémentation Simultanée En Arginine et En Vitamines E et c Antioxydantes Réduit Le Stress Oxydatif Chez Les Poulets à Griller Après Exposition à Eimeria spp. Can. J. Anim. Sci. 2015, 95, 143–153. [Google Scholar] [CrossRef]
- Dalloul, R.A.; Lillehoj, H.S.; Shellem, T.A.; Doerr, J.A. Effect of Vitamin A Deficiency on Host Intestinal Immune Response to Eimeria acervulina in Broiler Chickens. Poult. Sci. 2002, 81, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Stephensen, C.B. Vitamin A, infection, and immune function*. Annu. Rev. Nutr. 2003, 21, 167–192. [Google Scholar] [CrossRef] [PubMed]
- Green, A.S.; Fascetti, A.J. Meeting the Vitamin A Requirement: The Efficacy and Importance of β-Carotene in Animal Species. Sci. World J. 2016, 2016, 7393620. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.W.; Russell, W.C. The Provitamin A Requirement of Growing Chickens. Poult. Sci. 1947, 26, 234–242. [Google Scholar] [CrossRef]
- Erasmus, J.; Scott, M.L.; Levine, P.P. A Relationship Between Coccidiosis and Vitamin A Nutrition in Chickens. Poult. Sci. 1960, 39, 565–572. [Google Scholar] [CrossRef]
- Panda, B.; Combs, G.F.; Devolt, H.M. Studies on Coccidiosis and Vitamin A Nutrition of Broilers 1. Poult. Sci. 1964, 43, 154–164. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Niu, J.; Zhang, Y.; Li, C.; Zhang, Z.; Guo, S.; Ding, B. Effects of Dietary Supplementation with Vitamin A on Antioxidant and Intestinal Barrier Function of Broilers Co-Infected with Coccidia and Clostridium Perfringens. Animals 2022, 12, 3431. [Google Scholar] [CrossRef] [PubMed]
- Boyera, N.; Galey, I.; Bernard, B.A. Effect of Vitamin C and Its Derivatives on Collagen Synthesis and Cross-Linking by Normal Human Fibroblasts. Int. J. Cosmet. Sci. 1998, 20, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- McKee, J.S.; Harrison, P.C. Effects of Supplemental Ascorbic Acid on the Performance of Broiler Chickens Exposed to Multiple Concurrent Stressors. Poult. Sci. 1995, 74, 1772–1785. [Google Scholar] [CrossRef]
- Little, P.L.; Edgar, S.A. The Effect of Vitamin C on Performance of Coccidia Infected Chickens Fed Omplete and Vitamin Deficient Semi-Purified Diets. Poult. Sci. 1971, 50, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Hutsko, S.; Wick, M.; Bielke, L.; Selvaraj, R. The Effects of an Anti-Coccidial Vaccination in Conjunction with Supplemental Protease, Vitamin C and Differing Levels of Dietary Protein on the Production and Gut. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2017. [Google Scholar]
- Stephens, J.F.; Tugwell, R.L. Sources and Levels of Vitamin K in Relation to Cecal Coccidiosis. Poult. Sci. 1960, 39, 1183–1187. [Google Scholar] [CrossRef]
- Liu, G.; Kim, W.K. The Functional Roles of Methionine and Arginine in Intestinal and Bone Health of Poultry: Review. Animals 2023, 13, 2949. [Google Scholar] [CrossRef] [PubMed]
- de Souza Castro, F.L.; Kim, W.K. Secondary Functions of Arginine and Sulfur Amino Acids in Poultry Health: Review. Animals 2020, 10, 2106. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.T.; Rochell, S.J.; Kriseldi, R.; Kim, W.K.; Mitchell, R.D. Functional Properties of Amino Acids: Improve Health Status and Sustainability. Poult. Sci. 2023, 102, 102288. [Google Scholar] [CrossRef] [PubMed]
- Rochell, S.J.; Helmbrecht, A.; Parsons, C.M.; Dilger, R.N. Interactive Effects of Dietary Arginine and Eimeria acervulina Infection on Broiler Growth Performance and Metabolism. Poult. Sci. 2017, 96, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Albina, J.E.; Abate, J.A.; Mastrofrancesco, B. Role of Ornithine as a Proline Precursor in Healing Wounds. J. Surg. Res. 1993, 55, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Stechmiller, J.K.; Childress, B.; Cowan, L. Arginine Supplementation and Wound Healing. Nutr. Clin. Pract. 2005, 20, 52–61. [Google Scholar] [CrossRef]
- Allen, P.C.; Fetterer, R.H. Effect of Eimeria acervulina Infections on Plasma L-Arginine. Poult. Sci. 2000, 79, 1414–1417. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.C. Effects of Daily Oral Doses of L-Arginine on Coccidiosis Infections in Chickens. Poult. Sci. 1999, 78, 1506–1509. [Google Scholar] [CrossRef]
- Tan, J.; Applegate, T.J.; Liu, S.; Guo, Y.; Eicher, S.D. Supplemental Dietary L-Arginine Attenuates Intestinal Mucosal Disruption during a Coccidial Vaccine Challenge in Broiler Chickens. Br. J. Nutr. 2014, 112, 1098–1109. [Google Scholar] [CrossRef] [PubMed]
- Laika, M.; Jahanian, R. Increase in Dietary Arginine Level Could Ameliorate Detrimental Impacts of Coccidial Infection in Broiler Chickens. Livest. Sci. 2016, 195, 38–44. [Google Scholar] [CrossRef]
- Castro, F.L.S.; Teng, P.Y.; Yadav, S.; Gould, R.L.; Craig, S.; Pazdro, R.; Kim, W.K. The Effects of L-Arginine Supplementation on Growth Performance and Intestinal Health of Broiler Chickens Challenged with Eimeria spp. Poult. Sci. 2020, 99, 5844–5857. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ajao, A.M.; Shanmugasundaram, R.; Taylor, J.; Ball, E.; Applegate, T.J.; Selvaraj, R.; Kyriazakis, I.; Olukosi, O.A.; Kim, W.K. The Effects of Arginine and Branched-Chain Amino Acid Supplementation to Reduced-Protein Diet on Intestinal Health, Cecal Short-Chain Fatty Acid Profiles, and Immune Response in Broiler Chickens Challenged with Eimeria spp. Poult. Sci. 2023, 102, 102773. [Google Scholar] [CrossRef]
- Yazdanabadi, F.I.; Moghaddam, G.H.; Nematollahi, A.; Daghighkia, H.; Sarir, H. Effect of Arginine Supplementation on Growth Performance, Lipid Profile, and Inflammatory Responses of Broiler Chicks Challenged with Coccidiosis. Prev. Vet. Med. 2020, 180, 105031. [Google Scholar] [CrossRef] [PubMed]
- Yazdanabadi, F.I.; Mohebalian, H.; Moghaddam, G.; Abbasabadi, M.; Sarir, H.; Vashan, S.J.H.; Haghparast, A. Influence of Eimeria Spp. Infection and Dietary Inclusion of Arginine on Intestine Histological Parameters, Serum Amino Acid Profile and Ileal Amino Acids Digestibility in Broiler Chicks. Vet. Parasitol. 2020, 286, 109241. [Google Scholar] [CrossRef]
