Validation of Fecal Glucocorticoid Metabolites as Non-Invasive Markers for Monitoring Stress in Common Buzzards (Buteo buteo)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pre-Study
2.2. Main Study
2.3. Stability of Fecal Glucocorticoid Metabolite Concentrations Post-Defecation
2.4. Statistical Analysis
3. Results
3.1. Assay Validation
3.2. Stress Response
3.3. Veterinary Examination during Stress Event
3.4. Differences in Sexes and Time of Day
3.5. Stability of Fecal Glucocorticoid Metabolite Concentrations Post-Defecation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Hours before/after Stress Event | Females: fGCM (ng/g Dry Weight) | Males: fGCM (ng/g Dry Weight) | ||||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | Mean | M1 | M2 | M3 | Mean | |
−76 | 1975 | 4402 | 6828 | 4402 | 1680 | 6776 | 4360 | 4272 |
−72 | 5367 | 5709 | 11,118 | 7398 | 3847 | 17,263 | 12,455 | 11,188 |
−68 | 9954 | 13,181 | 17,753 | 13,629 | 5683 | 24,858 | 5824 | 12,122 |
−64 | 3242 | 5111 | 15,258 | 7870 | n.t. | 10,459 | 7072 | 8766 |
−60 | 1922 | 3298 | 10,259 | 5160 | 2299 | n.t. | 5116 | 3707 |
−52 | 1279 | 5026 | 7890 | 4732 | 1347 | 5407 | 3738 | 3497 |
−48 | 3433 | 7864 | 12,224 | 7840 | 4401 | 15,913 | 10,385 | 10,233 |
−44 | 4765 | 5212 | 7141 | 5706 | 4074 | 14,125 | 7705 | 8635 |
−40 | 12,357 | 4402 | 7287 | 8015 | 2529 | 5560 | 3194 | 3761 |
−36 | 1715 | 2913 | 8082 | 4237 | 1602 | 3717 | 11,245 | 5521 |
−28 | 3362 | 1688 | 7873 | 4307 | 2795 | 5616 | 6144 | 4851 |
−24 | 6595 | 3402 | 6263 | 5420 | 4191 | 12,450 | 24,434 | 13,691 |
−20 | 7355 | 3781 | 7181 | 6105 | 4218 | n.t. | 7181 | 5700 |
−16 | 5648 | 6384 | 8609 | 6880 | 2332 | n.t. | 5475 | 3904 |
−12 | 2504 | n.t. | 5038 | 3771 | 1636 | 8280 | 4972 | 4963 |
−4 | 2446 | 2008 | 10,376 | 4943 | 2927 | 6196 | 6389 | 5170 |
0 | 3737 | 5497 | 18,094 | 9109 | 2586 | 16,375 | 16,341 | 11,767 |
4 | n.t. | 28,886 | 47,553 | 38,219 | n.t. | 71,970 | 25,201 | 48,586 |
8 | 31,986 | 8549 | 16,919 | 19,152 | 11,654 | 23,096 | 12,391 | 15,714 |
12 | 9846 | 4949 | n.t. | 7398 | 2304 | 8522 | 5620 | 5482 |
20 | 3810 | 2273 | 6602 | 4228 | 1494 | 8505 | 6367 | 5455 |
24 | 8554 | 2638 | 13,826 | 8339 | 2923 | 9663 | 11,271 | 7952 |
28 | 7764 | 2454 | 7568 | 5928 | 2796 | 6674 | 5886 | 5119 |
32 | 2309 | 1292 | 11,125 | 4909 | 2460 | 7890 | 7836 | 6062 |
36 | 3361 | 4587 | n.t. | 3974 | 2495 | 3611 | 5289 | 3799 |
44 | 6612 | 3472 | 6958 | 5681 | 3881 | 6237 | 5804 | 5307 |
48 | 5095 | 11,185 | 21,416 | 12,565 | 3161 | 14,354 | 16,232 | 11,249 |
52 | 7602 | 6398 | 9626 | 7875 | 3907 | 11,477 | 6872 | 7419 |
56 | 4360 | 8701 | 11,493 | 8185 | 2228 | 8402 | 5361 | 5330 |
60 | 2758 | 6319 | n.t. | 4539 | 3263 | 4249 | 4753 | 4088 |
68 | 4052 | 4793 | 10,198 | 6347 | 4471 | 7352 | 3012 | 4945 |
72 | 6726 | 13,259 | 23,007 | 14,330 | 2880 | 27,982 | 32,063 | 20,975 |
