Potential Candidate Genes Associated with Litter Size in Goats: A Review
Simple Summary
Abstract
1. Introduction
2. Methodology for Literature Search
3. Potential Candidate Genes Associated with Litter Size in Goats
3.1. Bone Morphogenetic Protein (BMP) Family Genes and Growth and Differentiation Factor 9 (GDF9) Role in Regulating Litter Size in Goats
3.2. The AMH, SMAD, and INH Genes’ Association with Litter Size in Goats
3.3. Inhibins and Their Role in Regulating Litter Size in Goats
3.4. Gonadotropin-Releasing Hormone Receptor (GnRHR) Gene and Its Role in Litter Size
3.5. Regulation of Reproductive Function by KISS1/GPR54 Signaling Pathway
3.6. Role of KITLG, AKAP, and PPP Family Genes in Goat Litter Size
3.7. POU (Pit-Oct-Unc) Class 1 Homeobox 1 Gene (POU1F1) Association with Litter Size in Goats
Genes | Goat Breed | References |
---|---|---|
LRRTM4 | Youzhou dark goats | [7] |
BMP4 | Indian goats | [20] |
BMP15, BMPR1B, GDF9 | Black Bengal goats | [26,29,33] |
GDF9 | Goats | [37] |
AHM | Chuanzhong black and Dazu black goats | [41,42] |
CCNB2, DNMT3B, SMAD2, AMHR2, FGFR1, KDM6A | Laoshan dairy goats | [47] |
SMAD2 | Goats | [59,60] |
INHA | Jining Grey, Hainan black, Liaoning Cashmere, Wendeng, Taihang goats, Kalahari Red, West African Dwarf, and Red Sokoto | [66,68,69] |
GnRHR | West African Dwarf, Shaanan, Boer, and Malabar goats | [72,73,76,77] |
KISS1 | Guanzhong, Saanen, Boer black, Jining Grey Barbari, Beetal, Sirohi, Sojat, Cypriot, and Iraqi goats | [88,89,90,92,93] |
MIR9, GABRA5, AKAP13 | Markhoz goats | [107,112] |
AKAP12 | Shaanbei white cashmere goats | [113] |
PPP6C | Shaanbei white cashmere goats | [117] |
PPP3CA | Shaanbei white cashmere goats | [118] |
GH | Boer and Matou | [129] |
PRLR, IGF1, LEP | Egyptian Zaraibi goats | [130] |
PRLR, LHβ | Boer goats | [132] |
BLM | Guizhou white goats | [133] |
ACSS2, HECW2, KDR, LHCGR, NAMPT, PTGFR, TFPI | Goats | [134] |
ITGAV, LRP4, CDH23, TPRN, RYR2, CELSR1 | Beichuan white goats | [135] |
BMP15, BMPR1B | Kacang and Boerka goats | [136] |
GHRL | Malabari and Attappady black goats | [137] |
OLR1 | Guizhou white goats | [138] |
CSN3, TCF4 | Hechuan white goat, Banjiao goat, and Youzhou dark goats | [139] |
CTSS | Qianbei Ma goats | [140] |
PPP2R5C, SLC39A5 | Yunshang black goats | [141] |
KITLG, KISS1, GHR | Nubian goats | [102] |
CTSD | Qianbei Ma | [142] |
INHA | Malabari goats | [143] |
PRP1, PRP6 | Laoshan dairy goats | [144] |
SIRT3 | Malabari and Attappady Black goats | [145] |
GnRHR | Non-descript local Sri Lankan goats | [146] |
KISS1 | Damascus and Zaribi goats | [147] |
NGF | Malabari and Attappady Black goats | [148,149] |
PRLR | Boer and Macheng Black goats | [150] |
BMPR1B, GDF9, BMP15, FSH, FSHR, POU1F1, PRLR, KISS1, GPR54, GH, INH, CART, GnRH, GnRHR, LH, BMP4, KITLG, MT2, CYP21, AANAT | Goats | [151] |
FER1L4, SRD5A2 | Anhui white goats | [152] |
BMP15 | Alpine, Zaraibi, Baladi, Funiu white, and Taihang black goats | [27,30,153], |
FSHB | Boer and Matou black goats | [154] |
