The Levels of Cortisol and Selected Biochemical Parameters in Red Deer Harvested during Stalking Hunts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sampling
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Middleton, A. The Economics of Hunting in Europe. Towards a Conceptual Framework. Final Report FACE. 2008. Available online: https://face.eu/sites/default/files/attachments/framework_for_assessing_the_economics_of_hunting_final_.en_.pdf (accessed on 28 February 2024).
- Lauber, T.B.; Brown, T.L. Deer Hunting and Deer Hunting Trends in New York State. HDRU Series No 00-1. 2000. Available online: https://ecommons.cornell.edu/server/api/core/bitstreams/73fce465-ae06-40a6-9302-1cc8f23d6ed8/content (accessed on 28 February 2024).
- CSO (Central Statistical Office). Available online: https://stat.gov.pl/ (accessed on 30 November 2022).
- Ballesteros, F. Las especies de caza en Espana. In Biologia, Ecologia y Conservación; Estudio y Gestión del Medio: Oviedo, Spain, 1998. [Google Scholar]
- Ranabir, S.; Reetu, K. Stress and hormones. Indian J. Endocrinol. Metab. 2011, 15, 18–22. [Google Scholar] [CrossRef]
- Barić Rafaj, R.; Tončić, J.; Vicković, I.; Šoštarić, B. Haematological and biochemical values of farmed red deer (Cervus elaphus). Vet. Arh. 2011, 81, 513–523. [Google Scholar]
- Ventrella, D.; Elmi, A.; Bertocchi, M.; Aniballi, C.; Parmeggiani, A.; Govoni, N.; Bacci, M.L. Progesterone and cortisol levels in blood and hair of wild pregnant red deer (Cervus elaphus) hinds. Animals 2020, 10, 143. [Google Scholar] [CrossRef]
- Garber, P.A.; McKenney, A.; Bartling, J.E.; Bicca-Marques, J.C.; De la Fuente, M.F.; Abreu, F.; Schiel, N.; Souto, A.; Phillips, K.A. Life in a harsh environment: The effects of age, sex, reproductive condition, and season on hair cortisol concentration in a wild non-human primate. PeerJ 2020, 8, e9365. [Google Scholar] [CrossRef]
- Carbillet, J.; Rey, B.; Palme, R.; Morellet, N.; Bonnot, N.; Chaval, Y.; Cargnelutti, B.; Hewison, A.J.M.; Gilot-Fromont, E.; Verheyden, H. Under cover of the night: Context-dependency of anthropogenic disturbance on stress levels of wild roe deer Capreolus capreolus. Conserv. Physiol. 2020, 8, coaa086. [Google Scholar] [CrossRef]
- Shah, A.M.H.; Rafi, U.; Yasmeen, R.; Ahmad, M. Monitoring of cortisol levels in hog deer with varying environment exposure. Int. J. Innov. Sci. Technol. 2022, 4, 919–928. [Google Scholar] [CrossRef]
- Gentsch, R.P.; Kjellander, P.; Röken, B.O. Cortisol response of wild ungulates to trauma situations: Hunting is not necessarily the worst stressor. Eur. J. Wildl. Res. 2018, 64, 11. [Google Scholar] [CrossRef]
- Huber, S.; Palme, R.; Arnold, W. Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen. Comp. Endocrinol. 2003, 130, 48–54. [Google Scholar] [CrossRef]
- Rehbinder, C. Management stress in reindeer. Rangifer 1990, 10, 267–288. [Google Scholar] [CrossRef]
- Bubenik, G.A. All you need to know about growing antlers: Why, where, when and how they grow. In Proceedings of the Third World Deer Farming Congress, Austin, TX, USA, February 2002; pp. 163–176. [Google Scholar]
- Dziki-Michalska, K.; Tajchman, K.; Kowalik, S.; Bogdaszewski, M. Relationship between plasma cortisol level and bodyweight and antler size in farmed fallow deer. S. Afr. J. Anim. Sci. 2021, 51, 355–361. [Google Scholar] [CrossRef]
- Gaspar-López, E.; Landete-Castillejos, T.; Estevez, J.A.; Ceacer, O.F.; Gallego, L.; García, L.A. Biometrics, testosterone, cortisol and antler growth cycle in iberian red deer stags (Cervus elaphus hispanicus). Reprod. Domest. Anim. 2010, 45, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Christ-Crain, M. Vasopressin and Copeptin in health and disease. Rev. Endocr. Metab. Disord. 2019, 20, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Monfort, S.L.; Mashburn, D.V.K.L.; Brewer, B.A.; Creel, S.R. Evaluating adrenal activity in African wild dogs (Lycaon pictus) by fecal corticosteroid analysis. J. Zoo Wildl. Med. 1998, 29, 129–133. Available online: https://www.jstor.org/stable/20095734 (accessed on 28 February 2024). [PubMed]
- Palme, R.; Robia, C.; Messmann, S.; Hofer, J.; Möstl, E. Measurement of faecal cortisol metabolites in ruminants: A non-invasive parameter of adrenal function. Wien Tierarztl. Monat. 1999, 86, 237–241. [Google Scholar]