76 | 10,986 | 5241 | 12,809 | 9679 | 3098 | 10,616 | 6602 | 6772 |
80 | 6749 | 6487 | 11,658 | 8298 | 2445 | 6404 | 4204 | 4351 |
84 | 3457 | 4038 | n.t. | 3748 | 2258 | 4261 | 5031 | 3850 |
Lab Number | Temperature °C | Recollected and Frozen after Hour | fGCM (ng/g DW) |
---|---|---|---|
A-1 | 20 | 0 | 4453 |
A-2 | 20 | 1 | 3828 |
A-3 | 20.5 | 2 | 5307 |
A-4 | 20 | 4 | 3874 |
A-5 | 20 | 8 | 3708 |
A-6 | 20 | 12 | 4078 |
A-7 | 21 | 24 | 3990 |
A-8 | 21 | 48 | 3818 |
B-1 | 20 | 0 | 4796 |
B-2 | 20 | 1 | 4529 |
B-3 | 20.5 | 2 | 4166 |
B-4 | 20 | 4 | 3258 |
B-5 | 20 | 8 | 3848 |
B-6 | 20 | 12 | 4351 |
B-7 | 21 | 24 | 4665 |
B-8 | 21 | 48 | 4923 |
C-1 | 20 | 0 | 4612 |
C-2 | 20 | 1 | 4499 |
C-3 | 20.5 | 2 | 4020 |
C-4 | 20 | 4 | 3300 |
C-5 | 20 | 8 | 3045 |
C-6 | 20 | 12 | 4614 |
C-7 | 21 | 24 | 4357 |
C-8 | 21 | 48 | 3479 |
D-1 | 20 | 0 | 4535 |
D-2 | 20 | 1 | 4589 |
D-3 | 20.5 | 2 | 3461 |
D-4 | 20 | 4 | 4568 |
D-5 | 20 | 8 | 2988 |
D-6 | 20 | 12 | 3584 |
D-7 | 21 | 24 | 3208 |
D-8 | 21 | 48 | 2827 |
References
- Mullineaux, E. Veterinary Treatment and Rehabilitation of Indigenous Wildlife. J. Small Anim. Pract. 2014, 55, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Fowler, M.E. An Overview of Wildlife Husbandry and Diseases in Captivity. Rev. Sci. Tech. Off. Int. Epiz. 1996, 15, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Park, F. Behavior and Behavioral Problems of Australian Raptors in Captivity. Semin. Avian Exot. Pet Med. 2003, 12, 232–241. [Google Scholar] [CrossRef]
- Baird, B.A. Program Animal Welfare: Using Behavioral and Physiological Measures to Assess the Well-Being of Animals Used for Education Programs in Zoos. Appl. Anim. Behav. Sci. 2016, 176, 150–162. [Google Scholar] [CrossRef]
- Griffin, J.F.T. Stress and Immunity: A Unifying Concept. Vet. Immunol. Immunopathol. 1989, 20, 263–312. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [PubMed]
- Hess, L. Corticosteroid Synthesis and Metabolism in Birds. Semin. Avian Exot. Pet Med. 2002, 11, 65–70. [Google Scholar] [CrossRef]
- Bailey, M.T.; Dowd, S.E.; Parry, N.M.A.; Galley, J.D.; Schauer, D.B.; Lyte, M. Stressor Exposure Disrupts Commensal Microbial Populations in the Intestines and Leads to Increased Colonization by Citrobacter Rodentium. Infect. Immun. 2010, 78, 1509–1519. [Google Scholar] [CrossRef]
- Borsoi, A.; Quinteiro-Filho, W.M.; Calefi, A.S.; Piantino Ferreira, A.J.; Astolfi-Ferreira, C.S.; Florio, J.C.; Palermo-Neto, J. Effects of Cold Stress and Salmonella Heidelberg Infection on Bacterial Load and Immunity of Chickens. Avian Pathol. 2015, 44, 490–497. [Google Scholar] [CrossRef]
- BnatSchG. Bundesnaturschutzgesetz Vom 29. Juli 2009 (BGBl. I S. 2542), das Zuletzt Durch Artikel 3 des Gesetzes vom 8. Dezember 2022 (BGBl. I S. 2240) Geändert Worden Ist. 2009. Available online: https://www.gesetze-im-internet.de/bnatschg_2009/ (accessed on 22 January 2024).
