Automated Observations of Dogs’ Resting Behaviour Patterns Using Artificial Intelligence and Their Similarity to Behavioural Observations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Video Acquisition of Dogs
2.3. BlyzerDS System Overview
- The content of the bounding box is converted into black-and-white images.
- The image is blurred.
- The change (delta) between consecutive frames is calculated.
- The computed delta is binarized with a threshold.
- The binarized image is dilated to fill in the gaps.
- Contours are detected, and their area is computed.
2.4. Training Data Set and System Evaluation
2.5. Similarity of the System against Standard Behavioural Observations
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fraser, D.; Weary, D.M.; Pajor, E.A.; Milligan, B.N. A Scientific Conception of Animal Welfare That Reflects Ethical Concerns. Anim. Welf. 1997, 6, 187–205. [Google Scholar] [CrossRef]
- Hill, S.P.; Broom, D.M. Measuring Zoo Animal Welfare: Theory and Practice. Zoo Biol. 2009, 28, 531–544. [Google Scholar] [CrossRef]
- Mason, G.; Mendl, M. Why Is There No Simple Way of Measuring Animal Welfare? Anim. Welf. 1993, 2, 301–319. [Google Scholar] [CrossRef]
- Fonio, E.; Golani, I.; Benjamini, Y. Measuring Behavior of Animal Models: Faults and Remedies. Nat. Methods 2012, 9, 1167–1170. [Google Scholar] [CrossRef]
- Levitis, D.A.; Lidicker, W.Z.; Freund, G. Behavioural Biologists Do Not Agree on What Constitutes Behaviour. Anim. Behav. 2009, 78, 103–110. [Google Scholar] [CrossRef]
- Anderson, D.J.; Perona, P. Toward a Science of Computational Ethology. Neuron 2014, 84, 18–31. [Google Scholar] [CrossRef]
- Egnor, S.E.R.; Branson, K. Computational Analysis of Behavior. Annu. Rev. Neurosci. 2016, 39, 217–236. [Google Scholar] [CrossRef]
- Friard, O.; Gamba, M. BORIS: A Free, Versatile Open-Source Event-Logging Software for Video/Audio Coding and Live Observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power Failure: Why Small Sample Size Undermines the Reliability of Neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef]
- Burton, A.C.; Neilson, E.; Moreira, D.; Ladle, A.; Steenweg, R.; Fisher, J.T.; Bayne, E.; Boutin, S. Wildlife Camera Trapping: A Review and Recommendations for Linking Surveys to Ecological Processes. J. Appl. Ecol. 2015, 52, 675–685. [Google Scholar] [CrossRef]
- Vélez, J.; McShea, W.; Shamon, H.; Castiblanco-Camacho, P.J.; Tabak, M.A.; Chalmers, C.; Fergus, P.; Fieberg, J. An Evaluation of Platforms for Processing Camera-trap Data Using Artificial Intelligence. Methods Ecol. Evol. 2023, 14, 459–477. [Google Scholar] [CrossRef]
- Leorna, S.; Brinkman, T. Human vs. Machine: Detecting Wildlife in Camera Trap Images. Ecol. Inform. 2022, 72, 101876. [Google Scholar] [CrossRef]
- Lu, W.; Zhao, Y.; Wang, J.; Zheng, Z.; Feng, L.; Tang, J. MammalClub: An Annotated Wild Mammal Dataset for Species Recognition, Individual Identification, and Behavior Recognition. Electronics 2023, 12, 4506. [Google Scholar] [CrossRef]
- Barnard, S.; Calderara, S.; Pistocchi, S.; Cucchiara, R.; Podaliri-Vulpiani, M.; Messori, S.; Ferri, N. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour. PLoS ONE 2016, 11, e0158748. [Google Scholar] [CrossRef] [PubMed]
- Pons, P.; Jaen, J.; Catala, A. Assessing Machine Learning Classifiers for the Detection of Animals’ Behavior Using Depth-Based Tracking. Expert Syst. Appl. 2017, 86, 235–246. [Google Scholar] [CrossRef]