4. Gene Ontology (GO) and KEGG Enrichment Analyses of Goat Litter Size-Linked Genes and Their Association with Reproductive Functions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited Review: Current Production Trends, Farm Structures, and Economics of the Dairy Sheep and Goat Sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Nguyen, C.O.; Chau, T.M.L.; Nguyen, D.Q.D.; Han, A.T.; Le, T.T.H. Goat Production, Supply Chains, Challenges, and Opportunities for Development in Vietnam: A Review. Animals 2023, 13, 2546. [Google Scholar] [CrossRef]
- Notter, D.R. Genetic Improvement of Reproductive Efficiency of Sheep and Goats. Anim. Reprod. Sci. 2012, 130, 147–151. [Google Scholar] [CrossRef] [PubMed]
- de Lima, L.G.; de Souza, N.O.; Rios, R.R.; de Melo, B.A.; dos Santos, L.T.; Silva, K.D.; Murphy, T.W.; Fraga, A.B. Advances in Molecular Genetic Techniques Applied to Selection for Litter Size in Goats (Capra hircus): A Review. J. Appl. Anim. Res. 2020, 48, 38–44. [Google Scholar] [CrossRef]
- Lee, H.L.; Lin, M.Y.; Wang, H.S.; Hsu, C.B.; Lin, C.Y.; Chang, S.C.; Shen, P.C.; Chang, H.L. Direct–Maternal Genetic Parameters for Litter Size and Body Weight of Piglets of a New Black Breed for the Taiwan Black Hog Market. Animals 2022, 12, 3295. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.; Rout, M.; Mishra, S.P.; Sahoo, S.S.; Nayak, G.; Patra, R.C. Genetic Polymorphism of Prolific Genes in Goat—A Brief Review. Explor. Anim. Med. Res. 2017, 7, 132–141. [Google Scholar]
- Sun, X.; Niu, Q.; Jiang, J.; Wang, G.; Zhou, P.; Li, J.; Chen, C.; Liu, L.; Xu, L.; Ren, H. Identifying Candidate Genes for Litter Size and Three Morphological Traits in Youzhou Dark Goats Based on Genome-Wide SNP Markers. Genes 2023, 14, 1183. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Hou, B.; Yang, C.; Li, Y.; Sun, B.; Guo, Y.; Deng, M.; Liu, D.; Liu, G. Comparative Hypothalamic Transcriptome Analysis Reveals Crucial mRNAs, lncRNAs, and circRNAs Affecting Litter Size in Goats. Genes 2023, 14, 444. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Mao, M.; Dong, S.; Deng, M.; Sun, B.; Guo, Y.; Li, Y.; Liu, D.; Liu, G. Transcriptome Analysis Reveals mRNAs and Long Non-Coding RNAs Associated with Fecundity in the Hypothalamus of High- and Low-Fecundity Goat. Front. Vet. Sci. 2023, 10, 1145594. [Google Scholar] [CrossRef]
- Mao, S.; Dong, S.; Hou, B.; Li, Y.; Sun, B.; Guo, Y.; Deng, M.; Liu, D.; Liu, G. Transcriptome Analysis Reveals Pituitary lncRNA, circRNA, and mRNA Affecting Fertility in High- and Low-Yielding Goats. Front. Genet. 2023, 14, 1303031. [Google Scholar] [CrossRef]
- Liang, C.; Han, M.; Zhou, Z.; Liu, Y.; He, X.; Jiang, Y.; Ouyang, Y.; Hong, Q.; Chu, M. Hypothalamic Transcriptome Analysis Reveals the Crucial MicroRNAs and mRNAs Affecting Litter Size in Goats. Front. Vet. Sci. 2021, 8, 747100. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Deng, M.; Zou, X.; Zhao, Z.; Huang, S.; Liu, D.; Liu, G. Identification and Comparative Analysis of Long Non-Coding RNAs in High- and Low-Fecundity Goat Ovaries during Estrus. Front. Genet. 2021, 12, 648158. [Google Scholar] [CrossRef] [PubMed]