- Macbeth, B.J.; Cattet, M.R.L.; Stenhouse, G.B.; Gibeau, M.L.; Janz, D.M. Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): Considerations with implications for other wildlife. Can. J. Zool. 2010, 88, 935–949. [Google Scholar] [CrossRef]
- Potratz, E.J.B.J.S.; Gallo, T.; Anchor, C.; Santymire, R.M. Efects of demography and urbanization on stress and body condition in urban white-tailed deer. Urban. Ecosyst. 2019, 22, 807–816. [Google Scholar] [CrossRef]
- Dulude-de Broin, F.; Côté, S.D.; Whiteside, D.P.; Mastromonaco, G.F. Faecal metabolites and hair cortisol as biological markers of HPA-axis activity in the Rocky mountain goat. Gen. Comp. Endocrinol. 2019, 199, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Heimbürge, S.; Kanitz, E.; Otten, W. The use of hair cortisol for the assessment of stress in animals. Gen. Comp. Endocrinol. 2019, 270, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology 2012, 37, 589–601. [Google Scholar] [CrossRef]
- Kalliokoski, O.; Jellestad, F.K.; Murison, R. A systematic reviewof studies utilizind hair glucocorticoids as a measure of stress suggests the marker is more appropriate for quantifying short-term stressors. Sci. Rep. 2019, 9, 11997. [Google Scholar] [CrossRef]
- Dziki-Michalska, K.; Tajchman, K.; Kowalik, S. Physiological response of roe deer (Capreolus capreolus) during stalking hunts depending on age. BMC Vet. Res. 2023, 19, 266. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, M.J.; Dantzer, B.; Delehanty, B.; Palme, R.; Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 2011, 166, 869–887. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.J.; Anderson, E.; Foggin, C.M.; Kock, M.D.; Tiran, E.P. Plasma cortisol as an indicator of stress due to capture and translocation in wildlife species. Vet. Rec. 1995, 136, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; Van Reenen, C.G.; et al. Exploration of the hypothalamic pituitary adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 2007, 92, 317–339. [Google Scholar] [CrossRef] [PubMed]
- Saltz, D.; White, G.C. Urinary cortisol and urea nitrogen responses to winter stress in mule deer. J. Wildl. Manag. 1991, 55, 1–16. [Google Scholar] [CrossRef]
- Dantzer, B.; McAdam, A.G.; Palme, R.; Boutin, S.; Boonstra, R. How does diet affect fecal steroid hormone metabolite concentrations? An experimental examination in red squirrels. Gen. Comp. Endocrinol. 2011, 174, 124–131. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Alves, J.A. Ecological Assessment of the Red Deer Population in the Lous Lousã Mountain. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2013. [Google Scholar]
- Fuller, T.K.; Coy, P.L.; Peterson, W.J. Marrow fat relationships among leg bones of white-tailed deer. Wildl. Soc. Bull. 1986, 14, 73–75. [Google Scholar]
- Korzekwa, A.J.; Kotlarczyk, A.M. Artificial reproductive technology (ART) applied to female cervids adapted from domestic ruminants. Animals 2021, 11, 2933. [Google Scholar] [CrossRef]
- Bonnot, N.; Verheyden, H.; Blanchard, P.; Cote, J.; Debeffe, L.; Cargnelutti, B.; Klein, F.; Hewison, A.J.M.; Morellet, N. Interindividual variability in habitat use: Evidence for a risk management syndrome in roe deer? Behav. Ecol. 2015, 26, 105–114. [Google Scholar] [CrossRef]
- Shi, D.; Bai, L.; Qu, Q.; Zhou, S.; Yang, M.; Guo, S.; Li, Q.; Liu, C. Impact of gut microbiota structure in heat-stressed broilers. Poult. Sci. 2019, 98, 2405–2413. [Google Scholar] [CrossRef] [PubMed]
- Dhabhar, F.S. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol. Res. 2014, 58, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Bubenik, G.A.; Brown, R.D.; Schams, D.; Bartos, L. The effect of ACTH on the GnRH-induced release of LH and testosterone in male white-tailed deer. Comp. Biochem. Physiol. Part C 1999, 122, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Bartoš, L.; Schams, D.; Bubenik, G.A. Testosterone, but not IGF-1, LH, prolactin or cortisol, may serve as antlerstimulating hormone in red deer stags (Cervus elaphus). Bone 2009, 44, 691–698. [Google Scholar] [CrossRef]
- Paterson, J. Capture myopathy. In Zoo Animal and Wildlife Immobilization and Anesthesia, 1st ed.; West, G., Heard, D., Caulkett, N., Eds.; John Wiley and Sons: Ames, IO, USA, 2014; pp. 171–179. [Google Scholar]
