Development of a Predictive Model for Iron Levels in Bovine Muscle Tissue Using Hair as a Predictor
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design
2.3. Atomic Absorption Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Exploratory Analysis
3.2. Model Fitting
3.3. Assessing Residual Assumptions
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savoia, S.; Albera, A.; Brugiapaglia, A.; Di Stasio, L.; Cecchinato, A.; Bittante, G. Prediction of meat quality traits in the abattoir using portable near-infrared spectrometers: Heritability of predicted traits and genetic correlations with laboratory-measured traits. J. Anim. Sci. Biotechnol. 2021, 12, 29:1–29:12. [Google Scholar] [CrossRef] [PubMed]
- Tsukano, K.; Suzuki, K. Serum iron concentration is a useful biomarker for assessing the level of inflammation that causes systemic symptoms in bovine acute mastitis similar to plasma haptoglobin. J. Vet. Med. Sci. 2020, 82, 1440–1444. [Google Scholar] [CrossRef] [PubMed]
- Loukas, A.; Hotez, P.J.; Diemert, D.; Yazdanbakhsh, M.; McCarthy, J.S.; Correa-Oliveira, R.; Croese, J.; Bethony, J.M. Hookworm infection. Nat. Rev. Dis. Primers 2016, 2, 16088. [Google Scholar] [CrossRef] [PubMed]
- Onmaz, A.C.; Güneş, V.; Çınar, M.; Çitil, M.; Keleş, İ. Hematobiochemical profiles, mineral concentrations and oxidative stress indicators in beef cattle with pica. Ital. J. Anim. Sci. 2019, 18, 162–167. [Google Scholar] [CrossRef]
- Abramowicz, B.; Kurek, L.; Chalabis-Mazurek, A.; Lutnicki, K. Copper and iron deficiency in dairy cattle. J. Elem. 2021, 26, 241–248. [Google Scholar] [CrossRef]
- Wysocka, D.; Snarska, A.; Sobiech, P. Iron in cattle health. J. Elem. 2020, 25, 1175–1185. [Google Scholar] [CrossRef]
- Khan, Z.; Nawaz, M.; Khan, A.; Bacha, U. Hemoglobin, red blood cell count, hematocrit and derived parameters for diagnosing anemia in elderly males. Proc. Pak. Acad. Sci. 2013, 50, 217–226. [Google Scholar]
- Mondal, B.; Parvez, M.; Rana, M.M.; Rahman, L.; Zahan, R.; Pal, K.C.; Khan, W.A. Status of Red Blood Cell Indices in Iron Deficiency Anemia and β Thalassaemia Trait: A Comparative Study. Dhaka Shishu (Child.) Hosp. J. 2021, 37, 9–14. [Google Scholar] [CrossRef]
- Talukder, J. Role of transferrin: An iron-binding protein in health and diseases. In Nutraceuticals; Academic Press: Cambridge, MA, USA, 2021; pp. 1011–1025. [Google Scholar]
- Değirmençay, Ş.; Kirbaş, A.; Aydin, H.; Aydin, Ö.; Aktaş, M.S.; Kaman, R. Evaluation of serum iron and ferritin levels as inflammatory markers in calves with bovine respiratory disease complex. Acta Vet. 2022, 72, 59–75. [Google Scholar] [CrossRef]
- Lee, S.J. Differential Diagnosis between Iron Deficiency Anemia and Anemia of Chronic Disease by Understanding Laboratory Results. J. Health Inform. Stat. 2019, 44, 331–338. [Google Scholar] [CrossRef]
- Rohr, M.; Brandenburg, V.; Brunner-La Rocca, H.P. How to diagnose iron deficiency in chronic disease: A review of current methods and potential marker for the outcome. Eur. J. Med. Res. 2023, 28, 15. [Google Scholar] [CrossRef] [PubMed]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron absorption: Factors, limitations, and improvement methods. ACS Omega 2022, 7, 20441–20456. [Google Scholar] [CrossRef]
- dos Santos Silva, D.B.; Fonseca, L.F.S.; Magalhães, A.F.B.; Muniz, M.M.M.; Baldi, F.; Ferro, J.A.; Chardulo, L.A.L.; Pinheiro, D.G.; de Albuquerque, L.G. Transcriptome profiling of muscle in Nelore cattle phenotypically divergent for the ribeye muscle area. Genomics 2020, 112, 1257–1263. [Google Scholar] [CrossRef]
- Patel, N.; Bergamaschi, M.; Cagnin, M.; Bittante, G. Exploration of the effect of farm, breed, sex and animal on detailed mineral profile of beef and their latent explanatory factors. Int. J. Food Sci. Technol. 2020, 55, 1046–1056. [Google Scholar] [CrossRef]