- Bonnedahl, J.; Järhult, J.D. Antibiotic Resistance in Wild Birds. Upsala J. Med. Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef]
- Donázar, J.A.; Cortés-Avizanda, A.; Fargallo, J.A.; Margalida, A.; Moleón, M.; Morales-Reyes, Z.; Moreno-Opo, R.; Pérez-García, J.M.; Sánchez-Zapata, J.A.; Zuberogoitia, I.; et al. Roles of Raptors in a Changing World: From Flagships to Providers of Key Ecosystem Services. Ardeola 2016, 63, 181–234. [Google Scholar] [CrossRef]
- Cope, H.R.; Keeley, T.; Keong, J.; Smith, D.; Silva, F.R.O.; McArthur, C.; Webster, K.N.; Mella, V.S.A.; Herbert, C.A. Validation of an Enzyme Immunoassay to Measure Faecal Glucocorticoid Metabolites in Common Brushtail Possums (Trichosurus vulpecula) to Evaluate Responses to Rehabilitation. Animals 2022, 12, 1627. [Google Scholar] [CrossRef] [PubMed]
- Möstl, E.; Palme, R. Hormones as Indicators of Stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the Stress Response. Annu. Rev. Physiol. 2005, 67, 259–284. [Google Scholar] [CrossRef]
- Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Möstl, E. Stress Hormones in Mammals and Birds: Comparative Aspects Regarding Metabolism, Excretion, and Noninvasive Measurement in Fecal Samples. Ann. N. Y. Acad. Sci. 2005, 1040, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Bortolotti, G.R.; Marchant, T.; Blas, J.; Cabezas, S. Tracking Stress: Localisation, Deposition and Stability of Corticosterone in Feathers. J. Exp. Biol. 2009, 212, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Palme, R. Non-Invasive Measurement of Glucocorticoids: Advances and Problems. Physiol. Behav. 2019, 199, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Padilla, J.; Mougeot, F.; García, J.T.; Arroyo, B.; Bortolotti, G.R. Feather Corticosterone Levels and Carotenoid-Based Coloration in Common Buzzard (Buteo Buteo) Nestlings. J. Raptor Res. 2013, 47, 161–173. [Google Scholar] [CrossRef]
- Strong, R.J.; Pereira, M.G.; Shore, R.F.; Henrys, P.A.; Pottinger, T.G. Feather Corticosterone Content in Predatory Birds in Relation to Body Condition and Hepatic Metal Concentration. Gen. Comp. Endocrinol. 2015, 214, 47–55. [Google Scholar] [CrossRef]
- Müller, C.; Jenni-Eiermann, S.; Jenni, L. Effects of a Short Period of Elevated Circulating Corticosterone on Postnatal Growth in Free-Living Eurasian Kestrels Falco Tinnunculus. J. Exp. Biol. 2009, 212, 1405–1412. [Google Scholar] [CrossRef]
- López-Jiménez, L.; Blas, J.; Tanferna, A.; Cabezas, S.; Marchant, T.; Hiraldo, F.; Sergio, F. Lifetime Variation in Feather Corticosterone Levels in a Long-Lived Raptor. Oecologia 2017, 183, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Ahlmann, A. The Impact of Human Disturbance on Behavior, Heart Rate, and Plasma Corticosterone of Wild Red-Tailed Hawks (Buteo jamaicensis) in Captivity. Master‘s Thesis, University of Minnesota, Minneapolis, MN, USA, 2022. [Google Scholar]
- Romero, L.M.; Reed, J.M. Collecting Baseline Corticosterone Samples in the Field: Is under 3 Min Good Enough? Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2005, 140, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, M.D.; Rubenstein, D.I.; Low, B.; Romero, L.M. Fecal Glucocorticoid Metabolite Analysis as an Indicator of Stress during Translocation and Acclimation in an Endangered Large Mammal, the Grevy’s Zebra. Anim. Conserv. 2008, 11, 263–269. [Google Scholar] [CrossRef]
