Chemical Composition and Elements Concentration of Fillet, Spine and Bones of Common Carp (Cyprinus carpio) in Relation to Nutrient Requirements for Minerals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Determination of Proximate Composition
2.3. Determination of Mineral Content
2.4. Determination of Heavy Metals (Cd, Pb, Hg)
2.5. Assessment of Mineral Concentration in Relation to Nutrient Requirements
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Mineral Concentration
3.3. Heavy Metals
3.4. Mineral Concentration in Relation to Nutrient Requirements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Adámek, Z.; Mössmer, M.; Hauber, M. Current principles and issues affecting organic carp (Cyprinus carpio) pond farming. Aquaculture 2019, 512, 734261. [Google Scholar] [CrossRef]
- Tokur, B.; Ozkütük, S.; Atici, E.; Ozyurt, G.; Ozyurt, C.E. Chemical and sensory quality changes of fish fingers, made from mirror carp (Cyprinus carpio L., 1758), during frozen storage (−18 °C). Food Chem. 2006, 99, 335–341. [Google Scholar] [CrossRef]
- Raftowicz, M.; Struś, M.; Nadolny, M.; Kalisiak-Mędelska, M. The Importance of Price in Poland’s Carp Market. Sustainability 2020, 12, 10416. [Google Scholar] [CrossRef]
- Zander, K.; Feucht, Y. How to increase demand for carp? Consumer attitudes and preferences in Germany and Poland. Br. Food J. 2020, 122, 3267–3282. [Google Scholar] [CrossRef]
- Feucht, Y.; Zander, K. Report on the Potential of Selected Innovative Products in European Markets (SUCCESS); European Union: Braunschweig, Germany, 2018; Available online: https://literatur.thuenen.de/digbib_extern/dn060974.pdf (accessed on 23 August 2023).
- Tkaczewska, J.; Morawska, M.; Kulawik, P.; Zając, M. Characterization of carp (Cyprinus carpio) skin gelatin extracted using different pretreatments method. Food Hydrocoll. 2018, 81, 169–179. [Google Scholar] [CrossRef]
- Olsen, R.L.; Toppe, J.; Karunasagar, I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 2014, 36, 144–151. [Google Scholar] [CrossRef]
- Kandyliari, A.; Mallouchos, A.; Papandroulakis, N.; Golla, J.P.; Lam, T.T.; Sakellari, A.; Karavoltsos, S.; Vasiliou, V.; Kapsokefalou, M. Nutrient Composition and Fatty Acid and Protein Profiles of Selected Fish By-Products. Foods 2020, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Li, E.; Irshad, S.; Xiong, Z.; Xiong, H.; Shahbaz, H.M.; Siddique, F. Valorization of fisheries by-products: Challenges and technical concerns to food industry. Trends Food Sci. Technol. 2020, 99, 34–43. [Google Scholar] [CrossRef]
- Toppe, J.; Albrektsen, S.; Hope, B.; Aksnes, A. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comp. Biochem. Physiol. B 2007, 146, 395–401. [Google Scholar] [CrossRef]
- Nurnadia, A.A.; Azrina, A.; Amin, I.; Mohd Yunus, A.S.; Mohd Izuan Effendi, H. Mineral contents of selected marinefish and shellfish from the west coast of Peninsular Malaysia. Int. Food Res. J. 2013, 20, 431–437. [Google Scholar]
- Skałecki, P.; Florek, M.; Kędzierska-Matysek, M.; Poleszak, E.; Domaradzki, P.; Kaliniak-Dziura, A. Mineral and trace element composition of the roe and muscle tissue of farmed rainbow trout (Oncorhynchus mykiss) with respect to nutrient requirements: Elements in rainbow trout products. J. Trace Elem. Med. Biol. 2020, 62, 126619. [Google Scholar] [CrossRef] [PubMed]
- Malde, M.K.; Graff, I.E.; Siljander-Rasi, H.; Venäläinen, E.; Julshamn, K.; Pedersen, J.I.; Valaja, J. Fish bones—A highly available calcium source for growing pigs. J. Anim. Physiol. Anim. Nutr. 2010, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Martí;nez-Valverde, C.I.; Periago, M.J.; Santaella, M.; Ros, G. The content and nutritional significance of minerals on fish flesh in the presence and absence of bone. Food Chem. 2000, 71, 503–509. [Google Scholar] [CrossRef]