- Izadi, F.; Moghaddam, G.; Nematollahi, A.; Khodadmehr, M.; Abbasabadi, M. The Effects of Different Levels of Arginine on Cecum Microbial Population and Serum Antioxidant Properties of Healthy and Coccidia-Challenged Broiler Chicks. Vet. Clin. Pathol. 2020, 14, 127–145. [Google Scholar]
- Tan, J.; Liu, S.; Guo, Y.; Applegate, T.J.; Eicher, S.D. Dietary L-Arginine Supplementation Attenuates Lipopolysaccharide-Induced Inflammatory Response in Broiler Chickens. Br. J. Nutr. 2014, 111, 1394–1404. [Google Scholar] [CrossRef]
- Manwar, S.J.; Moudgal, R.P.; Sastry, K.V.H.; Tyagi, I.S.; Saxena, Y.K. Nitric Oxide Regulating Immune Functions in Egg Type Japanese Quail. Indian J. Poult. Sci. 2003, 38, 133–136. [Google Scholar]
- Basiouni, G.F. The Effect of Feeding an Extra Amounts of Arginine to Local Saudi Hens on Luteinizing Hormone Secretion. J. Biol. Sci. 2009, 9, 617–620. [Google Scholar] [CrossRef]
- Uyanga, V.A.; Xin, Q.; Sun, M.; Zhao, J.; Wang, X.; Jiao, H.; Onagbesan, O.M.; Lin, H. Research Note: Effects of Dietary L-Arginine on the Production Performance and Gene Expression of Reproductive Hormones in Laying Hens Fed Low Crude Protein Diets. Poult. Sci. 2022, 101, 101816. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, J.; Nakashima, N. Methionine-Independent Initiation of Translation in the Capsid Protein of an Insect RNA Virus. Proc. Natl. Acad. Sci. USA 2000, 97, 1512–1515. [Google Scholar] [CrossRef] [PubMed]
- Swennen, Q.; Geraert, P.A.; Mercier, Y.; Everaert, N.; Stinckens, A.; Willemsen, H.; Li, Y.; Decuypere, E.; Buyse, J. Effects of Dietary Protein Content and 2-Hydroxy-4-Methylthiobutanoic Acid or Dl-Methionine Supplementation on Performance and Oxidative Status of Broiler Chickens. Br. J. Nutr. 2011, 106, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Pourali, M.; Kermanshahi, H.; Golian, A.; Razmi, G.R.; Soukhtanloo, M. Antioxidant and Anticoccidial Effects of Garlic Powder and Sulfur Amino Acids on Eimeria-Infected and Uninfected Broiler Chickens. J. Biol. Sci. 2014, 15, 227–232. [Google Scholar]
- Lai, A.; Dong, G.; Song, D.; Yang, T.; Zhang, X. Responses to Dietary Levels of Methionine in Broilers Medicated or Vaccinated against Coccidia under Eimeria tenella-Challenged Condition. BMC Vet. Res. 2018, 14, 140. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.; Yuan, Z.; Wang, Z.; Chen, B.; Zhi, L.; Huang, Z.; Zhang, Y.; Lai, A.; Yuan, Z.; Wang, Z.; et al. Dietary Methionine Increased the Growth Performances and Immune Function of Partridge Shank Broilers after Challenged with Coccidia. Animals 2023, 13, 613. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.L.S.; Tompkins, Y.H.; Pazdro, R.; Kim, W.K. The Effects of Total Sulfur Amino Acids on the Intestinal Health Status of Broilers Challenged with Eimeria spp. Poult. Sci. 2020, 99, 5027–5036. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Bütz, D.E.; Whelan, R.; Naranjo, V.; Arendt, M.K.; Ramuta, M.D.; Yang, X.; Crenshaw, T.D.; Cook, M.E. Effects of Dietary Methionine plus Cysteine Levels on Growth Performance and Intestinal Antibody Production in Broilers during Eimeria Challenge. Poult. Sci. 2020, 99, 374–384. [Google Scholar] [CrossRef]
- Castro, F.L.S.; Kim, Y.; Xu, H.; Kim, W.K. The Effect of Total Sulfur Amino Acid Levels on Growth Performance and Bone Metabolism in Pullets under Heat Stress. Poult. Sci. 2020, 99, 5783–5791. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.C.; Jiang, Z.M.; Li, D.M. Glutamine: A Precursor of Glutathione and Its Effect on Liver. World J. Gastroenterol. 1999, 5, 143. [Google Scholar] [CrossRef] [PubMed]
- Oxford, J.H.; Selvaraj, R.K. Effects of Glutamine Supplementation on Broiler Performance and Intestinal Immune Parameters During an Experimental Coccidiosis Infection. J. Appl. Poult. Res. 2019, 28, 1279–1287. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Rochell, S.J.; Applegate, T.J. Threonine, Arginine, and Glutamine: Influences on Intestinal Physiology, Immunology, and Microbiology in Broilers. Poult. Sci. 2018, 97, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Adedokun, S.A.; Ajuwon, K.M.; Romero, L.F.; Adeola, O. Ileal Endogenous Amino Acid Losses: Response of Broiler Chickens to Fiber and Mild Coccidial Vaccine Challenge. Poult. Sci. 2012, 91, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Mehdipour, Z.; Golian, A.; Nassiri-Moghadam, H.; Javadmanesh, A. Effect of Threonine Supplementation on Growth Performance, Metabolizable Energy, Morphological Changes and Immune Response in Broiler Chickens Challenged with Coccidia. Poult. Sci. J. 2020, 8, 95–107. [Google Scholar]
- Zhang, Q.; Chen, X.; Eicher, S.D.; Ajuwon, K.M.; Applegate, T.J. Effect of Threonine Deficiency on Intestinal Integrity and Immune Response to Feed Withdrawal Combined with Coccidial Vaccine Challenge in Broiler Chicks. Br. J. Nutr. 2016, 116, 2030–2043. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.Y.; Choi, J.; Yadav, S.; Tompkins, Y.H.; Kim, W.K. Effects of Low-Crude Protein Diets Supplemented with Arginine, Glutamine, Threonine, and Methionine on Regulating Nutrient Absorption, Intestinal Health, and Growth Performance of Eimeria-Infected Chickens. Poult. Sci. 2021, 100, 101427. [Google Scholar] [CrossRef] [PubMed]
- Wils-Plotz, E.L.; Jenkins, M.C.; Dilger, R.N. Modulation of the Intestinal Environment, Innate Immune Response, and Barrier Function by Dietary Threonine and Purified Fiber during a Coccidiosis Challenge in Broiler Chicks. Poult. Sci. 2013, 92, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Applegate, T.J.; Klose, V.; Steiner, T.; Ganner, A.; Schatzmayr, G. Probiotics and Phytogenics for Poultry: Myth or Reality? J. Appl. Poult. Res. 2010, 19, 194–210. [Google Scholar] [CrossRef]