- Valletta, J.J.; Torney, C.; Kings, M.; Thornton, A.; Madden, J. Applications of Machine Learning in Animal Behaviour Studies. Anim. Behav. 2017, 124, 203–220. [Google Scholar] [CrossRef]
- Gomez Villa, A.; Salazar, A.; Vargas, F. Towards Automatic Wild Animal Monitoring: Identification of Animal Species in Camera-Trap Images Using Very Deep Convolutional Neural Networks. Ecol. Inform. 2017, 41, 24–32. [Google Scholar] [CrossRef]
- Rushen, J.; Chapinal, N.; De Passillé, A.M. Automated Monitoring of Behavioural-Based Animal Welfare Indicators. Anim. Welf. 2012, 21, 339–350. [Google Scholar] [CrossRef]
- Van De Weerd, H.A.; Bulthuis, R.J.A.; Bergman, A.F.; Schlingmann, F.; Tolboom, J.; Van Loo, P.L.P.; Remie, R.; Baumans, V.; Van Zutphen, L.F.M. Validation of a New System for the Automatic Registration of Behaviour in Mice and Rats. Behav. Process. 2001, 53, 11–20. [Google Scholar] [CrossRef]
- Noldus, L.P.J.J.; Spink, A.J.; Tegelenbosch, R.A.J. Computerised Video Tracking, Movement Analysis and Behaviour Recognition in Insects. Comput. Electron. Agric. 2002, 35, 201–227. [Google Scholar] [CrossRef]
- Fontaine, E.; Lentink, D.; Kranenbarg, S.; Müller, U.K.; Van Leeuwen, J.L.; Barr, A.H.; Burdick, J.W. Automated Visual Tracking for Studying the Ontogeny of Zebrafish Swimming. J. Exp. Biol. 2008, 211, 1305–1316. [Google Scholar] [CrossRef]
- Noldus, L.P.J.J.; Spink, A.J.; Tegelenbosch, R.A.J. Ethovision Video Tracking System. Behav. Res. Methods Instrum. Comput. 2001, 33, 398–414. [Google Scholar] [CrossRef]
- Cangar, Ö.; Leroy, T.; Guarino, M.; Vranken, E.; Fallon, R.; Lenehan, J.; Mee, J.; Berckmans, D. Automatic Real-Time Monitoring of Locomotion and Posture Behaviour of Pregnant Cows Prior to Calving Using Online Image Analysis. Comput. Electron. Agric. 2008, 64, 53–60. [Google Scholar] [CrossRef]
- Oczak, M.; Ismayilova, G.; Costa, A.; Viazzi, S.; Sonoda, L.T.; Fels, M.; Bahr, C.; Hartung, J.; Guarino, M.; Berckmans, D.; et al. Analysis of Aggressive Behaviours of Pigs by Automatic Video Recordings. Comput. Electron. Agric. 2013, 99, 209–217. [Google Scholar] [CrossRef]
- Dawkins, M.S.; Cain, R.; Roberts, S.J. Optical Flow, Flock Behaviour and Chicken Welfare. Anim. Behav. 2012, 84, 219–223. [Google Scholar] [CrossRef]
- Luyster, F.S.; Strollo, P.J.; Zee, P.C.; Walsh, J.K. Sleep: A Health Imperative. Sleep 2012, 35, 727–734. [Google Scholar] [CrossRef]
- Siegel, J.M. Sleep in Animals: A State of Adaptive Inactivity. In Principles and Practice of Sleep Medicine; Kryger, M.H., Dement, W.C., Roth, T., Eds.; Elsevier: Philadelphia, USA, 2011; pp. 126–138. [Google Scholar]
- Vassalli, A.; Dijk, D.J. Sleep Function: Current Questions and New Approaches. Eur. J. Neurosci. 2009, 29, 1830–1841. [Google Scholar] [CrossRef]
- Jun, J.C.; Polotsky, V.Y. Stressful Sleep. Eur. Respir. J. 2016, 47, 366–368. [Google Scholar] [CrossRef]
- Sadeh, A.; Keinan, G.; Daon, K. Effects of Stress on Sleep: The Moderating Role of Coping Style. Health Psychol. 2004, 23, 542–545. [Google Scholar] [CrossRef]
- Langford, F.M.; Cockram, M.S. Is Sleep in Animals Affected by Prior Waking Experiences? Anim. Welf. 2010, 19, 215–222. [Google Scholar] [CrossRef]