- Feldlite, M.; Juanicó, M.; Karplus, I.; Milstein, A. Towards a safe standard for heavy metals in reclaimed water used for fish aquaculture. Aquaculture 2008, 284, 115–126. [Google Scholar] [CrossRef]
- Nemati, M.; Huda, N.; Ariffin, F. Development of calcium supplement from fish bone wastes of yellowfin tuna (Thunnus albacares) and characterization of nutritional quality. Int. Food R. J. 2017, 24, 2419–2426. [Google Scholar]
- Hemung, B.O.; Yongsawatdigul, J.; Chin, K.B.; Limphirat, W.; Siritapetawee, J. Silver carp bone powder as natural calcium for fish sausage. J. Aquat. Food Prod. Technol. 2018, 27, 305–315. [Google Scholar] [CrossRef]
- Ohanenye, I.C.; Emenike, C.U.; Mensi, A.; Medina-Godoy, S.; Jin, J.; Ahmed, T.; Sun, X.; Udenigwe, C.C. Food fortification technologies: Influence on iron, zinc and vitamin A bioavailability and potential implications on micronutrient deficiency in sub-Saharan Africa. Sci. Afr. 2021, 11, e00667. [Google Scholar] [CrossRef]
- Malde, M.K.; Bügel, S.; Kristensen, M.; Malde, K.; Graff, I.E.; Pedersen, J.I. Calcium from salmon and cod bone is well absorbed in young healthy men: A double-blinded randomised crossover design. Nutr. Metab. 2010, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Chadare, F.J.; Idohou, R.; Nago, E.; Affonfere, M.; Agossadou, J.; Fassinou, T.K.; Kénou, C.; Honfo, S.; Azokpota, P.; Linnemann, A.R.; et al. Conventional and food-to-food fortification: An appraisal of past practices and lessons learned. Food Sci. Nutr. 2019, 7, 2781–2795. [Google Scholar] [CrossRef]
- Luu, P.H.; Nguyen, M.H. Recovery and utilization of calcium from fishbones byproducts as a rich calcium source. Vietnam J. Sci. Technol. 2009, 47, 91–103. [Google Scholar]
- Nemati, M.; Kamilah, H.; Huda, N.; Ariffin, F. In vitro calcium availability in bakery products fortified with tuna bone powder as a natural calcium source. Int. J. Food Sci. Nutr. 2016, 67, 535–540. [Google Scholar] [CrossRef]
- Chan, P.T.; Matanjun, P.; Shapawi, R.; Budiman, C.; Lee, J.S. Chemical composition of the fillet, fins, bones and viscera of hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus). J. Phys. Conf. Ser. 2019, 1358, 012008. [Google Scholar] [CrossRef]
- Yin, T.; Du, H.; Zhang, J.; Xiong, S. Preparation and Characterization of Ultrafine Fish Bone Powder. J. Aquat. Food Prod. Technol. 2016, 25, 1045–1055. [Google Scholar] [CrossRef]
- Nawaz, A.; Li, E.; Irshad, S.; HHM, H.; Liu, J.; Shahbaz, H.M.; Ahmed, W.; Regenstein, J.M. Improved effect of autoclave processing on size reduction, chemical structure, nutritional, mechanical and in vitro digestibility properties of fish bone powder. Adv. Powder Technol. 2020, 31, 2513–2520. [Google Scholar] [CrossRef]
- The Patent Office of the Republic of Poland (UPRP). Device for recovering meat from fish skeletons after filleting, and method of meat recovering. PL Patent 241620, 15 June 2020. Document issued in Warsaw on the 7 of November 2022. [Google Scholar]
- PN-ISO 1442:2000; Meat and Meat Products—Determination of Moisture Content (Reference Method). Polish Committee for Standardization: Warszawa, Poland, 2013.
- PN-ISO 936:2000; Meat and Meat Products—Determination of Total Ash. Polish Committee for Standardization: Warszawa, Poland, 2013.
- PN-A-04018/Az3:2002; Produkty Rolniczo-żywnościowe—Oznaczanie azotu Metodą Kjeldahla i Przeliczanie na Białko. Polski Komitet Normalizacyjny: Warszawa, Poland, 2002.