- Lian, Z.; Zou, X.; Han, Y.; Deng, M.; Sun, B.; Guo, Y.; Zhou, L.; Liu, G.; Liu, D.; Li, Y. Role of mRNAs and Long Non-Coding RNAs in Regulating the Litter Size Trait in Chuanzhong Black Goats. Reprod. Domest. Anim. 2020, 55, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Abuzahra, M.; Abu Eid, L.; Effendi, M.H.; Mustofa, I.; Lamid, M.; Rehman, S. Polymorphism Studies and Candidate Genes Associated with Litter Size Traits in Indonesian Goats: A Systematic Review. F1000Research 2023, 12, 61. [Google Scholar] [CrossRef]
- Getaneh, M.; Alemayehu, K. Candidate Genes Associated with Economically Important Traits in Dairy Goats. Cogent Food Agric. 2022, 8, 2149131. [Google Scholar] [CrossRef]
- Gootwine, E. Invited Review: Opportunities for Genetic Improvement toward Higher Prolificacy in Sheep. Small Rumin. Res. 2020, 186, 106090. [Google Scholar] [CrossRef]
- Zonaed Siddiki, A.M.; Miah, G.; Islam, M.S.; Kumkum, M.; Rumi, M.H.; Baten, A.; Hossain, M.A. Goat Genomic Resources: The Search for Genes Associated with Its Economic Traits. Int. J. Genom. 2020, 2020, 5940205. [Google Scholar] [CrossRef] [PubMed]
- Fountas, S.; Petinaki, E.; Bolaris, S.; Kargakou, M.; Dafopoulos, S.; Zikopoulos, A.; Moustakli, E.; Sotiriou, S.; Dafopoulos, K. The Roles of GDF-9, BMP-15, BMP-4, and EMMPRIN in Folliculogenesis and In Vitro Fertilization. J. Clin. Med. 2024, 13, 3775. [Google Scholar] [CrossRef]
- Belli, M.; Shimasaki, S. Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function. Vitam. Horm. 2018, 107, 317–348. [Google Scholar] [CrossRef]
- Sharma, R.; Ahlawat, S.; Maitra, A.; Roy, M.; Mandakmale, S.; Tantia, M.S. Polymorphism of BMP4 Gene in Indian Goat Breeds Differing in Prolificacy. Gene 2013, 532, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Christoforou, E.R.; Pitman, J.L. Intrafollicular Growth Differentiation Factor 9: Bone Morphogenetic Protein 15 Ratio Determines Litter Size in Mammals. Biol. Reprod. 2019, 100, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Paulini, F.; Melo, E.O. The Role of Oocyte-Secreted Factors GDF9 and BMP15 in Follicular Development and Oogenesis. Reprod. Domest. Anim. 2011, 46, 354–361. [Google Scholar] [CrossRef]
- Spicer, L.J.; Aad, P.Y.; Allen, D.T.; Mazerbourg, S.; Payne, A.H.; Hsueh, A.J. Growth Differentiation Factor 9 (GDF9) Stimulates Proliferation and Inhibits Steroidogenesis by Bovine Theca Cells: Influence of Follicle Size on Responses to GDF9. Biol. Reprod. 2008, 78, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Nanda, R.; Samad, H.A.; Maurya, V.P.; Singh, G.; Chouhan, V.S. Transcriptional Profiling of GDF9 and ITS Signaling Receptors in Goat Granulosa and Theca Cells. Indian J. Small Rumin. 2024, 30, 41–45. [Google Scholar] [CrossRef]
- Chu, M.X.; Lu, L.; Feng, T.; Di, R.; Cao, G.L.; Wang, P.Q.; Fang, L.; Ma, Y.H.; Li, K. Polymorphism of Bone Morphogenetic Protein 4 Gene and Its Relationship with Litter Size of Jining Grey Goats. Mol. Biol. Rep. 2011, 38, 4315–4320. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Shaha, M.; Gupta, M.D.; Dutta, A.; Miazi, O.F. Polymorphism of Fecundity Genes (BMP15 and GDF9) and Their Association with Litter Size in Bangladeshi Prolific Black Bengal Goat. Trop. Anim. Health Prod. 2021, 53, 230. [Google Scholar] [CrossRef] [PubMed]
- Zergani, E.; Rashidi, A.; Rostamzadeh, J.; Razmkabir, M.; Tetens, J. Meta-Analysis of Association between c.963A>G Single-Nucleotide Polymorphism on BMP15 Gene and Litter Size in Goats. Arch. Anim. Breed. 2022, 65, 309–318. [Google Scholar] [CrossRef]