- Guillaumin, M.C.C.; McKillop, L.E.; Cui, N.; Fisher, S.P.; Foster, R.G.; De Vos, M.; Peirson, S.N.; Achermann, P.; Vyazovskiy, V.V. Cortical Region-Specific Sleep Homeostasis in Mice: Effects of Time of Day and Waking Experience. Sleep 2018, 41, zsy079. [Google Scholar] [CrossRef]
- Morgan, K.N.; Tromborg, C.T. Sources of Stress in Captivity. Appl. Anim. Behav. Sci. 2007, 102, 262–302. [Google Scholar] [CrossRef]
- Lesku, J.A.; Roth, T.C.; Rattenborg, N.C.; Amlaner, C.J.; Lima, S.L. History and Future of Comparative Analyses in Sleep Research. Neurosci. Biobehav. Rev. 2009, 33, 1024–1036. [Google Scholar] [CrossRef]
- Balzamo, E.; Van Beers, P.; Lagarde, D. Scoring of Sleep and Wakefulness by Behavioral Analysis from Video Recordings in Rhesus Monkeys: Comparison with Conventional EEG Analysis. Electroencephalogr. Clin. Neurophysiol. 1998, 106, 206–212. [Google Scholar] [CrossRef] [PubMed]
- McShane, B.B.; Galante, R.J.; Biber, M.; Jensen, S.T.; Wyner, A.J.; Pack, A.I. Assessing REM Sleep in Mice Using Video Data. Sleep 2012, 35, 433–442. [Google Scholar] [CrossRef]
- Siegel, J.M. Clues to the Functions of Mammalian Sleep. Nature 2005, 437, 1264–1271. [Google Scholar] [CrossRef]
- Frank, M.G. Mammalian Sleep. In Encyclopedia of Sleep; Elsevier: Amsterdam, The Netherlands, 2013; pp. 63–65. [Google Scholar]
- Madan, V.; Jha, S.K. Sleep Alterations in Mammals: Did Aquatic Conditions Inhibit Rapid Eye Movement Sleep? Neurosci. Bull. 2012, 28, 746–758. [Google Scholar] [CrossRef]
- Greening, L.; McBride, S. A Review of Equine Sleep: Implications for Equine Welfare. Front. Vet. Sci. 2022, 9, 916737. [Google Scholar] [CrossRef] [PubMed]
- Ternman, E.; Pastell, M.; Agenäs, S.; Strasser, C.; Winckler, C.; Nielsen, P.P.; Hänninen, L. Agreement between Different Sleep States and Behaviour Indicators in Dairy Cows. Appl. Anim. Behav. Sci. 2014, 160, 12–18. [Google Scholar] [CrossRef]
- Owczarczak-Garstecka, S.C.; Burman, O.H.P.P. Can Sleep and Resting Behaviours Be Used as Indicators of Welfare in Shelter Dogs (Canis Lupus Familiaris)? PLoS ONE 2016, 11, e0163620. [Google Scholar] [CrossRef]
- Takagi, N.; Saito, M.; Ito, H.; Tanaka, M.; Yamanashi, Y. Sleep-related Behaviors in Zoo-housed Giraffes (Giraffa Camelopardalis Reticulata): Basic Characteristics and Effects of Season and Parturition. Zoo Biol. 2019, 38, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Yngvesson, J.; Wedin, M.; Gunnarsson, S.; Jönsson, L.; Blokhuis, H.; Wallenbeck, A. Let Me Sleep! Welfare of Broilers (Gallus Gallus Domesticus) with Disrupted Resting Behaviour. Acta Agric. Scand. Sect. A Anim. Sci. 2017, 67, 123–133. [Google Scholar] [CrossRef]
- Udell, M.A.R.R.; Wynne, C.D.L.D.L. A Review of Domestic Dogs’ (Canis Familiaris) Human-Like Behaviors: Or Why Behavior Analysts Should Stop Worrying and Love Their Dogs. J. Exp. Anal. Behav. 2008, 89, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Feuerbacher, E.; Wynne, C. A History of Dogs as Subjects in North American Experimental Psychological Research. Comp. Cogn. Behav. Rev. 2011, 6, 46–71. [Google Scholar] [CrossRef]
- Toth, L.A.; Bhargava, P. Animal Models of Sleep Disorders. Comp. Med. 2013, 63, 91–104. [Google Scholar] [PubMed]
- Bódizs, R.; Kis, A.; Gácsi, M.; Topál, J. Sleep in the Dog: Comparative, Behavioral and Translational Relevance. Curr. Opin. Behav. Sci. 2020, 33, 25–33. [Google Scholar] [CrossRef]