- Montané, J.; Marco, I.; Manteca, X.; López, L.; Lavin, S. Delayed acute capture myopathy in three roe deer. J. Vet. Med. A 2002, 49, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.J.G.; Barbanti Duarte, J.M.; Negrão, J.A. Seasonal changes in fecal testosterone concentrations and their relationship to the reproductive behavior, antler cycle and grouping patterns in free-ranging male Pampas deer (Ozotoceros bezoarticus bezoarticus). Theriogenology 2005, 63, 2113–2125. [Google Scholar] [CrossRef]
- Nuvoli, S.; Burrai, G.P.; Secci, F.; Columbano, N.; Careddu, G.M.; Mandas, L.; Sanna, M.A.; Pirino, S.; Antuofermo, E. Capture myopathy in a corsican red deer Cervus elaphus corsicanus (Ungulata: Cervidae). Ital. J. Zool. 2014, 8, 457–462. [Google Scholar] [CrossRef]
- Taylor-Brown, A.; Booth, R.; Gillett, A.; Mealy, E.; Ogbourne, S.M.; Polkinghorne, A.; Conroy, G.C. The impact of human activities on Australian wildlife. PLoS ONE 2019, 14, e0206958. [Google Scholar] [CrossRef] [PubMed]
- Díaz, E.A.; Donoso, G.; Sáenz, C.; Dueñas, I.; Cabrera, F. Clinical and pathological findings in a Dwarf Red Brocket Mazama rufina (Mammalia: Cetartiodactyla: Cervidae) attacked by dogs. JoTT 2020, 12, 16885–16890. [Google Scholar] [CrossRef]
- Rehbinder, C.; Edqvist, L.E.; Lundström, K.; Villafañe, F. Field study of management stress in reindeer (Rangifer tarandus L.). Rangifer 1982, 2, 2–21. [Google Scholar] [CrossRef]
- Kotlarczyk, A.M.; Grzyb, M.; Korzekwa, A.J. Regulation of uterine function during estrous cycle, anestrus phase and pregnancy by steroids in red deer (Cervus elaphus L.). Sci. Rep. 2021, 11, 20109. [Google Scholar] [CrossRef] [PubMed]
- McCorkell, R.B.; Woodbury, M.R.; Adams, G.P. Induction of ovarian follicular wave emergence in wapiti (Cervus elaphus). Theriogenology 2008, 70, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Poljičak-Milas, N.; Slavica, A.; Janicki, Z.; Robić, M.; Belić, M.; Milinković-Tur, S. Serum biochemical values in fallow deer (Dama dama L.) from different habitats in Croatia. Eur. J. Wildl. Res. 2004, 50, 7–12. [Google Scholar] [CrossRef]
- Harms, N.J.; Elkin, B.T.; Gunn, A.; Tracz, B.; Adamczewski, J.; Flood, P.; Leighton, F.A. Serum biochemistry and serum cortisol levels of immobilized and hunted muskoxen (Ovibos moschatus) from northern Canada. Arctic 2012, 1, 401–410. [Google Scholar] [CrossRef]
- Möstl, E.; Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J.; Beausoleil, N.J.; Littlewood, K.E.; McLean, A.N.; McGreevy, P.D.; Jones, B.; Wilkins, C. The 2020 Five Domains Model: Icluding Human-Animal Interactions in Assessments of Animal Welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef]
- Tajchman, K.; Czyżowski, P.; Drozd, L.; Karpiński, M.; Wojtaś, J. Sustainable game management as one of the determinants of the welfare of hunting animals. J. Anim. Sci. Biol. Bioecon. 2018, 36, 19–30. [Google Scholar] [CrossRef]
- Vilela, S.; Alves da Silva, A.; Palme, R.; Ruckstuhl, K.E.; Sousa, J.P.; Alves, J. Physiological stress reactions in red deer induced by hunting activities. Animals 2020, 10, 1003. [Google Scholar] [CrossRef]
- Ensminger, D.C.; Pritchard, C.; Langkilde, T.; Gingery, T.; Banfield, J.E.; Walter, W.D. The influence of hunting pressure and ecologicalfactors on fecal glucocorticoid metabolites in wild elk. Wildl. Biol. 2020, 2020, 00683. [Google Scholar] [CrossRef]
- Bateson, P.; Bradshaw, E.L. Physiological effects of hunting red deer (Cervus elaphus). Proc. Biol. Sci. 1997, 264, 1707–1714. [Google Scholar] [CrossRef]
- Norum, J.K.; Lone, K.; Linnell, J.D.C.; Odden, J.; Loe, L.E.; Mysterud, A. Landscape of risk to roe deer imposed by lynx and different human hunting tactics. Eur. J. Wildl. Res. 2015, 61, 831–840. [Google Scholar] [CrossRef]
- Millspaugh, J.J.; Brundige, G.C.; Gitzen, R.A.; Raedeke, K.J. Elk and Hunter Space-Use Sharing in South Dakota. J. Wildl. Manag. 2000, 64, 994–1003. [Google Scholar] [CrossRef]
- Möstl, E.; Rettenbacher, S.; Palme, R. Measurement of corticosterone metabolites in birds’ droppings: An analytical approach. Ann. N. Y. Acad. Sci. 2005, 1046, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 2005, 1040, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Forest District Lubartów. Available online: https://lubartow.lublin.lasy.gov.pl/ (accessed on 28 February 2024).