- Touma, C.; Palme, R. Measuring Fecal Glucocorticoid Metabolites in Mammals and Birds: The Importance of Validation. Ann. N. Y. Acad. Sci. 2005, 1046, 54–74. [Google Scholar] [CrossRef] [PubMed]
- Keay, J.M.; Singh, J.; Gaunt, M.C.; Kaur, T. Fecal Glucocorticoids and Their Metabolites As Indicators of Stress in Various Mammalian Species: A Literature Review. J. Zoo Wildl. Med. 2006, 37, 234–244. [Google Scholar] [CrossRef]
- Carere, C.; Groothuis, T.G.G.; Möstl, E.; Daan, S.; Koolhaas, J.M. Fecal Corticosteroids in a Territorial Bird Selected for Different Personalities: Daily Rhythm and the Response to Social Stress. Horm. Behav. 2003, 43, 540–548. [Google Scholar] [CrossRef]
- Cyr, N.E.; Romero, L.M. Fecal Glucocorticoid Metabolites of Experimentally Stressed Captive and Free-Living Starlings: Implications for Conservation Research. Gen. Comp. Endocrinol. 2008, 158, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Goymann, W.; Möstl, E.; Gwinner, E. Non-Invasive Methods to Measure Androgen Metabolites in Excrements of European Stonechats, Saxicola Torquata Rubicola. Gen. Comp. Endocrinol. 2002, 129, 80–87. [Google Scholar] [CrossRef]
- Rettenbacher, S.; Möstl, E.; Hackl, R.; Ghareeb, K.; Palme, R. Measurement of Corticosterone Metabolites in Chicken Droppings. Br. Poult. Sci. 2004, 45, 704–711. [Google Scholar] [CrossRef]
- Hirschenhauser, K.; Spreitzer, K.; Lepschy, M.; Kotrschal, K.; Möstl, E. Excreted Corticosterone Metabolites Differ between Two Galliform Species, Japanese Quail and Chicken, between Sexes and between Urine and Faecal Parts of Droppings. J. Ornithol. 2012, 153, 1179–1188. [Google Scholar] [CrossRef]
- Xie, S.; McWhorter, T.J. Fecal Glucocorticoid Metabolite Concentration as a Tool for Assessing Impacts of Interventions in Humboldt Penguins (Spheniscus humboldti). Birds 2021, 2, 106–113. [Google Scholar] [CrossRef]
- Young, A.M.; Hallford, D.M. Validation of a Fecal Glucocorticoid Metabolite Assay to Assess Stress in the Budgerigar (Melopsittacus undulatus): Validation of Budgerigar Stress Assay. Zoo Biol. 2013, 32, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Wasser, S.K.; Bevis, K.; King, G.; Hanson, E. Noninvasive Physiological Measures of Disturbance in the Northern Spotted Owl. Conserv. Biol. 1997, 11, 1019–1022. [Google Scholar] [CrossRef]
- Tempel, D.J.; Gutierrez, R.J. Factors Related to Fecal Corticosterone Levels in California Spotted Owls: Implications for Assessing Chronic Stress. Conserv. Biol. 2004, 18, 538–547. [Google Scholar] [CrossRef]
- Hayward, L.S.; Bowles, A.E.; Ha, J.C.; Wasser, S.K. Impacts of Acute and Long-Term Vehicle Exposure on Physiology and Reproductive Success of the Northern Spotted Owl. Ecosphere 2011, 2, 65. [Google Scholar] [CrossRef]
- Wasser, S.K.; Hunt, K.E. Noninvasive Measures of Reproductive Function and Disturbance in the Barred Owl, Great Horned Owl, and Northern Spotted Owl. Ann. N. Y. Acad. Sci. 2005, 1046, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Staley, A.M.; Blanco, J.M.; Dufty, A.M.; Wildt, D.E.; Monfort, S.L. Fecal Steroid Monitoring for Assessing Gonadal and Adrenal Activity in the Golden Eagle and Peregrine Falcon. J. Comp. Physiol. B 2007, 177, 609–622. [Google Scholar] [CrossRef]
- Pereira, R.J.G.; Granzinolli, M.A.M.; Duarte, J.M.B. Annual Profile of Fecal Androgen and Glucocorticoid Levels in Free-Living Male American Kestrels from Southern Mid-Latitude Areas. Gen. Comp. Endocrinol. 2010, 166, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Haman, M.A. Using Biomarkers to Optimize the Rehabilitation of Wild Raptors. Master‘s Thesis, Georgia State University, Atlanta, GA, USA, 2018. [Google Scholar]