- Mohammadi Gheisar, M.; Kim, I.H. Phytobiotics in Poultry and Swine Nutrition–a Review. Ital. J. Anim. Sci. 2018, 17, 92–99. [Google Scholar] [CrossRef]
- Bozkurt, M.; Ege, G.; Aysul, N.; Akşit, H.; Tüzün, A.E.; Küçükyllmaz, K.; Borum, A.E.; Uygun, M.; Akşit, D.; Aypak, S.; et al. Effect of Anticoccidial Monensin with Oregano Essential Oil on Broilers Experimentally Challenged with Mixed Eimeria spp. Poult. Sci. 2016, 95, 1858–1868. [Google Scholar] [CrossRef]
- Mohiti-Asli, M.; Ghanaatparast-Rashti, M. Dietary Oregano Essential Oil Alleviates Experimentally Induced Coccidiosis in Broilers. Prev. Vet. Med. 2015, 120, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Gordillo Jaramillo, F.X.; Kim, D.H.; Lee, S.H.; Kwon, S.K.; Jha, R.; Lee, K.W. Role of Oregano and Citrus Species-Based Essential Oil Preparation for the Control of Coccidiosis in Broiler Chickens. J. Anim. Sci. Biotechnol. 2021, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Felici, M.; Tugnoli, B.; De Hoest-Thompson, C.; Piva, A.; Grilli, E.; Marugan-Hernandez, V. Thyme, Oregano, and Garlic Essential Oils and Their Main Active Compounds Influence Eimeria tenella Intracellular Development. Animals 2023, 14, 77. [Google Scholar] [CrossRef]
- Golenser, J.; Waknine, J.H.; Krugliak, M.; Hunt, N.H.; Grau, G.E. Current Perspectives on the Mechanism of Action of Artemisinins. Int. J. Parasitol. 2006, 36, 1427–1441. [Google Scholar] [CrossRef]
- Meshnick, S.R. Artemisinin: Mechanisms of Action, Resistance and Toxicity. Int. J. Parasitol. 2002, 32, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.C.; Lydon, J.; Danforth, H.D. Effects of Components of Artemisia annua on Coccidia Infections in Chickens. Poult. Sci. 1997, 76, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Del Cacho, E.; Gallego, M.; Francesch, M.; Quílez, J.; Sánchez-Acedo, C. Effect of Artemisinin on Oocyst Wall Formation and Sporulation during Eimeria tenella Infection. Parasitol. Int. 2010, 59, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Drǎgan, L.; Györke, A.; Ferreira, J.F.S.; Pop, I.A.; Dunca, I.; Drǎgan, M.; Mircean, V.; Dan, I.; Cozma, V. Effects of Artemisia annua and Foeniculum vulgare on Chickens Highly Infected with Eimeria tenella (Phylum Apicomplexa). Acta Vet. Scand. 2014, 56, 22. [Google Scholar] [CrossRef]
- Jiao, J.Y.; Yang, Y.Q.; Liu, M.J.; Li, J.G.; Cui, Y.; Yin, S.J.; Tao, J.P. Artemisinin and Artemisia Annua Leaves Alleviate Eimeria tenella Infection by Facilitating Apoptosis of Host Cells and Suppressing Inflammatory Response. Vet. Parasitol. 2018, 254, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Hady, M.M.; Zaki, M.M. Efficacy of Some Herbal Feed Additives on Performance and Control of Cecal Coccidiosis in Broilers. APCBEE Procedia 2012, 4, 163–168. [Google Scholar] [CrossRef]
- Kaboutari, J.; Arab, H.A.; Ebrahimi, K.; Rahbari, S. Prophylactic and Therapeutic Effects of a Novel Granulated Formulation of Artemisia Extract on Broiler Coccidiosis. Trop. Anim. Health Prod. 2014, 46, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Arab, H.A.; Katadj, J.K.; Rahbari, S.; Nabian, S.; Mohammadi, A.R.S.; Pirali-Kheirabadi, K. Comparison between Anticoccidial Effect of Granulated Artemisia Siberi Extract and Pure Artemisinin in Affected Broilers. J. Vet. Res. 2012, 67, 119–125. [Google Scholar]
- Song, Z.; Cheng, K.; Zhang, L.; Wang, T. Dietary Supplementation of Enzymatically Treated Artemisia Annua Could Alleviate the Intestinal Inflammatory Response in Heat-Stressed Broilers. J. Therm. Biol. 2017, 69, 184–190. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J.; Jiang, Y.; Xu, Y.Q.; Jin, X.; Yan, S.M.; Shi, B.L. Effects of Artemisia argyi Flavonoids on Growth Performance and Immune Function in Broilers Challenged with Lipopolysaccharide. Anim. Biosci. 2021, 34, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.L.; Niu, Y.; Zheng, X.C.; Huang, Q.; Su, W.P.; Zhang, J.F.; Zhang, L.L.; Wang, T. Antioxidant Capacities of Artemisia annua L. Leaves and Enzymatically Treated Artemisia annua L. in Vitro and in Broilers. Anim. Feed Sci. Technol. 2016, 221, 27–34. [Google Scholar] [CrossRef]
- Abdelli, N.; Solà-Oriol, D.; Pérez, J.F. Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges. Animals 2021, 11, 3471. [Google Scholar] [CrossRef] [PubMed]
- Aktaran Bala, D.; Matur, E.; Ergul Ekiz, E.; Akyazi, I.; Eraslan, E.; Ozcan, M.; Ergen, E.; Erek, M.; Gursel, F.E.; Eseceli, H.; et al. Effects of dietary thyme on immune cells, the antioxidant defence system, cytokine cascade, productive performance and egg quality in laying hens. J. Anim. Plant Sci. 2020, 31, 394–402. [Google Scholar]
- Mao, X.; Dou, Y.; Fan, X.; Yu, B.; He, J.; Zheng, P.; Yu, J.; Luo, J.; Luo, Y.; Yan, H.; et al. The Effect of Dietary Yucca schidigera Extract Supplementation on Productive Performance, Egg Quality, and Gut Health in Laying Hens with Clostridium Perfringens and Coccidia Challenge. Poult. Sci. 2023, 102, 102822. [Google Scholar] [CrossRef] [PubMed]
- Laptev, G.Y.; Yildirim, E.A.; Ilina, L.A.; Filippova, V.A.; Kochish, I.I.; Gorfunkel, E.P.; Dubrovin, A.V.; Brazhnik, E.A.; Narushin, V.G.; Novikova, N.I.; et al. Effects of Essential Oils-Based Supplement and Salmonella Infection on Gene Expression, Blood Parameters, Cecal Microbiome, and Egg Production in Laying Hens. Animals 2021, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; Dinh, T.; Adhikari, P.A. Production Performance, Egg Quality, and Small Intestine Histomorphology of the Laying Hens Supplemented with Phytogenic Feed Additive. J. Appl. Poult. Res. 2020, 29, 362–371. [Google Scholar] [CrossRef]