- Malherbe, J.C. Influence of Environmental and Individual Characteristics on Baseline Stress Levels, and Consequences in a Large Mammal, the Roe Deer Capreolus capreolus. Ecology, Environment. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France, 2019. [Google Scholar]
- Brown, W.A.B.; Chapman, N.G. The dentition of fallow deer (Dama dama): A scoring scheme to assess age from wear of the permanent molariform teeth. J. Zool. 1990, 22, 659–682. [Google Scholar] [CrossRef]
- Küker, S.; Huber, N.; Evans, A.; Kjellander, P.; Bergvall, U.A.; Jones, K.L.; Arnemo, J.M. Hematology, serum chemistry, and serum protein electrophoresis ranges for free-ranging roe deer (Capreolus capreolus) in Sweden. J. Wildl. Dis. 2015, 51, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.A.; Wochele, D.M.; Norton, N.A.; McFarlane, D.; Wooldridge, A.A.; Frank, N. Effect of age, season, body condition, and endocrine status on serum free cortisol fraction and insulin concentration in horses. J. Vet. Intern. Med. 2016, 30, 653–663. [Google Scholar] [CrossRef]
- Caslini, C.; Comin, A.; Peric, T.; Prandi, A.; Pedrotti, L.; Mattiello, S. Use of hair cortisol analysis for comparing population status in wild red deer (Cervus elaphus) living in areas with different characteristics. Eur. J. Wildl. Res. 2016, 62, 713–723. [Google Scholar] [CrossRef]
- Azevedo, A.; Bailey, L.; Bandeira, V.; Dehnhard, M.; Fonseca, C.; de Sousa, L.; Jewgenow, K. Age, sex and storage time influence hair cortisol levels in a wild mammal population. PLoS ONE 2019, 14, e0221124. [Google Scholar] [CrossRef]
- Fourie, N.H.; Jolly, C.J.; Phillips-Conroy, J.E.; Brown, J.L.; Bernstein, R.M. Variation of hair cortisol concentrations among wild populations of two baboon species (Papio anubis, P. hamadryas) and a population of their natural hybrids. Primates 2015, 56, 259–272. [Google Scholar] [CrossRef]
- Suttie, J.M.; Fennessy, P.F.; Lapwood, K.R.; Corson, I.D. Role of steroids in antler growth of red deer stags. J. Exp. Zool. 1995, 271, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.M. The Relationship between Behaviour and Adrenocortical Response to Administration of Adrenocorticotropic Hormone (ACTH) in Farmed Red Deer (Cervus elaphus). Master’s Thesis, University of Otago, Dunedin, New Zealand, 1996. [Google Scholar]
- Ingram, J.R.; Crockford, J.N.; Matthews, L.R. Ultradian, circadian and seasonal rhythms in cortisol secretion and adrenal responsiveness to ACTH and yarding in unrestrained red deer (Cervus elaphus) stags. J. Endocrinol. 1999, 162, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L. Molecular biology of steroid hormone synthesis. Endocr. Rev. 2010, 9, 295–318. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Dalai, M.; Su, R.; Lin, W.; Erdenedalai, M.; Luvsantseren, B.; Chimedtseren, C.; Wang, Z.; Hasi, S. Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features. BMC Genom. 2020, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- De la Peña, E.; Barja, I.; Carranza, J. Social environment with high intrasexual competition enhances the positive relationship between faecal testosterone and cortisol metabolite levels in red deer. Mamm. Biol. 2021, 101, 207–215. [Google Scholar] [CrossRef]
- Lincoln, G.A. The seasonal reproductive changes in the red deer stag (Cervus elaphus). J. Zool. 1971, 163, 105–123. [Google Scholar] [CrossRef]
- Gutai, J.; Laporte, R.; Kuller, L.; Dai, W.; Falvo-Gerard, L.; Caggiula, A. Plasma testosterone, high density lipoprotein cholesterol and other lipoprotein fractions. Am. J. Cardiol. 1981, 48, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; O’Brien, T.R.; Flanders, W.D.; DeStefano, F.; Barboriak, J.J. Relation of serum testosterone levels to high density lipoprotein cholesterol and other characteristics in men. Arterioscler. Thromb. Vasc. Biol. 1991, 11, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Kawtikwar, P.S.; Bhagwat, D.A.; Sakarkar, D.M. Deer antlers—Traditional use and future perspectives. Indian J. Tradit. Knowl. 2010, 9, 245–251. [Google Scholar] [CrossRef]