- Dehnhard, M.; Schreer, A.; Krone, O.; Jewgenow, K.; Krause, M.; Grossmann, R. Measurement of Plasma Corticosterone and Fecal Glucocorticoid Metabolites in the Chicken (Gallus domesticus), the Great Cormorant (Phalacrocorax carbo), and the Goshawk (Accipiter gentilis). Gen. Comp. Endocrinol. 2003, 131, 345–352. [Google Scholar] [CrossRef]
- Krone, O.; Bailey, L.D.; Jähnig, S.; Lauth, T.; Dehnhard, M. Monitoring Corticoid Metabolites in Urine of White-Tailed Sea Eagles: Negative Effects of Road Proximity on Breeding Pairs. Gen. Comp. Endocrinol. 2019, 283, 113223. [Google Scholar] [CrossRef]
- Mammen, U.; Stubbe, M. Zur Lage der Greifvögel und Eulen in Deutschland 1999–2002. Vogelwelt 2005, 126, 53–65. [Google Scholar]
- Gerlach, B.; Dröschmeister, R.; Langgemach, T.; Borkenhagen, K.; Busch, M.; Hauswirth, M.; Heinicke, T.; Kamp, J.; Karthäuser, J.; König, C.; et al. Vögel in Deutschland: Übersichten zur Bestandssituation 2019; DDA, BfN, LAG VSW: Münster, Germany, 2019. [Google Scholar]
- Washburn, B.E.; Millspaugh, J.J. Effects of Simulated Environmental Conditions on Glucocorticoid Metabolite Measurements in White-Tailed Deer Feces. Gen. Comp. Endocrinol. 2002, 127, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Samllur, J.; Wernick, M.B.; Zsivanovits, P. Therapeutic Management of Pododermatitis in Falcon Medicine: Historical and Modern Perspective. Arch. Vet. Anim. Sci. 2021, 3, 11. [Google Scholar]
- Washburn, B.E.; Millspaugh, J.J.; Schulz, J.H.; Jones, S.B.; Mong, T. Using fecal glucocorticoids for stress assessment in mourning doves. Condor 2003, 105, 696–706. [Google Scholar] [CrossRef]
- Möstl, E.; Rettenbacher, S.; Palme, R. Measurement of Corticosterone Metabolites in Birds’ Droppings: An Analytical Approach. Ann. N. Y. Acad. Sci. 2005, 1046, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Palme, R.; Touma, C.; Arias, N.; Dominchin, M.F.; Lepschy, M. Steroid Extraction: Get the Best out of Faecal Samples. Wien. Tierärztliche Monatsschrift 2013, 100, 238–246. [Google Scholar]
- Millspaugh, J.J.; Washburn, B.E. Use of Fecal Glucocorticoid Metabolite Measures in Conservation Biology Research: Considerations for Application and Interpretation. Gen. Comp. Endocrinol. 2004, 138, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Möstl, E.; Maggs, J.L.; Schrötter, G.; Besenfelder, U.; Palme, R. Measurement of Cortisol Metabolites in Faeces of Ruminants. Vet. Res. Commun. 2002, 26, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Touma, C.; Sachser, N.; Möstl, E.; Palme, R. Effects of Sex and Time of Day on Metabolism and Excretion of Corticosterone in Urine and Feces of Mice. Gen. Comp. Endocrinol. 2003, 130, 267–278. [Google Scholar] [CrossRef]
- Ganswindt, A.; Heistermann, M.; Borragan, S.; Hodges, J.K. Assessment of Testicular Endocrine Function in Captive African Elephants by Measurement of Urinary and Fecal Androgens. Zoo Biol. 2002, 21, 27–36. [Google Scholar] [CrossRef]
- Kotrschal, K.; Dittami, J.; Hirschenhauser, K.; Möstl, E.; Peczely, P. Effects of Physiological and Social Challenges in Different Seasons on Fecal Testosterone and Corticosterone in Male Domestic Geese (Anser domesticus). Acta Ethologica 2000, 2, 115–122. [Google Scholar] [CrossRef]