- Arden, R.; Bensky, M.K.; Adams, M.J. A Review of Cognitive Abilities in Dogs, 1911 Through 2016. Curr. Dir. Psychol. Sci. 2016, 25, 307–312. [Google Scholar] [CrossRef]
- Benz-Schwarzburg, J.; Monsó, S.; Huber, L. How Dogs Perceive Humans and How Humans Should Treat Their Pet Dogs: Linking Cognition With Ethics. Front. Psychol. 2020, 11, 584037. [Google Scholar] [CrossRef] [PubMed]
- Udell, M.A.R.R.; Dorey, N.R.; Wynne, C.D.L.L. What Did Domestication Do to Dogs? A New Account of Dogs’ Sensitivity to Human Actions. Biol. Rev. 2010, 85, 327–345. [Google Scholar] [CrossRef]
- Jukan, A.; Masip-Bruin, X.; Amla, N. Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review. ACM Comput. Surv. 2017, 50, 10. [Google Scholar] [CrossRef]
- Belda, B.; Enomoto, M.; Case, B.C.; Lascelles, B.D.X. Initial Evaluation of PetPace Activity Monitor. Vet. J. 2018, 237, 63–68. [Google Scholar] [CrossRef]
- Weiss, G.M.; Nathan, A.; Kropp, J.B.; Lockhart, J.W. WagTag: A Dog Collar Accessory for Monitoring Canine Activity Levels. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, Zurich, Switzerland, 8–12 September 2013; pp. 405–414. [Google Scholar] [CrossRef]
- Ladha, C.; Hoffman, C.L. A Combined Approach to Predicting Rest in Dogs Using Accelerometers. Sensors 2018, 18, 2649. [Google Scholar] [CrossRef]
- Olsen, A.; Evans, R.; Duerr, F. Evaluation of Accelerometer Inter-Device Variability and Collar Placement in Dogs. Vet. Evid. 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Amir, S.; Zamansky, A.; van der Linden, D. K9-Blyzer—Towards Video-Based Automatic Analysis of Canine Behavior. In Proceedings of the Fourth International Conference on Animal-Computer Interaction—ACI2017, Milton Keynes, UK, 21–23 November 2017; ACM Press: New York, NY, USA, 2017; pp. 1–5. [Google Scholar]
- Baba, M.; Pescaru, D.; Gui, V.; Jian, I. Stray Dogs Behavior Detection in Urban Area Video Surveillance Streams. In Proceedings of the 2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 27–28 October 2016; pp. 313–316. [Google Scholar]
- Mealin, S.; Domínguez, I.X.; Roberts, D.L. Semi-Supervised Classification of Static Canine Postures Using the Microsoft Kinect. In Proceedings of the Third International Conference on Animal-Computer Interaction—ACI ’16, Milton Keynes, UK, 15–17 November 2016; ACM Press: New York, NY, USA, 2016; pp. 1–4. [Google Scholar]
- Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Li, F.F. Large-Scale Video Classification with Convolutional Neural Networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1725–1732. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zamansky, A.; Sinitca, A.M.; Kaplun, D.I.; Plazner, M.; Schork, I.G.; Young, R.J.; de Azevedo, C.S. Analysis of Dogs’ Sleep Patterns Using Convolutional Neural Networks. In Lecture Notes in Computer Science; Tetko, I.V., Kůrková, V., Karpov, P., Theis, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 11729, pp. 472–483. ISBN 978-3-030-30507-9. [Google Scholar]
- Bateson, M.; Martin, P. Measuring Behaviour, 3rd ed.; Cambridge University Press: Cambridge, UK, 2021; ISBN 9781108776462. [Google Scholar]
- Dytham, C. Choosing and Using Statistics: A Biologist’s Guide, 3rd ed.; Wiley-Blackwell: Oxford, UK, 2011; ISBN 978-1-405-19839-4. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 26.0. IBM Corp: Armonk, NY, USA, 2019.