- Bartoš, L.; Bubenik, B. Relationships between rank-related behaviour, antler cycle timing and antler growth in deer: Behavioural aspects. Anim. Prod. Sci. 2010, 51, 303–310. [Google Scholar] [CrossRef]
- Ursache, O.; Chevrier, L.; Blancou, J.M.; Jaouen, M. Value of haematological and biochemical parameters in roe deer (Capreolus capreolus). Rev. Med. Vet. 1980, 131, 547–552. [Google Scholar]
- Catanese, F.; Obelar, M.; Villalba, J.J.; Distel, R.A. The importance of diet choice on stress-related responses by lambs. Appl. Anim. Behav. Sci. 2013, 148, 37–45. [Google Scholar] [CrossRef]
- Carranza, J.; Fernandez-Llario, P.; Gomendio, M. Correlates of territoriality in rutting Red Deer. Ethology 1996, 102, 793–805. [Google Scholar] [CrossRef]
- Mysterud, A.; Bonenfan, C.; Loe, L.E.; Langvatna, R.; Yoccoz, N.G.; Stenseth, N.C. Age-specific feeding cessation in male red deer during rut. J. Zool. 2008, 275, 407–412. [Google Scholar] [CrossRef]
- Szabó, A.; Nagy, B.J.; Fébel, H.; Romvári, H.; Jónás, D.; Mezőszentgyörgyi, D.; Horn, P. Clinical chemistry of farmed red deer (Cervus elaphus) yearling hinds reared on grass or papillonaceous pasture paddocks in Hungary. Arch. Anim. Breed. 2013, 56, 443–454. [Google Scholar] [CrossRef]
- Abdulkareem, T.A.; Eidan, S.J.; Shubber, A.M.H.; Ibrahim, F.F.; Ali, M.D.; Mohammed, O.A. Reference Physiological Values in Different Animal Species; Department of Animal Production, College of Agricultural Engineering Sciences, University of Baghdad: Baghdad, Iraq, 2020; p. 124. [Google Scholar]
- Tajchman, K.; Kowalik, S.; Janiszewski, P.; Licznerska, K.; Bogdaszewski, P. Basic haematological and biochemical parameters of farmed red deer and fallow deer bolld. Med. Wet. 2023, 79, 286–290. [Google Scholar] [CrossRef]
- Marco, I.; Lavín, S. Effect of the method of capture on the haematology and blood chemistry of red deer (Cervus elaphus). Res. Vet. Sci. 1999, 66, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Rosef, O.; Nystøyl, H.L.; Solenes, T.; Arnemo, J.M. Haematological and serum biochemical reference values in free-ranging red deer (Cervus elaphus atlanticus). Rangifer 2004, 24, 79–85. [Google Scholar] [CrossRef]
- Topal, A.; Gul, N.Y.; Yanik, K. Effect of Capture Method on Hematological and Serum Biochemical Values of Red Deer (Cervus elaphus) in Turkey. J. Anim. Vet. Adv. 2010, 9, 1227–1231. [Google Scholar] [CrossRef]
- Cocimano, M.; Leng, R. Metabolism of urea in sheep. Br. J. Nutr. 1967, 21, 353–371. [Google Scholar] [CrossRef]
- DelGiudice, G.D.; Seal, U.S. Classifying winter undernutrition in deer via serum and urinary urea nitrogen. Wildl. Sue Bull. 1988, 16, 27–32. [Google Scholar]
- Nieminen, M.; Timisjärvi, J. Blood composition of the reindeer. II. Blood chemistry. Rangifer 1983, 3, 16–32. [Google Scholar] [CrossRef]
- Feng, S.; Wu, S.; Xie, F.; Yang, C.S.; Shao, P. Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective. Trends Food Sci. Technol. 2022, 123, 87–102. [Google Scholar] [CrossRef]
- Winnicka, A. Reference Values for Basic Laboratory Tests in Veterinary Medicine; Publishing House SGGW: Warsaw, Poland, 2015. [Google Scholar]
- Mamoulakis, C.; Georgiadis, G.; Fragkiadoulaki, E. Urea. In Encyclopedia of Toxicology, 4th ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 685–692. ISBN 9780323854344. [Google Scholar] [CrossRef]
- Henke, S.E.; Demarais, S. Effect of diet on vitreous humor and serum in black-tailed jackrabbits. Tex. J. Agric. Nat. Resour. 2016, 14, 13–20. [Google Scholar]
- Fitte, A. Determination of the Pathophysiological Consequences of Capture and Capture-Induced Hyperthermia in Blesbok. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2017. Available online: https://repository.up.ac.za/bitstream/handle/2263/60285/Fitte_Determination_2017.pdf?sequence=1 (accessed on 28 February 2024).