- Baltic, M.; Jenni-Eiermann, S.; Arlettaz, R.; Palme, R. A Noninvasive Technique to Evaluate Human-Generated Stress in the Black Grouse. Ann. N. Y. Acad. Sci. 2005, 1046, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Herring, G.; Gawlik, D.E. Stability of Avian Fecal Corticosterone Metabolite Levels in Frozen Avian Feces. J. Wildl. Manag. 2009, 73, 1010–1013. [Google Scholar] [CrossRef]
- Ramos-Güivas, B.; Jawor, J.M.; Wright, T.F. Seasonal Variation in Fecal Glucocorticoid Levels and Their Relationship to Reproductive Success in Captive Populations of an Endangered Parrot. Diversity 2021, 13, 617. [Google Scholar] [CrossRef]
- Goymann, W. Noninvasive Monitoring of Hormones in Bird Droppings: Physiological Validation, Sampling, Extraction, Sex Differences, and the Influence of Diet on Hormone Metabolite Levels. Ann. N. Y. Acad. Sci. 2005, 1046, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Hayward, L.S.; Booth, R.K.; Wasser, S.K. Eliminating the Artificial Effect of Sample Mass on Avian Fecal Hormone Metabolite Concentration. Gen. Comp. Endocrinol. 2010, 169, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Lèche, A.; Busso, J.M.; Navarro, J.L.; Hansen, C.; Marin, R.H.; Martella, M.B. Non-Invasive Monitoring of Adrenocortical Activity in Greater Rhea (Rhea americana) by Measuring Fecal Glucocorticoid Metabolites. J. Ornithol. 2011, 152, 839–847. [Google Scholar] [CrossRef]
- Sheriff, M.J.; Dantzer, B.; Delehanty, B.; Palme, R.; Boonstra, R. Measuring Stress in Wildlife: Techniques for Quantifying Glucocorticoids. Oecologia 2011, 166, 869–887. [Google Scholar] [CrossRef] [PubMed]
- Hirschenhauser, K.; Mostl, E.; Wallner, B.; Dittami, J.; Kotrschal, K. Endocrine and Behavioural Responses of Male Greylag Geese (Anser anser) to Pairbond Challenges during the Reproductive Season. Ethology 2000, 106, 63–77. [Google Scholar] [CrossRef]
- Hämäläinen, A.; Heistermann, M.; Fenosoa, Z.S.E.; Kraus, C. Evaluating Capture Stress in Wild Gray Mouse Lemurs via Repeated Fecal Sampling: Method Validation and the Influence of Prior Experience and Handling Protocols on Stress Responses. Gen. Comp. Endocrinol. 2014, 195, 68–79. [Google Scholar] [CrossRef]
- Rehnus, M.; Wehrle, M.; Palme, R. Mountain Hares Lepus Timidus and Tourism: Stress Events and Reactions. J. Appl. Ecol. 2014, 51, 6–12. [Google Scholar] [CrossRef]
- Dehnhard, M.; Clauss, M.; Lechner-Doll, M.; Meyer, H.H.D.; Palme, R. Noninvasive Monitoring of Adrenocortical Activity in Roe Deer (Capreolus capreolus) by Measurement of Fecal Cortisol Metabolites. Gen. Comp. Endocrinol. 2001, 123, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Young, K.M.; Walker, S.L.; Lanthier, C.; Waddell, W.T.; Monfort, S.L.; Brown, J.L. Noninvasive Monitoring of Adrenocortical Activity in Carnivores by Fecal Glucocorticoid Analyses. Gen. Comp. Endocrinol. 2004, 137, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Munerato, M.; Marques, J.; Caulkettt, N.; Tomás, W.; Zanetti, E.; Trovati, R.; Pereira, G.; Palme, R. Hormonal and Behavioural Stress Responses to Capture and Radio-Collar Fitting in Free-Ranging Pampas Deer (Ozotoceros bezoarticus). Anim. Welf. 2015, 24, 437–446. [Google Scholar] [CrossRef]
- Fowler, G.S. Behavioral and Hormonal Responses of Magellanic Penguins (Spheniscus magellanicus) to Tourism and Nest Site Visitation. Biol. Conserv. 1999, 90, 143–149. [Google Scholar] [CrossRef]