- PN-ISO 1444:2000; Meat and Meat Products—Determination of Free Fat Content. Polish Committee for Standardization: Warszawa, Poland, 2013.
- Jeszka, J. Energia. In Żywienie Człowieka. Podstawy Nauki o Żywieniu; Gawęcki, J., Ed.; PWN: Warsaw, Poland, 2010; pp. 146–150. (In Polish) [Google Scholar]
- Hansen, R.G.; Wyse, B.W.; Sorenson, A.W. Nutritional Quality Index of Foods; AVI Publishing Co.: Westport, CT, USA, 1979. [Google Scholar]
- EU (European Union). Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:304:0018:0063:en:PDF (accessed on 12 February 2024).
- Kędzierska-Matysek, M.; Teter, A.; Skałecki, P.; Topyła, B.; Domaradzki, P.; Poleszak, E.; Florek, M. Residues of Pesticides and Heavy Metals in Polish Varietal Honey. Foods 2022, 11, 2362. [Google Scholar] [CrossRef] [PubMed]
- Glover-Amengor, M.; Ottah Atikpo, M.A.; Abbey, L.D.; Hagan, L.; Ayin, J.; Toppe, J. Proximate composition and consumer acceptability of three underutilized fish species and tuna frames. World Rural Observ. 2012, 4, pp. 65–70. Available online: www.sciencepub.net/rural/rural0402/011_9765rural0402_65_70.pdf (accessed on 19 February 2024).
- A’yun, N.Q.; Junianto; Suryadi, I.B.B.; Pratama, R.I. The Effect of Adding Catfish Bone Flour on the Preference Level of Catfish Meatballs. Asian J. Fish. Aquat. Res. 2022, 20, 1–9. [Google Scholar] [CrossRef]
- EFSA. Dietary Reference Values for Nutrients, Summary Report; EFSA Supporting Publication: Parma, Italy, 2017; p. e15121. [Google Scholar] [CrossRef]
- Makarova, G.P.; Lykasova, I.A.; Mukhamedyarova, Z.P.; Mizhevikina, A.S. The influence of nabicat on the chemical composition of carp meat. IOP Conf. Ser. Earth Environ. Sci. 2019, 341, 012159. [Google Scholar] [CrossRef]
- Pyz-Łukasik, R.; Paszkiewicz, W. Species Variations in the Proximate Composition, Amino Acid Profile, and Protein Quality of the Muscle Tissue of Grass Carp, Bighead Carp, Siberian Sturgeon, and Wels Catfish. J. Food Qual. 2018, 2, 2625401. [Google Scholar] [CrossRef]
- Alahmad, K.; Xia, W.; Jiang, Q.; Xu, Y. Influence of Drying Techniques on the Physicochemical, Nutritional, and Morphological Properties of Bighead Carp (Hypophthalmichthys nobilis) Fillets. Foods 2021, 10, 2837. [Google Scholar] [CrossRef]
- Skałecki, P.; Kaliniak-Dziura, A.; Domaradzki, P.; Florek, M.; Kępka, M. Fatty Acid Composition and Oxidative Stability of the Lipid Fraction of Skin-On and Skinless Fillets of Prussian Carp (Carassius gibelio). Animals 2020, 10, 778. [Google Scholar] [CrossRef]
- Maktoof, A.A.; Elherarlla, R.J.; Ethaib, S. Identifying the nutritional composition of fish waste, bones, scales, and fins. IOP Conf. Ser. Mater. Sci. Eng. 2020, 871, 012013. [Google Scholar] [CrossRef]
- Rosmawati; Abustam, E.; Tawali, A.B.; Said, M.I. Chemical Composition, Amino Acid and Collagen Content of Snakehead (Channa striata) Fish Skin and Bone. Sci. Res. J. 2018, VI, 1–4. [Google Scholar]
- Li, D.; Prinyawiwatkul, W.; Tan, Y.; Luo, Y.; Hong, H. Asian carp: A threat to American lakes, a feast on Chinese tables. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Njinkoue, J.M.; Gouado, I.; Tchoumbougnang, F.; Yanga Ngueguim, J.H.; Ndinteh, D.T.; Fomogne-Fodjo, C.Y.; Schweigert, F.J. Proximate composition, mineral content and fatty acid profile of two marine fishes from Cameroonian coast: Pseudotolithus typus (Bleeker, 1863) and Pseudotolithus elongatus (Bowdich, 1825). NFS J. 2016, 4, 27–31. [Google Scholar] [CrossRef]