- Simeonova, G.; Kalkanov, I. Exertional rhabdomyolysis in a fallow deer (Cervus dama). Bulg. J. Vet. Med. 2020, 26, 295–304. [Google Scholar] [CrossRef]
- Craig, A.M.; Pearson, M.S.; Meyer, C.; Schmitz, J.A. Serum liver enzyme and histopathologic changes in calves with chronic and chonic-delayed Senecio jacobaea toxicosis. Am. J. Vet. Res. 1991, 52, 1969–1978. [Google Scholar] [CrossRef]
- Kamphues, J.; Wolf, P.; Coenen, M.; Eder, K.; Iben, C.; Kienzle, E.; Liesegang, A.; Männer, K.; Zebeli, Q.; Zentek, J. Supplemente zur Tierernährung; Schlütersche: Hannover, Germany, 2014; pp. 7–9. [Google Scholar]
- Soveri, T.; Sankari, S.; Nieminen, M. Blood chemistry of reindeer calves (Rangifer tarandus) during the winter season. Comp. Biochem. Physiol. A 1992, 102, 191–196. [Google Scholar] [CrossRef]
- Serrano, E.; González, F.J.; Granados, J.E.; Moço, G.; Fandos, P.; Soriguer, R.C.; Pérez, J.M. The use of total serum proteins and triglycerides for monitoring body condition in the iberian wild goat (Capra pyrenaica). J. Zoo Wildl. Med. 2008, 39, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Glantzounis, G.K.; Tsimoyiannis, E.C.; Kappas, A.M.; Galaris, D.A. Uric acid and oxidative stress. Curr. Pharm. Des. 2005, 11, 4145–4151. [Google Scholar] [CrossRef]
- Alhuay, A.D.; Li, E.O.; Alvarado, S.A.; Falcón, P.N.; Ríos, M.P.; Rojas, M.G. Perfil bioquímico sanguíneo hepático de venados cola blanca (Odocoileus virginianus) criados en cautiverio. Rev. Investig. Vet. Perú (RIVEP) 2011, 22, 138–143. [Google Scholar] [CrossRef]
- ISIS, International Species Information System. Reference Ranges for Physiological Data Values. Clinical Pathology Records Report-ISIS/In House Reference Values Mammals. 1999. Available online: www.worldzoo.org (accessed on 28 February 2024).
- Kuru, M.; Kükürt, A.; Oral, H.; Öğün, M. Clinical use of progesterone and its relation to oxidative stress in ruminants. In Sex Hormones in Neurodegenerative Processess and Diseases; Drevensek, G., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Meyer, J.S.; Novak, M.A. Minireview: Hair cortisol: A novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology 2012, 153, 4120–4127. [Google Scholar] [CrossRef] [PubMed]
Indicator | Short | Male (n = 13) | Female (n = 12) | T a/U b | p | ||
---|---|---|---|---|---|---|---|
M | SD | M | SD | ||||
Carcass mass [kg] | CM | 138.42 | 20.75 | 71.00 | 11.84 | 8.22843 a | <0.001 * |
Age [years] | A | 6 | 2.050 | 4 | 1.000 | 2.48455 a | 0.026 * |
Cortisol [ng/mL] | CORT | 20.216 | 16.747 | 21.564 | 17.325 | 29.000 b | 0.837 |
Total cholesterol [mg/dL] | TCHOL | 85.714 | 65.642 | 108.889 | 53.412 | 16.000 b | 0.114 |
Cholesterol HDL [mg/dL] | HDLCHOL | 9.114 | 5.712 | 25.678 | 8.541 | −4.4051 a | <0.001 * |
Cholesterol LDL [mg/dL] | LDLCHOL | 20.714 | 20.798 | 25.667 | 10.062 | 17.500 b | 0.141 |
Triglycerides [mg/dL] | TRIG | 290.429 | 315.265 | 251.333 | 155.251 | 23.000 b | 0.407 |
Lactate dehydrogenase [U/L] | LDH | 3609.714 | 2204.350 | 4160.444 | 3461.297 | 27.000 b | 0.680 |
Urea [mg/dL] | UREA | 53.629 | 24.231 | 51.889 | 12.212 | 0.188 a | 0.853 |
Alanine aminotransferase [U/L] | ALAT | 235.714 | 174.545 | 333.378 | 163.478 | −1.151 a | 0.268 |
Uric acid [mg/dL] | URIC | 21.243 | 23.550 | 18.700 | 17.765 | 26.000 b | 0.606 |