- Miedico, O.; Iammarino, M.; Paglia, G.; Tarallo, M.; Mangiacotti, M.; Chiaravalle, A.E. Environmental monitoring of the area surrounding oil wells in Val d’Agri (Italy): Element accumulation in bovine and ovine organs. Environ. Monit. Assess. 2016, 188, 338. [Google Scholar] [CrossRef] [PubMed]
- Czerwonka, M.; Szterk, A. The effect of meat cuts and thermal processing on selected mineral concentration in beef from Holstein–Friesian bulls. Meat Sci. 2015, 105, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, P.; Florek, M.; Staszowska, A.; Litwińczuk, Z. Evaluation of the mineral concentration in beef from polish native cattle. Biol. Trace Elem. Res. 2016, 171, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Tait, R.G., Jr.; Schneider, M.J.; Beitz, D.C.; Wheeler, T.L.; Shackelford, S.D.; Cundiff, L.V.; Reecy, J.M. Sire breed effect on beef longissimus mineral concentrations and their relationships with carcass and palatability traits. Meat Sci. 2015, 106, 25–30. [Google Scholar] [CrossRef]
- Pilarczyk, R. Concentrations of toxic and nutritional essential elements in meat from different beef breeds reared under intensive production systems. Biol. Trace Elem. Res. 2015, 158, 36–44. [Google Scholar] [CrossRef]
- Pilarczyk, R. Elemental composition of muscle tissue of various beef breeds reared under intensive production systems. Int. J. Environ. Res. 2014, 8, 931–940. [Google Scholar]
- Miranda, M.; Pereira, V.; Carbajales, P.; López-Alonso, M. Importance of breed aptitude (beef or dairy) in determining trace element concentrations in bovine muscles. Meat Sci. 2018, 145, 101–106. [Google Scholar] [CrossRef]
- Pereira, V.; Carbajales, P.; López-Alonso, M.; Miranda, M. Trace element concentrations in beef cattle related to the breed aptitude. Biol. Trace Elem. Res. 2018, 186, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Marín, N.; Hardisson, A.; Gutiérrez, Á.J.; Luis-González, G.; González-Weller, D.; Rubio, C.; Paz, S. Toxic (Al, Cd, and Pb) and trace metal (B, Ba, Cu, Fe, Mn, Sr, and Zn) levels in tissues of slaughtered steers: Risk assessment for the consumers. Environ. Sci. Pollut. Res. 2019, 26, 28787–28795. [Google Scholar] [CrossRef] [PubMed]
- Koréneková, B.; Skalická, M.; Nad, P. Concentration of some heavy metals in cattle reared in the vicinity of a metallurgic industry. Vet. Arh. 2002, 72, 259–268. [Google Scholar]
- Seiyaboh, E.I.; Kigigha, L.T.; Aruwayor, S.W.; Izah, S.C. Level of selected heavy metals in liver and muscles of cow meat sold in Yenagoa Metropolis, Bayelsa State, Nigeria. Int. J. Pub. Health Safe 2018, 3, 100154:1–1000154:4. [Google Scholar]
- Sharaf, S.; Khan, M.U.R.; Aslam, A.; Rabbani, M. Comparative study of heavy metals residues and histopathological alterations in large ruminants from selected areas around industrial waste drain. Pak. Vet. J. 2020, 40, 55–60. [Google Scholar] [CrossRef]
- Cabrera, M.C.; Ramos, A.; Saadoun, A.; Brito, G. Selenium, copper, zinc, iron and manganese content of seven meat cuts from Hereford and Braford steers fed pasture in Uruguay. Meat Sci. 2010, 84, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Puls, R. Mineral Levels in Animal Health: Diagnostic Data; Sherpa International: Clearbrook, BC, Canada, 1988; 168p. [Google Scholar]
- Alonso, M.L.; Montaña, F.P.; Miranda, M.; Castillo, C.; Hernández, J.; Luis Benedito, J. Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. Biometals 2004, 17, 389–397. [Google Scholar] [CrossRef]