- Sharma, M.K.; White, D.L.; Singh, A.K.; Liu, H.; Tan, Z.; Peng, X.; Kim, W.K. Effect of Dietary Supplementation of Probiotic Aspergillus Niger on Performance and Cecal Microbiota in Hy-Line W-36 Laying Hens. Animals 2022, 12, 2406. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, C.D.; Dittoe, D.K.; Wamsley, K.G.S.; McDaniel, C.D.; Blanch, A.; Sandvang, D.; Kiess, A.S. In Ovo Inoculation of an Enterococcus Faecium—Based Product to Enhance Broiler Hatchability, Live Performance, and Intestinal Morphology. Poult. Sci. 2020, 99, 6163–6172. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Lee, C.H.; Cosby, D.E.; Cox, N.A.; Kim, W.K. Effect of Probiotics on Fecal Excretion, Colonization in Internal Organs and Immune Gene Expression in the Ileum of Laying Hens Challenged with Salmonella enteritidis. Poult. Sci. 2019, 98, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.A.; Cosby, D.E.; Cox, N.A.; Lee, J.H.; Kim, W.K. Effect of Dietary Bacteriophage Supplementation on Internal Organs, Fecal Excretion, and Ileal Immune Response in Laying Hens Challenged by Salmonella enteritidis. Poult. Sci. 2017, 96, 3264–3271. [Google Scholar] [CrossRef]
- Markowiak, P.; Ślizewska, K. The Role of Probiotics, Prebiotics and Synbiotics in Animal Nutrition. Gut Pathog. 2018, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Mountzouris, K.C.; Tsitrsikos, P.; Palamidi, I.; Arvaniti, A.; Mohnl, M.; Schatzmayr, G.; Fegeros, K. Effects of Probiotic Inclusion Levels in Broiler Nutrition on Growth Performance, Nutrient Digestibility, Plasma Immunoglobulins, and Cecal Microflora Composition. Poult. Sci. 2010, 89, 58–67. [Google Scholar] [CrossRef]
- Kogut, M.H.; Lee, A.; Santin, E. Microbiome and Pathogen Interaction with the Immune System. Poult. Sci. 2020, 99, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Broom, L.J.; Kogut, M.H. The Role of the Gut Microbiome in Shaping the Immune System of Chickens. Vet. Immunol. Immunopathol. 2018, 204, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- Memon, F.U.; Yang, Y.; Zhang, G.; Leghari, I.H.; Lv, F.; Wang, Y.; Laghari, F.; Khushk, F.A.; Si, H. Chicken Gut Microbiota Responses to Dietary Bacillus subtilis Probiotic in the Presence and Absence of Eimeria Infection. Microorganisms 2022, 10, 1548. [Google Scholar] [CrossRef]
- Lee, K.W.; Lillehoj, H.S.; Jang, S.I.; Li, G.; Lee, S.H.; Lillehoj, E.P.; Siragusa, G.R. Effect of Bacillus-Based Direct-Fed Microbials on Eimeria maxima Infection in Broiler Chickens. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, e105–e110. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Lee, Y.; Goo, D.; Zimmerman, N.P.; Smith, A.H.; Rehberger, T.; Lillehoj, H.S. The Effects of Dietary Bacillus subtilis Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immunity, and Epithelial Barrier Integrity in Broiler Chickens Infected with Eimeria maxima. Poult. Sci. 2020, 99, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.A.; Lee, Y.; Lillehoj, H.S. Beneficial Effects of Dietary Supplementation of Bacillus Strains on Growth Performance and Gut Health in Chickens with Mixed Coccidiosis Infection. Vet. Parasitol. 2020, 277, 109009. [Google Scholar] [CrossRef] [PubMed]
- Awais, M.M.; Jamal, M.A.; Akhtar, M.; Hameed, M.R.; Anwar, M.I.; Ullah, M.I. Immunomodulatory and Ameliorative Effects of Lactobacillus and Saccharomyces Based Probiotics on Pathological Effects of Eimeriasis in Broilers. Microb. Pathog. 2019, 126, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zheng, L.; Qi, Y.; Liu, Z.; Du, E.; Wei, J.; Zhang, Z.; Guo, S.; Ding, B. Dietary Lactobacillus fermentum and Lactobacillus paracasei Improve the Intestinal Health of Broilers Challenged with Coccidia and Clostridium perfringens. Front. Vet. Sci. 2022, 9, 1025677. [Google Scholar] [CrossRef] [PubMed]
- Dalloul, R.A.; Lillehoj, H.S.; Shellem, T.A.; Doerr, J.A. Enhanced Mucosal Immunity against Eimeria acervulina in Broilers Fed a Lactobacillus-Based Probiotic. Poult. Sci. 2003, 82, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Xie, Q.M.; Ji, J.; Yang, W.H.; Wu, Y.B.; Li, C.; Ma, J.Y.; Bi, Y.Z. Different Combinations of Probiotics Improve the Production Performance, Egg Quality, and Immune Response of Layer Hens. Poult. Sci. 2012, 91, 2755–2760. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Wang, C.; Zhang, H.; Lai, W.; Wei, H.; Peng, J. Effects of Different Probiotics on Laying Performance, Egg Quality, Oxidative Status, and Gut Health in Laying Hens. Animals 2019, 9, 1110. [Google Scholar] [CrossRef]
- Connor Padgett, J.; Allen Byrd, J.; Bailey, C.; Thomas Price, P.; Anthony Bailey, C. Salmonella Enteritidis Control in Mature Laying Hens Through Dry Fed Parietal Yeast Fraction or Bacillus Blend Probiotic. Int. J. Anim. Sci. Technol. 2021, 5, 1–6. [Google Scholar] [CrossRef]
- Price, P.T.; Gaydos, T.A.; Berghaus, R.D.; Baxter, V.; Hofacre, C.L.; Sims, M.D. Salmonella Enteritidis Reduction in Layer Ceca with a Bacillus Probiotic. Vet. World 2020, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.A.; Burkholder, K.M. Application of Prebiotics and Probiotics in Poultry Production. Poult. Sci. 2003, 82, 627–631. [Google Scholar] [CrossRef]
- Adhikari, P.A.; Kim, W.K. Overview Of prebiotics and probiotics: Focus On performance, Gut Health and Immunity—A Review. Anim. Sci 2017, 17, 949–966. [Google Scholar] [CrossRef]
- Teng, P.Y.; Kim, W.K. Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers. Front. Vet. Sci. 2018, 5, 398676. [Google Scholar] [CrossRef]
- Teng, P.Y.; Adhikari, R.; Llamas-Moya, S.; Kim, W.K. Effects of Combination of Mannan-Oligosaccharides and β-Glucan on Growth Performance, Intestinal Morphology, and Immune Gene Expression in Broiler Chickens. Poult. Sci. 2021, 100, 101483. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Singh, A.K.; Selvaraj, R.K.; Applegate, T.J.; Bhattacharya, P.; Shinall, S.B.; Fenn, L.S.; Shanmugasundaram, R.; Kim, W.K. Research Note: Effect of Dietary Xylo-Oligosaccharide on Growth Performance, Intestinal Histomorphology, and Specific Cecal Bacteria in Broiler Chickens. Poult. Sci. 2024, 103, 103189. [Google Scholar] [CrossRef]