Alkaline phosphatase. [U/L] | ALP | 157.029 | 147.178 | 111.267 | 84.550 | 0.785 a | 0.445 |
Total protein [g/dL] | TP | 10.571 | 4.826 | 12.000 | 3.969 | 19.500 b | 0.210 |
Albumin [g/dL] | HSA | 4.286 | 1.254 | 4.333 | 0.707 | 27.500 b | 0.680 |
Bilirubin [mg/dL] | BIL | 0.901 | 0.837 | 0.454 | 0.338 | 1.331 c | 0.221 |
Animotransferaza asparaginianowa [U/L] | ASAT | 166.529 | 153.196 | 106.089 | 68.339 | 1.063 a | 0.305 |
Gamma-glutamylotranspeptydaza [U/L] | GGTP | 61.357 | 20.735 | 99.667 | 92.720 | 28.000 b | 0.757 |
Analyzed Parameters | CORT | ||
---|---|---|---|
Male (n = 13) | Female (n = 12) | All Animals (n = 25) | |
r-Spearman’s rank–order correlations; p-Value | |||
TCHOL [mg/dL] | −0.450; 0.310 | −0.450; 0.310 | −0.441; 0.086 |
HDLCHOL [mg/dL] | −0.036; 0.938 | −0.036; 0.938 | 0.041; 0.879 |
LDLCHOL [mg/dL] | −0.560; 0.190 | −0.560; 0.190 | −0.384; 0.141 |
TRIG [mg/dL] | −0.468; 0.288 | −0.468; 0.288 | −0.529; 0.034 * |
LDH [U/L] | 0.684; 0.089 | 0.684; 0.089 | 0.281; 0.291 |
UREA [mg/dL] | −0.846; 0.016 * | −0.846; 0.016 * | −0.563; 0.022 * |
ALAT [U/L] | 0.234; 0.613 | 0.234; 0.613 | 0.022; 0.935 |
URIC [mg/dL] | −0.594; 0.159 | −0.594; 0.159 | −0.459; 0.073 |
ALP [U/L] | −0.234; 0.086 | −0.266; 0.487 | −0.420; 0.104 |
TP [g/dL] | −0.441; 0.613 | −0.630; 0.068 | −0.668; 0.004 * |
HSA [g/dL] | −0.715; 0.089 | −0.547; 0.126 | −0.615; 0.011 * |
BIL [mg/dL] | −0.918; 0.003 * | 0.133; 0.732 | −0.280; 0.292 |
ASAT [U/L] | 0.756; 0.048 * | −0.233; 0.545 | 0.266; 0.318 |
GGTP [U/L] | −0.702; 0.078 | −0.183; 0.636 | −0.400; 0.124 |
Analyzed Parameters | Carcass Mass (CM) | Age (A) |
---|---|---|
r/R; p-Value | ||
CORT [ng/mL] | −0.116 a; 0.666 | −0.108 a; 0.689 |
TCHOL [mg/dL] | −0.339 a; 0.198 | −0.057 a; 0.832 |
HDLCHOL [mg/dL] | −0.663 a; 0.005 * | −0.442 b; 0.086 |
LDLCHOL [mg/dL] | −0.354 a; 0.177 | −0.009 a; 0.973 |
TRIG [mg/dL] | −0.131 a; 0.627 | 0.194 a; 0.470 |
LDH [U/L] | 0.013 a; 0.961 | −0.044 a; 0.868 |
UREA [mg/dL] | −0.135 a; 0.615 | 0.103 b; 0.702 |
ALAT [U/L] | −0.316 a; 0.232 | 0.094 b;0.727 |
URIC [mg/dL] | −0.221 a; 0.409 | 0.216 a;0.419 |
ALP [U/L] | −0.056 a; 0.836 | 0.266 a; 0.318 |
TP [g/dL] | −0.281 a; 0.290 | −0.003 a; 0.991 |
HSA [g/dL] | −0.012 a; 0.962 | 0.176 a; 0.513 |
BIL [mg/dL] | 0.207 a; 0.440 | 0.117 a; 0.665 |
ASAT [U/L] | 0.234 a; 0.381 | −0.008 a; 0.973 |
GGTP [U/L] | 0.067 a; 0.802 | 0.210 a; 0.432 |
Analyzed Parameters | Carcass Mass (CM) | Age (A) |
---|---|---|
r-Spearman’s rank–order correlations; p-Value | ||
CORT [ng/mL] | −0.018; 0.969 | 0.284; 0.536 |
TCHOL [mg/dL] | 0.126; 0.787 | 0.090; 0.846 |
HDLCHOL [mg/dL] | −0.468; 0.288 | −0.054; 0.907 |
LDLCHOL [mg/dL] | 0.000; 1.000 | 0.094; 0.840 |
TRIG [mg/dL] | 0.126; 0.787 | 0.290; 0.526 |
LDH [U/L] | −0.090; 0.847 | 0.436; 0.327 |
UREA [mg/dL] | 0.018; 0.969 | 0.218; 0.638 |
ALAT [U/L] | −0.072; 0.877 | 0.436; 0.327 |
URIC [mg/dL] | 0.036; 0.938 | 0.290; 0.526 |
ALP [U/L] | −0.720; 0.067 | 0.272; 0.553 |
TP [g/dL] | 0.336; 0.460 | 0.169; 0.715 |
HSA [g/dL] | 0.381; 0.398 | −0.0481; 0.918 |
BIL [mg/dL] | 0.336; 0.460 | −0.110; 0.814 |
ASAT [U/L] | 0.018; 0.969 | −0.327; 0.473 |
GGTP [U/L] | −0.072; 0.877 | −0.600; 0.154 |
Analyzed Parameters | Carcass Mass (CM) | Age (A) |
---|---|---|