- Vasconi, M.; Caprino, F.; Bellagamba, F.; Busetto, M.L.; Bernardi, C.; Puzzi, C.; Moretti, V.M. Fatty Acid Composition of Freshwater Wild Fish in Subalpine Lakes: A Comparative Study. Lipids 2015, 50, 283–302. [Google Scholar] [CrossRef] [PubMed]
- Kołakowska, A.; Kołakowski, E. Particular Nutritional Properties of Fish. Przem. Spoż. 2001, 6, 10–12. (In Polish) [Google Scholar]
- Ahmed, I.; Jan, K.; Fatma, S.; Dawood, M.A.O. Muscle proximate composition of various food fish species and their nutritional significance: A review. J. Anim. Physiol. Anim. Nutr. 2022, 106, 690–719. [Google Scholar] [CrossRef] [PubMed]
- Taheri, A.; Sarhaddi, N.; Bakhshizadeh, G.A.; Sharifian, S. Biochemical composition of Sardinella gibbosa, Clupeonella engrauliformis and Stolephorus indicus bones from the Oman Sea and Caspian Sea. Iran. J. Fish. Sci. 2017, 16, 1312–1324. [Google Scholar]
- Skałecki, P.; Florek, M.; Litwińczuk, A.; Staszowska, A.; Kaliniak, A. The nutritional value and chemical composition of muscle tissue of carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss Walb.) obtained from fish farms in the Lublin region. Sci. Ann. Polish Soc. Anim. Prod. 2013, 9, 57–62. Available online: http://rn.ptz.icm.edu.pl/wp-content/uploads/2013/01/Ska%C5%82ecki-ang.-2.pdf (accessed on 12 February 2024).
- Skałecki, P.; Florek, M.; Staszowska, A.; Kaliniak, A. Use value and quality of fillets of carp fish (Cyprinidae) reared in polyculture. Food. Sci. Technol. Qual. 2015, 1, 75–88. Available online: https://journal.pttz.org/wp-content/uploads/2015/07/06_Skalecki.pdf (accessed on 12 February 2024). [CrossRef]
- Skałecki, P.; Florek, M.; Kaliniak, A.; Kędzierska-Matysek, M.; Dmoch, M. Quality in use and nutritional value of the muscle tissue of zander (Sander lucioperca) and pike (Esox lucius) reared in polyculture. Sci. Ann. Polish Soc. Anim. Prod. 2016, 12, 33–38. Available online: https://zootechnical.com/api/files/view/1244836.pdf (accessed on 12 February 2024). [CrossRef]
- Tsibizova, M.; Bredikhina, O.; Gizbrecht, V.; Zarubin, N.; Lavruhina, E. Specialized food products of increased biological value on a fish basis. E3S Web Conf. 2023, 390, 02005. [Google Scholar] [CrossRef]
- Drewnowski, A. Concept of a nutritious food: Toward a nutrient density score. Am. J. Clin. Nutr. 2005, 82, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Nwanna, L.C.; Kolahsa, M.; Eisenreich, R.; Schwarz, F.J. Pre-treatment of dietary plant feedstuffs with phytase and its effect on growth and mineral concentration in common carp (Cyprinus carpio L.). J. Anim. Physiol. Anim. Nutr. 2008, 92, 677–682. [Google Scholar] [CrossRef]
- Skałecki, P.; Florek, M.; Pyć, A.; Kaliniak, A.; Staszowska, A. Comparison of physicochemical properties, fatty acid composition and mineral contents in common carp (Cyprinus carpio L.) fillet and the native traditional product carp ham. Pol. J. Food Nutr. Sci. 2016, 66, 311–319. [Google Scholar] [CrossRef]
- Liu, L.W.; Liang, X.-F.; Li, J.; Yuan, X.C.; Fang, J.G. Effects of supplemental phytic acid on the apparent digestibility and utilization of dietary amino acids and minerals in juvenile grass carp (Ctenopharyngodon idellus). Aquacult. Nutr. 2018, 24, 850–857. [Google Scholar] [CrossRef]
- Asgedom, A.G.; Destal, M.B.; Gebremedhin, Y.W. Bioaccumulation of heavy metals in fishes of Hashenge Lake, Tigray, northern highlands of Ethiopia. Am. J. Chem. 2012, 2, 326–334. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guideline: Sodium Intake for Adults and Children; WHO Document Production Services: Geneva, Switzerland, 2012; Available online: https://www.who.int/publications/i/item/9789241504836 (accessed on 16 September 2023).