- Faber, T.A.; Dilger, R.N.; Hopkins, A.C.; Price, N.P.; Fahey, J.C. The Effects of a Galactoglucomannan Oligosaccharide-Arabinoxylan (GGMO-AX) Complex in Broiler Chicks Challenged with Eimeria acervulina. Poult. Sci. 2012, 91, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.; Yitbarek, A.; Snyder, R.; Patterson, R.; Barta, J.R.; Karrow, N.; Kiarie, E. Responses of Broiler Chickens to Eimeria Challenge When Fed a Nucleotide-Rich Yeast Extract. Poult. Sci. 2019, 98, 1622–1633. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Teng, P.Y.; Olukosi, O.A. The Effects of Xylo-Oligosaccharides on Regulating Growth Performance, Nutrient Utilization, Gene Expression of Tight Junctions, Nutrient Transporters, and Cecal Short Chain Fatty Acids Profile in Eimeria-Challenged Broiler Chickens. Poult. Sci. 2022, 101, 102125. [Google Scholar] [CrossRef] [PubMed]
- Baurhoo, B.; Ferket, P.R.; Zhao, X. Effects of Diets Containing Different Concentrations of Mannanoligosaccharide or Antibiotics on Growth Performance, Intestinal Development, Cecal and Litter Microbial Populations, and Carcass Parameters of Broilers. Poult. Sci. 2009, 88, 2262–2272. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, F.; Hinton, M.; Van Gils, B. Dietary Mannan-Oligosaccharides and Their Effect on Chicken Caecal Microflora in Relation to Salmonella Enteritidis Colonization. Avian Pathol. 2002, 31, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Osho, S.O.; Adeola, O. Impact of Dietary Chitosan Oligosaccharide and Its Effects on Coccidia Challenge in Broiler Chickens. Br. Poult. Sci. 2019, 60, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Chand, N.; Faheem, H.; Khan, R.U.; Qureshi, M.S.; Alhidary, I.A.; Abudabos, A.M. Anticoccidial Effect of Mananoligosacharide against Experimentally Induced Coccidiosis in Broiler. Environ. Sci. Pollut. Res. 2016, 23, 14414–14421. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Quiroga, C.; Borda-Molina, D.; Chaves-Moreno, D.; Ruiz, R.; Atxaerandio, R.; Camarinha-Silva, A.; García-Rodríguez, A. Microbial and Functional Profile of the Ceca from Laying Hens Affected by Feeding Prebiotics, Probiotics, and Synbiotics. Microorganisms 2019, 7, 123. [Google Scholar] [CrossRef]
- Ghasemian, M.; Jahanian, R. Dietary Mannan-Oligosaccharides Supplementation Could Affect Performance, Immunocompetence, Serum Lipid Metabolites, Intestinal Bacterial Populations, and Ileal Nutrient Digestibility in Aged Laying Hens. Anim. Feed Sci. Technol. 2016, 213, 81–89. [Google Scholar] [CrossRef]
- Adhikari, P.; Cosby, D.E.; Cox, N.A.; Franca, M.S.; Williams, S.M.; Gogal, R.M.; Ritz, C.W.; Kim, W.K. Effect of Dietary Fructooligosaccharide Supplementation on Internal Organs Salmonella Colonization, Immune Response, Ileal Morphology, and Ileal Immunohistochemistry in Laying Hens Challenged with Salmonella Enteritidis. Poult. Sci. 2018, 97, 2525–2533. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Chalorsuntisakul, S.; Sirithunyalug, J.; Chaiyasuta, C.; Aengwanich, W.; Pewnim, T. Effect of Synbiotics on Caecal Morphology and Lesion Score in Broilers Infected with Eimeria tenella. Avian Biol. Res. 2010, 3, 187–190. [Google Scholar] [CrossRef]
- Duff, A.F.; Briggs, W.N.; Chasser, K.M.; Lilburn, M.S.; Syed, B.; Ramirez, S.; Murugesan, R.; Pender, C.; Bielke, L.R. Effect of Dietary Synbiotic Supplementation on Performance Parameters in Turkey Poults Administered a Mixed Eimeria Species Inoculation I. Poult. Sci. 2020, 99, 4235–4241. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Markazi, A.; Mortada, M.; Ng, T.T.; Applegate, T.J.; Bielke, L.R.; Syed, B.; Pender, C.M.; Curry, S.; Murugesan, G.R.; et al. Research Note: Effect of Synbiotic Supplementation on Caecal Clostridium perfringens Load in Broiler Chickens with Different Necrotic Enteritis Challenge Models. Poult. Sci. 2020, 99, 2452–2458. [Google Scholar] [CrossRef]
- White, M.B. In Ovo and Feed Application of Probiotics or Synbiotics and Response of Broiler Chicks to Post-Hatch Necrotic Enteritis Academic Abstract. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2021. [Google Scholar]
- Ghasemi, H.A.; Shivazad, M.; Esmaeilnia, K.; Kohram, H.; Karimi, M.A. The Effects of a Synbiotic Containing Enterococcus Faecium and Inulin on Growth Performance and Resistance to Coccidiosis in Broiler Chickens. J. Poult. Sci. 2010, 47, 149–155. [Google Scholar] [CrossRef]
- Shah, B.R.; Hakeem, W.A.; Shanmugasundaram, R.; Selvaraj, R.K. Effect of Synbiotic Supplementation on Production Performance and Severity of Necrotic Enteritis in Broilers during an Experimental Necrotic Enteritis Challenge. Poult. Sci. 2023, 102, 102959. [Google Scholar] [CrossRef]
- Song, D.; Wang, W.; Chen, B.; Li, A.; Song, G.; Cheng, J.; Qiao, L.; Zhu, R.; Min, Y. Dietary Supplemental Synbiotic—Yucca Extract Compound Preparation Modulates Production Performance, Immune Status and Faecal Microflora Diversity in Laying Hens. Food Agric. Immunol. 2022, 33, 360–376. [Google Scholar] [CrossRef]
- Murate, L.S.; Paião, F.G.; de Almeida, A.M.; Berchieri, A.; Shimokomaki, M. Efficacy of Prebiotics, Probiotics, and Synbiotics on Laying Hens and Broilers Challenged with Salmonella Enteritidis. J. Poult. Sci. 2015, 52, 52–56. [Google Scholar] [CrossRef]
- Craig ID, A.D.; Khattak, F.; Hastie, P.; Bedford, M.R.; Olukosi, O.A. The Similarity of the Effect of Carbohydrase or Prebiotic Supplementation in Broilers Aged 21 Days, Fed Mixed Cereal Diets and Challenged with Coccidiosis Infection. PLoS ONE 2020, 15, e0229281. [Google Scholar] [CrossRef]
- Lin, Y.; Lourenco, J.M.; Olukosi, O.A. The Effects of Protease, Xylanase, and Xylo-Oligosaccharides on Growth Performance, Nutrient Utilization, Short-Chain Fatty Acids, and Microbiota in Eimeria-Challenged Broiler Chickens Fed Low-Protein Diet. Poult. Sci. 2023, 102, 102789. [Google Scholar] [CrossRef]
- M’Sadeq, S.A. Ameliorative Effect of Yeast Cell Walls on Broiler Chickens’ Performance and Gut Health under Coccidiosis Challenge. Czech J. Anim. Sci. 2023, 68, 346–355. [Google Scholar]