- National Research Council. Mineral Tolerance of Animals, 2nd ed.; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Knowles, T.G.; Edwards, J.E.; Bazeley, K.J.; Brown, S.N.; Butterworth, A.; Warriss, P.D. Changes in the blood biochemical and haematological profile of neonatal calves with age. Vet. Rec. 2000, 147, 593–598. [Google Scholar] [CrossRef]
- Sabatier, M.; Rytz, A.; Husny, J.; Dubascoux, S.; Nicolas, M.; Dave, A.; Singh, H.; Bodis, M.; Glahn, R.P. Impact of Ascorbic Acid on the In Vitro Iron Bioavailability of a Casein-Based Iron Fortificant. Nutrients 2020, 12, 2776. [Google Scholar] [CrossRef]
- Vogt, A.C.S.; Arsiwala, T.; Mohsen, M.; Vogel, M.; Manolova, V.; Bachmann, M.F. On iron metabolism and its regulation. Int. J. Mol. Sci. 2021, 22, 4591:1–4591:17. [Google Scholar] [CrossRef] [PubMed]
- Kondaiah, P.; Yaduvanshi, P.S.; Sharp, P.A.; Pullakhandam, R. Iron and zinc homeostasis and interactions: Does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients 2019, 11, 1885:1–1885:14. [Google Scholar] [CrossRef]
- Suttle, N.F. Mineral Nutrition of Livestock; CABI: Wallingford, UK, 2022. [Google Scholar]
- Van den Brink, L.M.; Cohrs, I.; Golbeck, L.; Wächter, S.; Dobbelaar, P.; Teske, E.; Grünberg, W. Effect of Dietary Phosphate Deprivation on Red Blood Cell Parameters of Periparturient Dairy Cows. Animals 2023, 13, 404. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.I.; Iqbal Khan, Z.; Naeem, M.; Ahmad, K.; Awan, M.U.F.; Alwahibi, M.S.; Elshikh, M.S. Blood, hair and feces as an indicator of environmental exposure of sheep, cow and buffalo to cobalt: A health risk perspectives. Sustainability 2021, 13, 7873:1–7873:15. [Google Scholar] [CrossRef]
- Sizova, E.A.; Miroshnikov, S.A.; Notova, S.V.; Marshinskaya, O.V.; Kazakova, T.V.; Tinkov, A.A.; Skalny, A.V. Serum and hair trace element and mineral levels in dairy cows in relation to daily milk yield. Biol. Trace Elem. Res. 2022, 200, 2709–2715. [Google Scholar] [CrossRef] [PubMed]
- Sizova, E.A.; Miroshnikov, S.A.; Notova, S.V.; Tinkov, A.A.; Skalny, A.V. Serum mineral levels in dairy cows transiting from feedlot to pasture. Biol. Trace Elem. Res. 2024, 202, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Patra, R.C.; Swarup, D.; Sharma, M.C.; Naresh, R. Trace mineral profile in blood and hair from cattle environmentally exposed to lead and cadmium around different industrial units. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2006, 53, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Patra, R.C.; Swarup, D.; Naresh, R.; Kumar, P.; Nandi, D.; Shekhar, P.; Roy, S.; Ali, S.L. Tail hair as an indicator of environmental exposure of cows to lead and cadmium in different industrial areas. Ecotoxicol. Environ. Saf. 2007, 66, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Chand, N.; Tyagi, S.; Prasad, R.; Sirohi, A.S.; Srivastava, N.; Kumar, S.; Yadav, B.P. Heavy metal and trace mineral profile in blood and hair of cattle reared around industrial effluent contaminated area. J. Anim. Res. 2017, 7, 685–689. [Google Scholar] [CrossRef]
- Combs, D.K.; Goodrich, R.D.; Meiske, J.C. Mineral concentrations in hair as indicators of mineral status: A review. J. Anim. Sci. 1982, 54, 391–398. [Google Scholar] [CrossRef]
- Omarbakiyev, L.A.; Kantarbayeva, S.M.; Nizamdinova, A.K.; Zhumasheva, S.T.; Seitkhamzina, G.Z.; Saulembekova, A. Consequences of changing in regional integration on environmental development, agricultural market and food security. Global J. Environ. Sci. Manag. 2023, 9, 951–966. [Google Scholar] [CrossRef]
- Publications Office of the European Union. Council Directive 98/58/EC of 20 July 1998 Concerning the Protection of Animals Kept for Farming Purposes. Off. J. 1998, L 221, 23–27. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=legissum:l12100 (accessed on 20 December 2023).