r-Spearman’s rank–order correlations; p-Value | ||
CORT [ng/mL] | −0.238; 0.536 | −0.053; 0.891 |
TCHOL [mg/dL] | 0.183; 0.635 | 0.454; 0.219 |
HDLCHOL [mg/dL] | 0.689; 0.039 * | −0.195; 0.615 |
LDLCHOL [mg/dL] | 0.004; 0.991 | 0.645; 0.060 |
TRIG [mg/dL] | 0.195; 0.613 | 0.531; 0.140 |
LDH [U/L] | −0.349; 0.357 | −0.354; 0.348 |
UREA [mg/dL] | −0.170; 0.661 | −0.062; 0.873 |
ALAT [U/L] | 0.008; 0.982 | 0.461; 0.211 |
URIC [mg/dL] | −0.417; 0.264 | 0.398; 0.287 |
ALP [U/L] | 0.008; 0.982 | 0.328; 0.388 |
TP [g/dL] | −0.012; 0.973 | 0.049; 0.900 |
HSA [g/dL] | 0.081; 0.834 | 0.315; 0.407 |
BIL [mg/dL] | −0.212; 0.582 | −0.611; 0.079 |
ASAT [U/L] | 0.042; 0.913 | 0.328; 0.388 |
GGTP [U/L] | −0.017; 0.965 | 0.691; 0.390 |
Analyzed Parameters | Wild Red Deer [90] | Chemically Immobilized Free-Ranging Red Deer at Winter Feeding Sites [89] | Farmed Red Deer | Wild Red Deer Harvested during Stalking Hunts (Our Study) | |||
---|---|---|---|---|---|---|---|
Physical Capture | Chemical Capture | [6] | [87] | Male | Female | ||
TCHOL [mg/dL] | 55.44 ± 14.93 | 50.25 ± 19.63 | 41.76–50.65 | 57.61 ± 13.14 | 59.9 ± 3.18 | 85.714 | 108.889 |
HDLCHOL [mg/dL] | 34.44 ± 9.27 | 31.75 ± 10.30 | - | - | 41.58 ± 2.80 | 9.114 | 25.678 |
LDLCHOL [mg/dL] | 3.75 ± 1.70 | 2.0 ± 1.0 | - | - | 15.00 ± 3.13 | 20.714 | 25.667 |
TRIG [mg/dL] | 18.50 ± 7.41 | 7.88 ± 6.77 | 8.75–10.50 | 19.25 ± 9.62 | 16.90 ± 4.15 | 290.429 | 251.333 |
LDH [U/L] | 511.75 ± 93.89 | 404.33 ± 120.35 | 672.5–741.2 | - | - | 3609.714 | 4160.444 |
UREA [mg/dL] | - | - | 5.76–6.78 | 66.66 ± 19.09 | - | 53.629 | 51.889 |
ALAT [U/L] | - | - | 51.7–56.7 | 33.5 ± 8.66 | - | 235.714 | 333.378 |
URIC [mg/dL] | 0.32 ± 0.18 | 0.21 ± 0.03 | - | - | 0.37 ± 0.13 | 21.243 | 18.700 |
ALP [U/L] | 144.550 ± 25.26 | 104.33 ± 20.24 | 195.5–252.1 | 31.6 ± 10.71 | - | 157.029 | 111.267 |
TP [g/dL] | 6.77 ± 0.79 | 6.77 ± 0.99 | 6.36–6.63 | 8.08 ± 10.70 | 6.26 ± 0.36 | 10.571 | 12.000 |
HSA [g/dL] | - | - | 3.57–3.75 | 2.15 ± 2.93 | - | 4.286 | 4.333 |
BIL [mg/dL] | 0.12 ± 0.05 | 0.06 ± 0.04 | 47.95–64.96 | 599.38 ± 154.29 | - | 0.901 | 0.454 |
ASAT [U/L] | - | - | 55.0–63.3 | 250.5 ± 117.44 | - | 166.529 | 106.089 |
GGTP [U/L] | 20.77 ± 5.86 | 19.25 ± 4.57 | 18.4–22.4 | 15.5 ± 9.82 | - | 61.357 | 99.667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziki-Michalska, K.; Tajchman, K.; Kowalik, S.; Wójcik, M. The Levels of Cortisol and Selected Biochemical Parameters in Red Deer Harvested during Stalking Hunts. Animals 2024, 14, 1108. https://doi.org/10.3390/ani14071108
Dziki-Michalska K, Tajchman K, Kowalik S, Wójcik M. The Levels of Cortisol and Selected Biochemical Parameters in Red Deer Harvested during Stalking Hunts. Animals. 2024; 14(7):1108. https://doi.org/10.3390/ani14071108
Chicago/Turabian StyleDziki-Michalska, Katarzyna, Katarzyna Tajchman, Sylwester Kowalik, and Maciej Wójcik. 2024. "The Levels of Cortisol and Selected Biochemical Parameters in Red Deer Harvested during Stalking Hunts" Animals 14, no. 7: 1108. https://doi.org/10.3390/ani14071108
APA StyleDziki-Michalska, K., Tajchman, K., Kowalik, S., & Wójcik, M. (2024). The Levels of Cortisol and Selected Biochemical Parameters in Red Deer Harvested during Stalking Hunts. Animals, 14(7), 1108. https://doi.org/10.3390/ani14071108