- WHO (World Health Organization). Guideline: Potassium Intake for Adults and Children; WHO Document Production Services: Geneva, Switzerland, 2012; Available online: https://www.who.int/publications/i/item/9789241504829 (accessed on 16 September 2023).
- Younis, A.M.; Amin, H.F.; Alkaladi, A.; Mosleh, Y.Y.I. Bioaccumulation of Heavy Metals in Fish, Squids and Crustaceans from the Red Sea, Jeddah Coast, Saudi Arabia. Open J. Mar. Sci. 2015, 5, 369–378. [Google Scholar] [CrossRef]
- CAC (Codex Alimentarius Commission). Report of the 14th Session of the Codex Committee on Contaminants in Foods. Virtual, 3–7 and 13 May 2021. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-14%252FREPORT%252FFinalReport%252FREP21_CFe.pdf (accessed on 16 September 2023).
- EC (European Commission). Commission Regulation (EC) No. 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuff. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 16 September 2023).
- Winiarska-Mieczan, A.; Kwiecień, M.; Krusiński, R. The content of cadmium and lead in canned fish available in the Polish market. J. Verbr. Lebensm. 2015, 10, 165–169. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Florek, M.; Kwiecień, M.; Kwiatkowska, K.; Krusiński, R. Cadmium and lead content in chosen commercial fishery products consumed in Poland and risk estimations on fish consumption. Biol. Trace Elem. Res. 2018, 182, 373–380. [Google Scholar] [CrossRef]
- Staszowska, A.; Skałecki, P.; Florek, M.; Litwińczuk, A. Impact of fish species and their living environment on concentration of lead and estimated intake thereof from muscle tissue. Food Sci. Technol. Qual. 2013, 6, 60–68. (In Polish) [Google Scholar] [CrossRef]
- Jezierska, B.; Witeska, M. The Metal Uptake and Accumulation in Fish Living in Polluted Waters. In Soil and Water Pollution Monitoring, Protection and Remediation; Twardowska, I., Allen, H.E., Häggblom, M.M., Stefaniak, S., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 107–114. [Google Scholar] [CrossRef]
- WHO (World Health Organization). WHO Global Report on Sodium Intake Reduction; World Health Organization: Geneva, Switzerland, 2023; Available online: https://iris.who.int/bitstream/handle/10665/366393/9789240069985-eng.pdf?sequence=1 (accessed on 12 February 2024).
Specification | Spine (n = 15) | Bones (n = 15) | Fillet (n = 15) |
---|---|---|---|
Moisture | 56.0 B ± 0.8 | 31.8 A ± 0.2 | 77.8 C ± 0.5 |
Protein | 16.5 A ± 0.9 | 21.0 B ± 1.9 | 17.0 A ± 0.3 |
Lipids | 6.4 A ± 1.6 | 11.5 B ± 2.2 | 5.1 A ± 0.6 |
Ash | 21.8 B ± 0.8 | 36.2 C ± 0.6 | 1.2 A ± 0.1 |
Energy | 519 A ± 46 | 782 B ± 99 | 478 A ± 18 |
NQI | |||
Protein | 5.3 ± 0.8 | 4.7 ± 0.3 | 6.0 ± 0.6 |
Lipids | 1.5 ab ± 0.3 | 1.8 b ± 0.3 | 1.3 a ± 0.0 |
Element | Spine (n = 15) | Bones (n = 15) | Fillet (n = 15) |
---|---|---|---|
Macroelements | |||
K | 1267 A ± 90 | 1320 A ± 250 | 4005 B ± 351 |