- Liandris, E.; Kominakis, A.; Andreadou, M.; Kapeoldassi, K.; Chadio, S.; Tsiligianni, T.; Gazouli, M.; Ikonomopoulos, I. Associations between Single Nucleotide Polymorphisms of GDF9 and BMP15 Genes and Litter Size in Two Dairy Sheep Breeds of Greece. Small Rumin. Res. 2012, 107, 16–21. [Google Scholar] [CrossRef]
- Ahlawat, S.; Sharma, R.; Roy, M.; Tantia, M.S.; Prakash, V. Association Analysis of Novel SNPs in BMPR1B, BMP15 and GDF9 Genes with Reproductive Traits in Black Bengal Goats. Small Rumin. Res. 2015, 132, 92–98. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, N.; Wang, Z.; Bai, J. Polymorphism of Exon 2 of BMP15 Gene and Its Relationship with Litter Size of Two Chinese Goats. Asian-Australas. J. Anim. Sci. 2011, 24, 905–911. [Google Scholar] [CrossRef]
- Yue, C.; Bai, W.L.; Zheng, Y.Y.; Hui, T.Y.; Sun, J.M.; Guo, D.; Guo, S.L.; Wang, Z.Y. Correlation Analysis of Candidate Gene SNP for High-Yield in Liaoning Cashmere Goats with Litter Size and Cashmere Performance. Anim. Biotechnol. 2021, 32, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Shokrollahi, B.; Morammazi, S. Polymorphism of GDF9 and BMPR1B Genes and Their Association with Litter Size in Markhoz Goats. Reprod. Domest. Anim. 2018, 53, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, S.; Sharma, R.; Roy, M.; Mandakmale, S.; Prakash, V.; Tantia, M.S. Genotyping of Novel SNPs in BMPR1B, BMP15, and GDF9 Genes for Association with Prolificacy in Seven Indian Goat Breeds. Anim. Biotechnol. 2016, 27, 199–207. [Google Scholar] [CrossRef] [PubMed]
- An, X.P.; Hou, J.X.; Zhao, H.B.; Li, G.; Bai, L.; Peng, J.Y.; Yan, M.Q.; Song, Y.X.; Wang, J.G.; Cao, B.Y. Polymorphism Identification in Goat GNRH1 and GDF9 Genes and Their Association Analysis with Litter Size. Anim. Genet. 2013, 44, 234–238. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.; Wang, K.; Yan, H.; Pan, C.; Chen, H.; Liu, J.; Zhu, H.; Qu, L.; Lan, X. Two Strongly Linked Single Nucleotide Polymorphisms (Q320P and V397I) in GDF9 Gene Are Associated with Litter Size in Cashmere Goats. Theriogenology 2019, 125, 115–121. [Google Scholar] [CrossRef]
- Shaha, M.; Miah, G.; Lima, A.; Miazi, O.F.; Gupta, M.D.; Das, A. Identification of Polymorphisms in GDF9 and BMP15 Genes in Jamunapari and Crossbred Goats in Bangladesh. Trop. Anim. Health Prod. 2022, 54, 350. [Google Scholar] [CrossRef]
- Mahmoudi, P.; Rashidi, A.; Rostamzadeh, J.; Razmkabir, M. Association between c.1189G>A Single Nucleotide Polymorphism of GDF9 Gene and Litter Size in Goats: A Meta-Analysis. Anim. Reprod. Sci. 2019, 209, 106140. [Google Scholar] [CrossRef] [PubMed]
- Arefnejad, B.; Mehdizadeh, Y.; Javanmard, A.; Zamiri, M.J.; Niazi, A. Novel Single Nucleotide Polymorphisms (SNPs) in Two Oogenesis-Specific Genes (BMP15, GDF9) and Their Association with Litter Size in Markhoz Goat (Iranian Angora). Iran. J. Appl. Anim. Sci. 2018, 8, 91–99. [Google Scholar]
- Chu, M.X.; Wu, Z.H.; Feng, T.; Cao, G.L.; Fang, L.; Di, R.; Huang, D.W.; Li, X.W.; Li, N. Polymorphism of GDF9 Gene and Its Association with Litter Size in Goats. Vet. Res. Commun. 2011, 35, 329–336. [Google Scholar] [CrossRef]