- Nakamura, T.; Goverdovsky, V.; Morrell, M.J.; Mandic, D.P. Automatic Sleep Monitoring Using Ear-EEG. IEEE J. Transl. Eng. Health Med. 2017, 5, 2800108. [Google Scholar] [CrossRef]
- Watson, N.F.; Fernandez, C.R. Artificial Intelligence and Sleep: Advancing Sleep Medicine. Sleep Med. Rev. 2021, 59, 101512. [Google Scholar] [CrossRef]
- Tripathi, P.; Ansari, M.A.; Gandhi, T.K.; Mehrotra, R.; Heyat, M.B.; Akhtar, F.; Ukwuoma, C.C.; Muaad, A.Y.M.; Kadah, Y.M.; Al-Antari, M.A.; et al. Ensemble Computational Intelligent for Insomnia Sleep Stage Detection via the Sleep ECG Signal. IEEE Access 2022, 10, 108710–108721. [Google Scholar] [CrossRef]
- Hunter, L.B.; O’Connor, C.; Haskell, M.J.; Langford, F.M.; Webster, J.R.; Stafford, K.J. Lying Posture Does Not Accurately Indicate Sleep Stage in Dairy Cows. Appl. Anim. Behav. Sci. 2021, 242, 105427. [Google Scholar] [CrossRef]
Sleep System | Sleep Manual | % Difference | Bouts System | Bouts Manual | % Difference |
---|---|---|---|---|---|
12:05:56 | 09:31:33 | 1.15 | 14 | 15 | 2.94 |
12:52:49 | 10:41:49 | 0.71 | 7 | 15 | 23.53 |
11:42:26 | 09:59:51 | 0.39 | 19 | 17 | 5.88 |
11:15:11 | 10:04:42 | 0.06 | 22 | 20 | 5.88 |
12:37:12 | 09:41:49 | 1.42 | 12 | 15 | 8.82 |
05:26:04 | 04:58:31 | 0.13 | 10 | 8 | 5.88 |
11:43:39 | 09:58:31 | 0.43 | 15 | 15 | 0.00 |
10:48:40 | 11:05:58 | 1.38 | 23 | 19 | 11.76 |
11:56:16 | 11:15:38 | 0.59 | 12 | 21 | 26.47 |
12:20:21 | 10:10:57 | 0.74 | 13 | 16 | 8.82 |
08:05:47 | 10:05:20 | 2.68 | 18 | 18 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schork, I.; Zamansky, A.; Farhat, N.; de Azevedo, C.S.; Young, R.J. Automated Observations of Dogs’ Resting Behaviour Patterns Using Artificial Intelligence and Their Similarity to Behavioural Observations. Animals 2024, 14, 1109. https://doi.org/10.3390/ani14071109
Schork I, Zamansky A, Farhat N, de Azevedo CS, Young RJ. Automated Observations of Dogs’ Resting Behaviour Patterns Using Artificial Intelligence and Their Similarity to Behavioural Observations. Animals. 2024; 14(7):1109. https://doi.org/10.3390/ani14071109
Chicago/Turabian StyleSchork, Ivana, Anna Zamansky, Nareed Farhat, Cristiano Schetini de Azevedo, and Robert John Young. 2024. "Automated Observations of Dogs’ Resting Behaviour Patterns Using Artificial Intelligence and Their Similarity to Behavioural Observations" Animals 14, no. 7: 1109. https://doi.org/10.3390/ani14071109
APA StyleSchork, I., Zamansky, A., Farhat, N., de Azevedo, C. S., & Young, R. J. (2024). Automated Observations of Dogs’ Resting Behaviour Patterns Using Artificial Intelligence and Their Similarity to Behavioural Observations. Animals, 14(7), 1109. https://doi.org/10.3390/ani14071109