- Gelinas, A.; Sudan, S.; Patterson, R.; Li, J.; Huyben, D.; Barta, J.R.; Kiarie, E.G. Growth Performance, Organs Weight, Intestinal Histomorphology, and Oocyst Shedding in Broiler Chickens Offered Novel Single Strain Bacillus Subtilis Isolated from Camel Dung and Challenged with Eimeria. Poult. Sci. 2024, 103, 103519. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Ma, Y.; Chai, J.; Li, Z.; You, X.; Wang, X.; Huang, Y.; Shi, H. In Ovo Injection Dosage of Lactobacillus Rhamnosus on Intestinal Health and Microbial Composition of Yellow Broilers with or without Eimeria Challenge. J. Appl. Poult. Res. 2024, 33, 100411. [Google Scholar] [CrossRef]
- Park, I.; Goo, D.; Nam, H.; Wickramasuriya, S.S.; Lee, K.; Zimmerman, N.P.; Smith, A.H.; Rehberger, T.G.; Lillehoj, H.S. Effects of Dietary Maltol on Innate Immunity, Gut Health, and Growth Performance of Broiler Chickens Challenged with Eimeria maxima. Front. Vet. Sci. 2021, 8, 667425. [Google Scholar] [CrossRef] [PubMed]
- Reuben, R.C.; Sarkar, S.L.; Roy, P.C.; Anwar, A.; Hossain, M.A.; Jahid, I.K. Prebiotics, Probiotics and Postbiotics for Sustainable Poultry Production. Worlds Poult. Sci. J. 2021, 77, 825–882. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An Evolving Term within the Functional Foods Field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Humam, A.M.; Loh, T.C.; Foo, H.L.; Izuddin, W.I.; Awad, E.A.; Idrus, Z.; Samsudin, A.A.; Mustapha, N.M. Dietary Supplementation of Postbiotics Mitigates Adverse Impacts of Heat Stress on Antioxidant Enzyme Activity, Total Antioxidant, Lipid Peroxidation, Physiological Stress Indicators, Lipid Profile and Meat Quality in Broilers. Animals 2020, 10, 982. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.M.; Loh, T.C.; Foo, H.L.; Lim, E.T.C. Lactiplantibacillus Plantarum Postbiotics: Alternative of Antibiotic Growth Promoter to Ameliorate Gut Health in Broiler Chickens. Front. Vet. Sci. 2022, 9, 883324. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Ghany, W.A.; Abdel-Latif, M.A.; Hosny, F.; Alatfeehy, N.M.; Noreldin, A.E.; Quesnell, R.R.; Chapman, R.; Sakai, L.; Elbestawy, A.R. Comparative Efficacy of Postbiotic, Probiotic, and Antibiotic against Necrotic Enteritis in Broiler Chickens. Poult. Sci. 2022, 101, 101988. [Google Scholar] [CrossRef] [PubMed]
- Gingerich, E.; Frana, T.; Logue, C.M.; Smith, D.P.; Pavlidis, H.O.; Chaney, W.E. Effect of Feeding a Postbiotic Derived from Saccharomyces Cerevisiae Fermentation as a Preharvest Food Safety Hurdle for Reducing Salmonella Enteritidis in the Ceca of Layer Pullets. J. Food Prot. 2021, 84, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, G.C.; Mogollón-García, H.D.; de Moraes, A.C.I.; Dias, G.S.; de Brito Viana, G.; Milbradt, E.L.; Andreatti-Filho, R.L.; Okamoto, A.S. Research Note: The Effects of a Lactobacillus Helveticus ATCC 15009-Derived Postbiotic Mitigating Salmonella Gallinarum Colonization in Commercial Layer Chicks. Poult. Sci. 2023, 102, 103095. [Google Scholar] [CrossRef] [PubMed]
- Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A.; Mustapha, N.M.; Zulkifli, I.; Izuddin, W.I. Effects of Feeding Different Postbiotics Produced by Lactobacillus Plantarum on Growth Performance, Carcass Yield, Intestinal Morphology, Gut Microbiota Composition, Immune Status, and Growth Gene Expression in Broilers under Heat Stress. Animals 2019, 9, 644. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.N.; Kogut, M.H.; Genovese, K.; He, H.; Kazemi, S.; Arsenault, R.J. Administration of a Postbiotic Causes Immunomodulatory Responses in Broiler Gut and Reduces Disease Pathogenesis Following Challenge. Microorganisms 2019, 7, 268. [Google Scholar] [CrossRef] [PubMed]
Species | Pathogenicity | Predilection Site in the Intestine | Characteristic Lesions | Immunogenicity |
---|---|---|---|---|
E. mitis | Low | Mid-intestine (Meckel’s diverticulum to cecal junction) | Mucoid exudate and no distinct lesions | Moderate |
E. praecox | Low | Anterior intestine (duodenum) | Mucoid exudate and no distinct lesions | Moderate |
E. acervulina | Low to moderate | Anterior intestine (duodenum) | Whitish round lesions | Moderate |
E. maxima | Moderate to high | Mid-intestine (part of jejunum and ileum) | Petechiae hemorrhage and blood-tinged exudate | High |
E. brunetti | Moderate to high | Posterior intestine (Meckel’s diverticulum to cecal junction) | Blood clot and coagulated necrosis | High |
E. necatrix | High | Mid-intestine (part of jejunum and ileum) | Petechiae hemorrhage and blood-filled exudate | Low |
E. tenella | High | Ceca | Hemorrhagic lumen and blood clot | Low |
Trade Name | Eimeria Species Present in Vaccine | Vaccine Type | Route of Administration | Age of Birds at Vaccination | Manufacturer |
---|---|---|---|---|---|
Coccivac-D2 | E. acervulina, E. brunetti, E. maxima, E. mivati, E. necatrix, and E. tenella | Nonattenuated | Hatchery spray, ocular, drinking water, feed spray | Single dose at 1 to 4 d | Merck |
Immucox C | E. acervulina, E. brunetti, E. maxima, E. necatrix, E. tenella, and E. praecox | Nonattenuated | Drinking water, oral gel | Single dose 1 to 4 d | Ceva |
Paracox | E. acervulina, E. brunetti, E. maxima, E. mitis, E. necatrix, E. praecox, and E. tenella | Attenuated | Drinking water, feed spray | Single dose at 1 to 9 d | Merck |
Immunocox5 | E. acervulina, E. brunetti, E. maxima, E. necatrix, and E. tenella | Nonattenuated | Gel | Single dose 1 to 4 d | Ceva |
Nutritional Interventions | Breed | Eimeria Infection | Dosage | Impacts on Performance | Impact on Health | Reference |
---|---|---|---|---|---|---|
25-hydroxycholecalciferol | White Leghorn | E. acervulina, E. maxima, and E. tenella (Inovocox) | 4000 IU/kg | Improved performance | ● ↓ CD8+ cells. ● ↑ CD4+CD25+ cells. ● ↓ IL-1β expression. ● ↑ IL-10 expression. | [85] |