Na | 2947 B ± 184 | 3047 B ± 451 | 401 A ± 20 |
Ca | 68,433 B ± 14,090 | 116,463 C ± 15,190 | 334 A ± 88 |
Mg | 836 B ± 202 | 1427 C ± 295 | 301 A ± 26 |
Microelements | |||
Fe | 1.6 A ± 0.9 | 2.7 A ± 0.1 | 6.9 B ± 2.3 |
Cu | 0.9 ± 0.1 | 1.4 ± 0.2 | 1.1 ± 0.3 |
Zn | 43.6 B ± 21.2 | 54.3 B ± 11.2 | 2.8 A ± 0.9 |
Mn | 5.2 B ± 1.3 | 8.1 C ± 1.5 | 0.9 A ± 0.2 |
Element | Spine (n = 15) | Bones (n = 15) | Fillet (n = 15) |
---|---|---|---|
Hg | – | – | 0.023 ± 0.010 |
Pb | 0.107 ± 0.064 | 0.109 ± 0.021 | 0.035 ± 0.017 |
Cd | 0.002 A ± 0.000 | 0.003 A ± 0.001 | 0.006 B ± 0.001 |
Element | Population Group | mg per Day * | Dietary Reference Value (DRV) | Spine | Bones | Fillet |
---|---|---|---|---|---|---|
K | women | 3500 a | %AI | 0 | 0 | 11 |
men | 3500 a | 0 | 0 | 11 | ||
children | 1450 b | 1 | 1 | 28 | ||
Na | women | 2000 a | %AI | 2 | 2 | 3 |
men | 2000 a | 2 | 2 | 3 | ||
children | 1500 b | 2 | 3 | 3 | ||
Ca | women | 975 c | %PRI | 70 | 119 | 3 |
men | 975 c | 70 | 119 | 3 | ||
children | 800 d | 86 | 146 | 4 | ||
Mg | women | 300 a | %AI | 3 | 5 | 10 |
men | 350 a | 2 | 4 | 9 | ||
children | 230 e | 4 | 6 | 13 | ||
Fe | women | 16 a | %PRI | 0 | 0 | 4 |
men | 11 a | 0 | 0 | 6 | ||
children | 9 f | 0 | 0 | 8 | ||
Cu | women | 1.3 a | %AI | 1 | 1 | 9 |
men | 1.6 a | 1 | 1 | 7 | ||
children | 1 e | 1 | 1 | 11 | ||
Zn | women | 10.125 g | %PRI | 4 | 5 | 3 |
men | 12.85 g | 3 | 4 | 2 | ||
children | 6.45 b | 7 | 8 | 4 | ||
Mn | women | 3 a | %AI | 2 | 3 | 3 |
men | 3 a | 2 | 3 | 3 | ||
children | 1.25 b | 4 | 6 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaliniak-Dziura, A.; Skałecki, P.; Florek, M.; Kędzierska-Matysek, M.; Sobczak, P. Chemical Composition and Elements Concentration of Fillet, Spine and Bones of Common Carp (Cyprinus carpio) in Relation to Nutrient Requirements for Minerals. Animals 2024, 14, 1311. https://doi.org/10.3390/ani14091311
Kaliniak-Dziura A, Skałecki P, Florek M, Kędzierska-Matysek M, Sobczak P. Chemical Composition and Elements Concentration of Fillet, Spine and Bones of Common Carp (Cyprinus carpio) in Relation to Nutrient Requirements for Minerals. Animals. 2024; 14(9):1311. https://doi.org/10.3390/ani14091311
Chicago/Turabian StyleKaliniak-Dziura, Agnieszka, Piotr Skałecki, Mariusz Florek, Monika Kędzierska-Matysek, and Paweł Sobczak. 2024. "Chemical Composition and Elements Concentration of Fillet, Spine and Bones of Common Carp (Cyprinus carpio) in Relation to Nutrient Requirements for Minerals" Animals 14, no. 9: 1311. https://doi.org/10.3390/ani14091311
APA StyleKaliniak-Dziura, A., Skałecki, P., Florek, M., Kędzierska-Matysek, M., & Sobczak, P. (2024). Chemical Composition and Elements Concentration of Fillet, Spine and Bones of Common Carp (Cyprinus carpio) in Relation to Nutrient Requirements for Minerals. Animals, 14(9), 1311. https://doi.org/10.3390/ani14091311