- Cavigelli, S.A.; Monfort, S.L.; Whitney, T.K.; Mechref, Y.S.; Novotny, M.; McClintock, M.K. Frequent Serial Fecal Corticoid Measures from Rats Reflect Circadian and Ovarian Corticosterone Rhythms. J. Endocrinol. 2005, 184, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Wolf, T.E.; De Haast, A.R.; Meyer, L.; Gerber, D.; Ganswindt, A. Measuring Faecal Glucocorticoid Metabolite Concentrations as an Indicator of Stress in Blue Wildebeest (Connochaetes taurinus). Afr. J. Wildl. Res. 2021, 51, 90–99. [Google Scholar] [CrossRef]
- Mashburn, K.L.; Atkinson, S. Seasonal and Predator Influences on Adrenal Function in Adult Steller Sea Lions: Gender Matters. Gen. Comp. Endocrinol. 2007, 150, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Touma, C.; Palme, R.; Sachser, N. Analyzing Corticosterone Metabolites in Fecal Samples of Mice: A Noninvasive Technique to Monitor Stress Hormones. Horm. Behav. 2004, 45, 10–22. [Google Scholar] [CrossRef]
- Teskey-Gerstl, A.; Bamberg, E.; Steineck, T.; Palme, R. Excretion of Corticosteroids in Urine and Faeces of Hares (Lepus europaeus). J. Comp. Physiol. B 2000, 170, 163–168. [Google Scholar] [CrossRef]
- Creel, S.; Creel, N.M.; Monfort, S.L. Radiocollaring and Stress Hormones in African Wild Dogs. Conserv. Biol. 1997, 11, 544–548. [Google Scholar] [CrossRef]
- Wingfield, J.C.; Maney, D.L.; Breuner, C.W.; Jacobs, J.D.; Lynn, S.; Ramenofsky, M.; Richardson, R.D. Ecological Bases of Hormone—Behavior Interactions: The “Emergency Life History Stage”. Am. Zool 1998, 38, 191–206. [Google Scholar] [CrossRef]
- Romero, L.M. Seasonal Changes in Plasma Glucocorticoid Concentrations in Free-Living Vertebrates. Gen. Comp. Endocrinol. 2002, 128, 1–24. [Google Scholar] [CrossRef]
- Goymann, W. On the Use of Non-Invasive Hormone Research in Uncontrolled, Natural Environments: The Problem with Sex, Diet, Metabolic Rate and the Individual. Methods Ecol. Evol. 2012, 3, 757–765. [Google Scholar] [CrossRef]
- Nunes, S.; Pelz, K.M.; Muecke, E.-M.; Holekamp, K.E.; Zucker, I. Plasma Glucocorticoid Concentrations and Body Mass in Ground Squirrels: Seasonal Variation and Circannual Organization. Gen. Comp. Endocrinol. 2006, 146, 136–143. [Google Scholar] [CrossRef]
- Fichtel, C.; Kraus, C.; Ganswindt, A.; Heistermann, M. Influence of Reproductive Season and Rank on Fecal Glucocorticoid Levels in Free-Ranging Male Verreaux’s Sifakas (Propithecus verreauxi). Horm. Behav. 2007, 51, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.M.; Meister, C.J.; Cyr, N.E.; Kenagy, G.J.; Wingfield, J.C. Seasonal Glucocorticoid Responses to Capture in Wild Free-Living Mammals. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008, 294, 614–622. [Google Scholar] [CrossRef]
- Huber, S.; Palme, R.; Arnold, W. Effects of Season, Sex, and Sample Collection on Concentrations of Fecal Cortisol Metabolites in Red Deer (Cervus elaphus). Gen. Comp. Endocrinol. 2003, 130, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, B.; McAdam, A.G.; Palme, R.; Boutin, S.; Boonstra, R. How Does Diet Affect Fecal Steroid Hormone Metabolite Concentrations? An Experimental Examination in Red Squirrels. Gen. Comp. Endocrinol. 2011, 174, 124–131. [Google Scholar] [CrossRef]
- Roth, J.D.; Dobson, F.S.; Neuhaus, P.; Abebe, A.; Barra, T.; Boonstra, R.; Edwards, P.D.; Gonzalez, M.A.; Hammer, T.L.; Harscouet, E.; et al. Territorial Scent-Marking Effects on Vigilance Behavior, Space Use, and Stress in Female Columbian Ground Squirrels. Horm. Behav. 2022, 139, 105111. [Google Scholar] [CrossRef]
- Siegel, H.S. Physiological Stress in Birds. BioScience 1980, 30, 529–534. [Google Scholar] [CrossRef]