Vitamin D3 + 25-hydroxycholecalciferol | Cobb 700 | 7× live vaccine (E. acervulina, E. maxima, and E. tenella) | 2000–8000 IU/Kg | Improved BW, BWG, and FCR | ● ↑ Duodenal morphology. ● ↑ Tibia breaking strength. ● ↑ Tibial bone mineralization. | [91] |
Vitamin D3 or 25-hydroxycholecalciferol | Ross 308 | E. maxima (7000) | 4000 IU/Kg | Improved BW, BWG, and FCR | ● ↑ Bone breaking strength. ● ↑ Bone mineralization. ● ↓ Jejunal morphology. | [84] |
Vitamin D3 or 25-hydroxycholecalciferol | Ross 308 | E. maxima (7000) | 4000 IU/kg | No effect on performance | ● ↑ Bone breaking strength. ● ↑ Ash content and percentage. | [83] |
Vitamin D3 or 25-hydroxycholecalciferol | Cobb 500 | 2× live vaccine | 1375 or 2750 IU/kg | Improvement in BW and FCR | ● ↓ Intestinal morphology. ● ↑ Tibia breaking strength. ● ↑ Bone ash %. | [92] |
25-hydroxycholecalciferol | Cobb 500 | E. acervulina (62,500), E. tenella (12,500), and E. maxima (12,500) | 3000 IU/kg | No effect on performance | ● ↑ Bone ash. ● ↑ Bone mineral content of the birds. ● ↑ Tissue and bone volume of the femur. | [93] |
DL-alpha tocopheryl acetate | Hubbard | E. tenella (150,000) or E. maxima (50,000) | 100 IU/Kg | Improved BWG, FI, and FCR | ● ↓ Mortality. ● ↓ Lesion scores. ● ↑ Packed cell volume. | [106] |
DL-alpha tocopheryl acetate | Ross | E. maxima (175,000 or 40,000) | 13–200 ppm | No effect on performance | ● ↓ Lesion scores. ● ↑ Plasma NO. | [101] |
DL-alpha tocopheryl acetate | Cobb 500 | E. acervulina (100,000), E. maxima (60,000), and E. tenella (40,000): Coccivac-B | 40 or 80 IU/kg | - | ● ↑ Heterophil and monocyte oxidative burst. ● ↑ IgG, IgM, and IgA production. ● ↓ Lesion scores. | [108] |
D-α-tocopherol | Ross 308 | Livacox Q vaccination | 65 mg/kg | - | ● ↑ Cell-mediated immunity. | [110] |
D-α-tocopherol | Ross 308 | E. tenella | 100, 316, or 562 mg/kg | - | ● ↓ MDA concentration. | [111] |
D-α-tocopherol and L-ascorbic acid | Cobb 500 | 100× Advent vaccine | 80 mg/kg VE + 1 g/kg VC | Improved BWG | ● ↑ Nitric oxide production. ● ↑ GPx activity. ● ↓ Lesion scores. | [112] |
L-ascorbic acid | Vantress-White Plymouth Rock cross | E. maxima (30,000), E. brunetti (100,000), E. necatrix (30,000), or E. tenella (30,000) | 110 mg/kg | No effect on performance | ● Increased mortality. | [123] |
L-ascorbic acid | Hubbard | E. tenella (300,000) | 150 or 300 mg/kg | Improved BW, FI, and FCR | ● ↓ Plasma corticosterone. ● ↓ Heterophil/lymphocyte ratio. | [122] |
Vitamin A | Plymouth Rock | 8000 IU/lb | Improved BWG | ● ↑ Recovery. | [117] | |
Vitamin A | Ross 308 | E. acervlina (10,000) | VE deficiency | - | ● ↓ CD4+, CD8+ cells. ● ↑ Oocyst shedding. ● ↓ IFN-γ. ● ↓ Lymphocyte proliferation. | [113] |
Vitamin A | Broilers | E. maxima + Clostridium perfringens | 12,000 IU/kg | Improved BW, BWG, and FI | ● ↑ Intestinal morphology. ● ↑ Expression of tight junction proteins. | [119] |
Menadione sodium bisulfite | Lancaster X New Hampshire | E. tenella (500,000) | 1.06 or 9.72 g/ton | - | ● ↓ Mortality. | [125] |
AA | Breed | Eimeria Challenge | AA Dosage | Impact on Performance | Impact on Health | Reference |
---|---|---|---|---|---|---|
Arginine | SexSal | E. maxima (30,000), or E. tenella (50,000), or E. acervulina (500,000) | +500 or +1000 mg/kg | No effect on BWG | ● ↓ Oocyst shedding of E. tenella. | [108] |
Cobb 500 | E. acervulina (100,000), E. maxima (60,000), and E. tenella (40,000): Coccivac-B | Added 0.3% or 0.6% to make 1.74% and 2.04% (NRC, 1994) | ● ↑ Heterophil and monocyte oxidative burst. ● ↑ IgG, IgM. | [108] | ||
Ross 708 | 20× Coccivac-B | 106·4% and 160·8% of (NRC, 1994) | Improved BWG and FCR | ● ↑ Villus height and crypt depth. ● ↑ Goblet cell counts and density. ● ↓ Expression of TLR4, IL-1β. | [141] | |
Cobb 500 | 100× Advent coccidiosis vaccine | 1.80% (NRC 1994) | No effect on BWG | ● ↑ NO production. ● ↑ GPx activity. ● ↓ Intestinal lesions. | [135] | |
Ross 308 | E. acervulina (150,000), E. tenella (15,000), E. maxima (15,000), and E. necatrix (15,000) | 105 and 110% (breeder recommendation) | No effect on BWG or FCR | ● ↓ Crypt depth and oocyst shedding. | [135] | |
Ross 308 | E. acervulina (3.5 × 105) | Low arginine (0.74%) | Reduced BWG, FI, and FCR | ● ↓ Plasma Arg: Lys ratio. | [129] | |
High arginine (1.23%) | Improved BWG, FI, and FCR | ● ↑ Plasma Arg: Lys ratio. ● ↑ NO production. | ||||
Cobb 500 | E. acervulina (62,500), E. tenella (12,500), and E. maxima (12,500) | 100%, 108%, and 116% (breeder recommendation) | Improved BWG, FI, and FCR | ● ↓ Gut permeability. ● ↑ Tight junction proteins. ● ↑ VH and reduced CD. ● ↑ NO production. ● ↓ SOD activity. | [136] | |
Ross 308 | E. necatrix (15,000), E. maxima (20,000), E. acervulina (15,000), and E. tenella (170,000) | 125 and 150% (breeder recommendation) | Improved BWG, FI, and FCR | ● ↓ IL-1β, IL-2, IL-6, IFN-γ, and TNF-α. ● ↑ NO production. ● ↓ Oocyst count. | [139] | |
Cobb 500 | E. acervulina (62,500), E. tenella (12,500), and E. maxima (12,500) | 16% CP plus 0.75% ARG | No effect on performance | ● ↓ Gut permeability. ● ↑ VH and AA digestibility. | [159] | |
Cobb 500 | E. acervulina (62,500), E. tenella (12,500), and E. maxima (12,500) | 150% (breeder recommendatio) | ● ↓ Gut permeability. ● ↑ Tight junction proteins. ● ↓CD8+:CD4+. ● ↑ NO production. | [140] | ||
TSAA | Ross 308 | 750 E. acervulina, E. tenella, and E. maxima | 150% TSAA (breeder recommendation) | Improved BWG | ● ↓ Oocyst shedding. ● ↓ NO production. ● ↓ MDA concentration. | [147] |
Partridge Shank broilers | 50,000 E. tenella | 125% and 150% (breeder recommendation) | No effect on BWG; ADFI 150% methionine reduced BWG | ● ↓ VH and lesion score. ● ↓ CD4+ and CD8+ cells. ● ↓ IFN-γ. | [151] | |
100 × Advent vaccine (E. acervulina, E. maxima, and E. tenella) | 0.6, 0.8, 0.9, and 1.0% TSAA | Below the requirement reduced BWG, ADFI, and gain: feed | ● ↓ TSAA reduced IgA production. | [151] | ||