- Council of the European Union. Council Directive 2008/119/EC of 18 December 2008 Laying Down Minimum Standards for the Protection of Calves. Off. J. Eur. Union 2009, L 10, 7. Available online: http://data.europa.eu/eli/dir/2008/119/oj (accessed on 20 December 2023).
- European Parliament, Council of the European Union. Regulation (EC) No 767/2009 of the European Parliament and of the Council of 13 July 2009 on the Placing on the Market and Use of Feed, Amending European Parliament and Council Regulation (EC) No 1831/2003 and Repealing Council Directive 79/373/EEC, Commission Directive 80/511/EEC, Council Directives 82/471/EEC, 83/228/EEC, 93/74/EEC, 93/113/EC and 96/25/EC and Commission Decision 2004/217/EC (Text with EEA Relevance). Off. J. 2009, L 229, 1–28. Available online: http://data.europa.eu/eli/reg/2009/767/oj (accessed on 20 December 2023).
- European Parliament, Council of the European Union. Regulation (EC) No. 1831/2003 of the European Parliament and of the Council on Additives for Use in Animal Nutrition. Off. J. 2003, L 268, 29–43. Available online: http://data.europa.eu/eli/reg/2003/1831/oj (accessed on 20 December 2023).
- Council of the European Union. Council Directive 93/119/EC of 22 December 1993 on the Protection of Animals at the Time of Slaughter or Killing. Off. J. 1993, L 340, 21–34. Available online: http://data.europa.eu/eli/dir/1993/119/oj (accessed on 20 December 2023).
- Publications Office of the European Union. Regulation (EC) No 854/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Rules for the Organisation of Official Controls on Products of Animal Origin Intended for Human Consumption. Off. J. Eur. Communities 2004, L 139, 206. Available online: http://data.europa.eu/eli/reg/2004/854/oj (accessed on 20 December 2023).
- ISO/IEC 17025-2019; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2019.
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Wheeler, D.J. Some Outlier Tests: Part Two. Tests with Fixed Overall Alpha Levels. Quality Digest, 11 January 2021. Available online: https://www.qualitydigest.com/inside/statistics-column/some-outlier-tests-part-2-011121.html(accessed on 20 December 2023).
- González-Estrada, E.; Cosmes, W. Shapiro–Wilk test for skew normal distributions based on data transformations. J. Stat. Comput. Simul. 2019, 89, 3258–3272. [Google Scholar] [CrossRef]
- May, J.O.; Looney, S.W. Sample size charts for Spearman and Kendall coefficients. J. Biometr. Biostat. 2020, 11, 1–7. [Google Scholar]
- Tamura, R.; Kobayashi, K.; Takano, Y.; Miyashiro, R.; Nakata, K.; Matsui, T. Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor. J. Glob. Optim. 2019, 73, 431–446. [Google Scholar] [CrossRef]
- VanderWeele, T.J.; Mathur, M.B. Some desirable properties of the Bonferroni correction: Is the Bonferroni correction really so bad? Am. J. Epidemiol. 2019, 188, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Narozhnykh, K. Prediction models of iron level in beef muscle tissue toward ecological well-being. Global J. Environ. Sci. Manag. 2023, 9, 833–850. [Google Scholar]
- Miroshnikov, S.A.; Zavyalov, O.A.; Frolov, A.N.; Bolodurina, I.P.; Kalashnikov, V.V.; Grabeklis, A.R.; Tinkov, A.A.; Skalny, A.V. The reference intervals of hair trace element content in hereford cows and heifers (Bos taurus). Biol. Trace Elem. Res. 2017, 180, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Miroshnikov, S.A.; Skalny, A.V.; Zavyalov, O.A.; Frolov, A.N.; Grabeklis, A.R. The reference values of hair content of trace elements in dairy cows of Holstein breed. Biol. Trace Elem. Res. 2020, 194, 145–151. [Google Scholar] [CrossRef]