- Cīrule, D.; Krama, T.; Krams, R.; Elferts, D.; Kaasik, A.; Rantala, M.J.; Mierauskas, P.; Luoto, S.; Krams, I.A. Habitat Quality Affects Stress Responses and Survival in a Bird Wintering under Extremely Low Ambient Temperatures. Sci. Nat. 2017, 104, 99. [Google Scholar] [CrossRef] [PubMed]
- Price, M. The impact of human disturbance on birds: A selective review. In Too Close for Comfort: Contentious Issues in Human-Wildlife Encounters; Lunney, D., Munn, A., Meikle, W., Eds.; Royal Zoological Society of New South Wales: Mosman, Australia, 2008; pp. 163–196. [Google Scholar]
- Lexen, E.; El-Bahr, S.M.; Sommerfeld-Stur, I.; Palme, R.; Möstl, E. Monitoring the Adrenocortical Response to Disturbances in Sheep by Measuring Glucocorticoid Metabolites in the Faeces. Wien. Tierarztl. Monat. 2008, 95, 64–71. [Google Scholar]
- Ganswindt, S.B.; Myburgh, J.G.; Cameron, E.Z.; Ganswindt, A. Non-Invasive Assessment of Adrenocortical Function in Captive Nile Crocodiles (Crocodylus niloticus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2014, 177, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, C.; Wachter, B.; Silinski-Mehr, S.; Ganswindt, A.; Bertschinger, H.; Hofer, H.; Dehnhard, M. Characterisation and Validation of an Enzyme-Immunoassay for the Non-Invasive Assessment of Faecal Glucocorticoid Metabolites in Cheetahs (Acinonyx jubatus). Gen. Comp. Endocrinol. 2013, 180, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.B.; Burroughs, R.E.; Laver, P.; Ganswindt, A. Non-Invasive Assessment of Adrenocortical Activity as a Measure of Stress in Leopards Panthera pardus. Afr. Zool. 2018, 53, 53–60. [Google Scholar] [CrossRef]
- Cockrem, J.F.; Silverin, B. Variation within and between Birds in Corticosterone Responses of Great Tits (Parus major). Gen. Comp. Endocrinol. 2002, 125, 197–206. [Google Scholar] [CrossRef]
- Millspaugh, J.J.; Washburn, B.E. Within-Sample Variation of Fecal Glucocorticoid Measurements. Gen. Comp. Endocrinol. 2003, 132, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Palme, R.; Robia, C.; Baumgartner, W.; Möstl, E. Transport Stress in Caftle as Reflected by an Increase in Faecal Cortisol Metabolite Concentrations. Vet. Rec. 2000, 146, 108–109. [Google Scholar] [CrossRef]
- Legagneux, P.; Gauthier, G.; Chastel, O.; Picard, G.; Bêty, J. Do Glucocorticoids in Droppings Reflect Baseline Level in Birds Captured in the Wild? A Case Study in Snow Geese. Gen. Comp. Endocrinol. 2011, 172, 440–445. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grundei, L.-L.; Wolf, T.E.; Brandes, F.; Schütte, K.; Freise, F.; Siebert, U.; Touma, C.; Pees, M. Validation of Fecal Glucocorticoid Metabolites as Non-Invasive Markers for Monitoring Stress in Common Buzzards (Buteo buteo). Animals 2024, 14, 1234. https://doi.org/10.3390/ani14081234
Grundei L-L, Wolf TE, Brandes F, Schütte K, Freise F, Siebert U, Touma C, Pees M. Validation of Fecal Glucocorticoid Metabolites as Non-Invasive Markers for Monitoring Stress in Common Buzzards (Buteo buteo). Animals. 2024; 14(8):1234. https://doi.org/10.3390/ani14081234
Chicago/Turabian StyleGrundei, Lara-Luisa, Tanja E. Wolf, Florian Brandes, Karolin Schütte, Fritjof Freise, Ursula Siebert, Chadi Touma, and Michael Pees. 2024. "Validation of Fecal Glucocorticoid Metabolites as Non-Invasive Markers for Monitoring Stress in Common Buzzards (Buteo buteo)" Animals 14, no. 8: 1234. https://doi.org/10.3390/ani14081234