Cobb 500 | E. acervulina (62,500), E. tenella (12,500), and E. maxima (12,500) | 16% CP + 0.75% Met | Negatively affected BWG, FI, and FCR | ● ↑ Oocyst shedding. ● ↓ Intestinal morphology. | [159] | |
Threonine | New Hampshire × Colombian | 1500 E. maxima | 125% of threonine (breeder recommendation) | Improved BWG, ADFI, and FCR | ● ↓ IL-1β. ● ↑ IL-12. | [160] |
Ross 708 | Coccivac®-B | 61.25% (NRC, 1994) | Exaggerated performance | ● ↑ Oocyst shedding. ● ↑ Gut permeability, IgA production. ● ↓ Intestinal morphology. ● ↓ Goblet cell counts. ● ↓ Lymphocytes expressing CD4+, CD8+, CD3 cells. | [158] | |
Cobb 500 | Mixed Eimeria oocysts | 112%, 124%, and 136% (breeder recommendation) | Improved BWG and FCR | ● ↑ Intestinal morphology. ● ↓ Oocyst shedding. ● ↑ IgG and IgM production. | [157] | |
Cobb 500 | E. acervulina (62,500), E. tenella (12,500), and E. maxima (12,500) | 16% CP and 0.75% threonine | Improvement in BWG, FI, and FCR | ● ↓ Oocyst shedding. ● ↑ Intestinal morphology. ● ↓ Claudin-1 expression. | [159] | |
Glutamine | Cobb 500 | 20 × dose of Coccivac B | 0.5% and 1% glutamine | No effect on performance | ● ↓ Inflammatory and proinflammatory cytokines (IL-10, IFN-γ). ● ↑ Expression of tight junction proteins. ● ↓ Intestinal CD and ↑VH. | [154] |
Nutritional Interventions | Breed | Eimeria Infection | Dosage | Impacts on Performance | Impact on Health | Reference |
---|---|---|---|---|---|---|
Galacto-glucomannan oligosaccharide-arabinoxylan | Ross × Ross | E. acervulina (1,000,000) | 1, or 2, or 4% | Improved FI but not BW | ● ↓ Propionate in ceca. ● ↑ IFN-γ, IL-1β, IL-6, IL-12 expression. ● ↑ Bifidobacterium spp., Lactobacillus spp. in ceca. | [209] |
Mannan-oligosaccharides | Ross 308 | E. tenella (20,000–30,000) | 0.8 g/kg | Improved BWG, FI, and FCR | ● ↓ Oocyst shedding. ● ↓ Cecal lesions. | [215] |
Chitosan-oligosaccharide | Cobb 500 | 15× Coccivac®-B-52 (E. acervulina, E. maxima, E. maxima MF, E. mivati, and E. tenella) | 1 g/kg | Improved BW, BWG, FI, and FCR | ● ↓ Oocyst shedding. ● ↑ Intestinal morphology. ● ↑ Expression of tight junction protein. ● ↓ Expression of TNF-α, IFN-γ, and TLR-4. ● ↑ Expression of IL-6, IL-10, and IL-1β. | [214] |
Nucleotide-rich yeast extract | Ross 708 | E. acervulina (25,000) and E. maxima (5000) | 0.5 g/kg | Improved BW, BWG, and FCR | ● ↑ Jejunal morphology. ● ↓ Cecal SCFA concentration. | [210] |
Xylo-oligosaccharides | Ross 308 | 12× Paracox 8 | 0.025% | Improved BWG and FI | ● ↑ Propionic and butyric acid in ceca. ● ↓ %G+C profile of cecal bacteria. | [228] |
Xylo-oligosaccharides | Cobb 500 | E. acervulina (62,500), E. tenella (12,500), and E. maxima (12,500) | 0.5 or 1 g/kg | No effect on performance | ● ↓ Duodenal lesions. ● ↓ CLDN-1 overexpression. ● ↓ Branched-chain fatty acids. | [211,229] |
Yeast cell wall | Ross 308 | E. tenella (5000) | 0.1 or 0.2% | Improved BWG, FI, and FCR | ● ↑ Jejunal morphology. ● ↓ Bursa follicle length and area. | [230] |
Lactobacillus spp. | Ross 308 | E. acervulina (10,000) | 1 g/kg | - | ● ↓ Oocyst shedding. ● ↑ Intraepithelial lymphocytes expressing CD4, CD8 cells. | [199] |
Saccharomyces cerevisiae | Broilers | E. tenella, E. maxima, and E. necatrix (70,000 oocysts total) | 0.1, or 1, or 10 g/kg | Improved BWG and FCR | ● ↑ Cellular immune response. ● ↑ IgM and IgG concentration. ● ↓ Oocyst shedding and lesion score. | [197] |
Lactobacillus salivarius and L. jhonsonii | 106, or 107, or 108 CFU/L drinking water | |||||
Bacillus subtilis 747 | Ross 708 | E. maxima (10,000) | 1.5 × 105 CFU/g feed | Improved BWG and FCR | ● ↓ Oocyst shedding and lesion score. ● ↓ IL-1β, IL-6, IL-2, and IFN-γ. ● ↑ Expression of tight junction protein. | [195] |
Bacillus licheniformis-A Bacillus amyloliquefaciens-B Bacillus amyloliquefaciens-D | Ross × Ross | E. tenella (5000), E. maxima (5000), and E. acervulina (5000) | 1.5 × 105 CFU/g of feed | Improved performance | ● ↓ Oocyst shedding and lesion score; ● ↑ IL-6, IL-8, and IL-10. ● ↑ JAM-2. | [196] |
Bacillus subtilis (BS-9) | Ross 708 | E. maxima (25,000) and E. acervulina (100,000) | 108 CFU/bird/d in drinking water | No effect on BW, FI, and FCR | ● ↑ Intestinal morphology. ● ↓ Bursa weight. | [231] |
Lactobacillus rhamnosus | Yellow broilers | E. acervulina, E. maxima, and E. tenella (100,000) | 106, or 108 CFU in ovo | - | ● ↓ Internal organ growth. ● ↓ Intestinal morphology. ● Exaggerated coccidia infection. | [232] |
Lactobacillus plantalum + Shallot extract | Broilers | E. tenella (20,000) | 106 cfu/mL of Lactobacillus plantalum + 2% Shallot extract in water | - | ● ↓ Cecal lesion score. | [220] |
Lactobacillus reuteri, Enterococcus faecium, Bifidobacterium animalis, Pediococcus acidilactici, and a fructooligosaccharide | Turkey poult | E. adenoides and E. meleagrimitis | - | Improved BWG | ● ↓ Oocyst shedding and lesion score. | [221] |
Postbiotics (Mantol) | Ross 708 | E. maxima (10,000) | 10 mg/kg | No effect on performance | ● ↓ Oocyst shedding and lesion score. ● ↓ IL-1β, IL-6, IL-17, IL-10, and IFN-γ. | [233] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, M.K.; Kim, W.K. Coccidiosis in Egg-Laying Hens and Potential Nutritional Strategies to Modulate Performance, Gut Health, and Immune Response. Animals 2024, 14, 1015. https://doi.org/10.3390/ani14071015
Sharma MK, Kim WK. Coccidiosis in Egg-Laying Hens and Potential Nutritional Strategies to Modulate Performance, Gut Health, and Immune Response. Animals. 2024; 14(7):1015. https://doi.org/10.3390/ani14071015
Chicago/Turabian StyleSharma, Milan Kumar, and Woo Kyun Kim. 2024. "Coccidiosis in Egg-Laying Hens and Potential Nutritional Strategies to Modulate Performance, Gut Health, and Immune Response" Animals 14, no. 7: 1015. https://doi.org/10.3390/ani14071015
APA StyleSharma, M. K., & Kim, W. K. (2024). Coccidiosis in Egg-Laying Hens and Potential Nutritional Strategies to Modulate Performance, Gut Health, and Immune Response. Animals, 14(7), 1015. https://doi.org/10.3390/ani14071015