Indicator | Median (Q1–Q3) | Units of Measurement | Variable in the Model |
---|---|---|---|
Fe muscles | 22.4 (19–29.5) | mg/kg | y |
P hair | 250 (201.7–300) | mg/kg | x1 |
Ca hair | 2200 (1800–2600) | mg/kg | x2 |
Mg hair | 410 (240–655) | mg/kg | x3 |
Na hair | 190 (99–958.3) | mg/kg | x4 |
K hair | 83 (38.3–863.3) | mg/kg | x5 |
Fe hair | 29 (23.2–49) | mg/kg | x6 |
Mn hair | 22 (13.2–41.2) | mg/kg | x7 |
Cu hair | 9.6 (7.85–12) | mg/kg | x8 |
Zn hair | 130 (110–170) | mg/kg | x9 |
Al hair | 20 (12–29,3) | mg/kg | x10 |
Ba hair | 2.7 (1.5–4.8) | mg/kg | x11 |
Cr hair | 8.2 (5.4–11) | mg/kg | x12 |
Coefficients’ Notation | Coefficients Estimates | Standard Errors of Coefficients | t-Statistic | Pt |
---|---|---|---|---|
Intercept | 25.556 | 2.766 | 9.239 | <0.001 |
Mg | −0.039 | 0.009 | −4.615 | 0.000 |
Na | −0.003 | 0.002 | −1.067 | 0.297 |
K | 0.010 | 0.003 | 3.601 | 0.001 |
Fe | −0.218 | 0.050 | −4.395 | <0.001 |
Al | 0.271 | 0.068 | 3.952 | 0.001 |
Cr | 1.767 | 0.511 | 3.461 | 0.002 |
RSE—4.567; F-statistic—7.197; p < 0.001. |
Coefficients’ Notation | Coefficients Estimates | Standard Errors of Coefficients | t-Statistic | Pt |
---|---|---|---|---|
Intercept | 25.862 | 2.759 | 9.374 | <0.001 |
Mg | −0.043 | 0.008 | −5.323 | <0.001 |
K | 0.008 | 0.002 | 4.201 | <0.001 |
Fe | −0.214 | 0.050 | −4.320 | <0.001 |
Al | 0.235 | 0.060 | 3.916 | <0.001 |
Cr | 1.904 | 0.496 | 3.841 | <0.001 |
RSE—4.58; F-statistic—10.44; p < 0.001. |
The Formula of the Model | df | p | SSE | MSE | R2 | R2adj | AIC | BIC |
---|---|---|---|---|---|---|---|---|
The best model based on the R2adj value | ||||||||
y~1 + x3 + x4 + x5 + x6 + x10 + x12 | 24 | 6 | 500.62 | 20.86 | 0.69 | 0.61 | 190.21 | 220.16 |
The best model based on BIC, AIC, and Mallows’ criterion values | ||||||||
y~1 + x3 + x5 + x6 + x10 + x12 | 25 | 5 | 524.38 | 20.98 | 0.68 | 0.61 | 189.65 | 218.17 |
Predictor | Complete Model | Fe~Mg + Na + K + Fe + Al + Cr | Fe~Mg + K + Fe + Al + Cr |
---|---|---|---|
P | 3.7 | ||
Ca | 5.5 | ||
Mg | 11 | 5.1 | 4.5 |
Na | 8.2 | 5 | |
K | 7.3 | 5 | 2.2 |
Fe | 2.3 | 1.3 | 1.3 |
Mn | 2.4 | ||
Cu | 2 | ||
Zn | 3.8 | ||
Al | 2.1 | 1.5 | 1.2 |
Ba | 3.2 | ||
Cr | 12 | 6.2 | 5.8 |
The Formula of the Model | SS | df | MS | R2 | R2cv |
---|---|---|---|---|---|
y~1 + x3 + x5 + x6 + x10 + x12 | 776.06 | 31 | 25.03 | 0.68 | 0.55 |
y~1 + x3 + x4 + x5 + x6 + x10 + x12 | 1695.66 | 31 | 54.7 | 0.69 | 0.47 |
y~1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x+x9 + x10 + x11 + x12 | 3382.13 | 31 | 109.1 | 0.73 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narozhnykh, K. Development of a Predictive Model for Iron Levels in Bovine Muscle Tissue Using Hair as a Predictor. Animals 2024, 14, 1028. https://doi.org/10.3390/ani14071028
Narozhnykh K. Development of a Predictive Model for Iron Levels in Bovine Muscle Tissue Using Hair as a Predictor. Animals. 2024; 14(7):1028. https://doi.org/10.3390/ani14071028
Chicago/Turabian StyleNarozhnykh, Kirill. 2024. "Development of a Predictive Model for Iron Levels in Bovine Muscle Tissue Using Hair as a Predictor" Animals 14, no. 7: 1028. https://doi.org/10.3390/ani14071028
APA StyleNarozhnykh, K. (2024). Development of a Predictive Model for Iron Levels in Bovine Muscle Tissue Using Hair as a Predictor. Animals, 14(7), 1028. https://doi.org/10.3390/ani14071028