- Knight, P.G.; Glister, C. TGF-β Superfamily Members and Ovarian Follicle Development. Reproduction 2006, 132, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ye, J.; Liu, J.; Li, Z.; Deng, M.; Guo, Y.; Liu, G.; Sun, B.; Li, Y.; Liu, D. Whole-Genome Sequencing Identified Candidate Genes Associated with High and Low Litter Size in Chuanzhong Black Goats. Front. Vet. Sci. 2024, 11, 1420164. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.G.; Zeng, Y.; Huang, Y.F.; Huang, D.L.; Peng, P.; Na, R.S. A Nonsynonymous SNP within the AMH Gene Is Associated with Litter Size in Dazu Black Goats. Anim. Biotechnol. 2022, 33, 992–996. [Google Scholar] [CrossRef]
- Kharayat, N.S.; Parameshwarappa, M.A.; Ramdas, G.A.; Bisht, D.; Gautam, S.; Singh, S.K.; Krishnaswamy, N.; Chand, K.; Rialch, A.; Chandra, P.; et al. Anti-Müllerian Hormone Profile and Its Association with Ovarian Parameters in the Chaugarkha Goat. Small Rumin. Res. 2024, 230, 107165. [Google Scholar] [CrossRef]
- Monniaux, D.; Baril, G.; Laine, A.L.; Jarrier, P.; Poulin, N.; Cognié, J.; Fabre, S. Anti-Müllerian Hormone as a Predictive Endocrine Marker for Embryo Production in the Goat. Reproduction 2011, 142, 845–854. [Google Scholar] [CrossRef]
- Vernunft, A.; Schwerhoff, M.; Viergutz, T.; Diederich, M.; Kuwer, A. Anti-Müllerian Hormone Levels in Plasma of Holstein-Friesian Heifers as a Predictive Parameter for Ovum Pickup and Embryo Production Outcomes. J. Reprod. Dev. 2015, 61, 74–79. [Google Scholar] [CrossRef]
- Turgut, A.O.; Koca, D. Anti-Müllerian Hormone as a Promising Novel Biomarker for Litter Size in Romanov Sheep. Reprod. Domest. Anim. 2024, 59, e14692. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.N.; Zhai, H.L.; Cheng, M.; Ma, J.Y.; Cheng, S.F.; Ge, W.; Zhang, G.L.; Wang, J.J.; Zhang, R.Q.; Wang, X.; et al. Whole-Genome Scanning for the Litter Size Trait Associated Genes and SNPs under Selection in Dairy Goat (Capra hircus). Sci. Rep. 2016, 6, 38096. [Google Scholar] [CrossRef] [PubMed]
- Saneyasu, T.; Honda, K.; Kamisoyama, H. Myostatin Increases Smad2 Phosphorylation and Atrogin-1 Expression in Chick Embryonic Myotubes. J. Poult. Sci. 2019, 56, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Villacorte, M.; Delmarcelle, A.-S.; Lernoux, M.; Bouquet, M.; Lemoine, P.; Bolsee, J.; Umans, L.; Lopes, S.C.d.S.; Van Der Smissen, P.; Sasaki, T.; et al. Thyroid Follicle Development Requires Smad1/Smad5- and Endothelial-Dependent Basement Membrane Assembly. Development 2016, 134, 171. [Google Scholar] [CrossRef]
- McReynolds, L.J.; Gupta, S.; Figueroa, M.E.; Mullins, M.C.; Evans, T. Smad1 and Smad5 Differentially Regulate Embryonic Hematopoiesis. Blood 2007, 110, 3881–3890. [Google Scholar] [CrossRef] [PubMed]
- Kaivo-Oja, N.; Jeffery, L.A.; Ritvos, O.; Mottershead, D.G. Smad Signaling in the Ovary. Reprod. Biol. Endocrinol. 2006, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-S.; Gao, L.; Xie, X.-L.; Ren, Y.-L.; Shen, Z.-Q.; Wang, F.; Shen, M.; Eyϸórsdóttir, E.; Hallsson, J.H.; Kiseleva, T.; et al. Genome-Wide Association Analyses Highlight the Potential for Different Genetic Mechanisms for Litter Size Among Sheep Breeds. Front. Genet. 2018, 9, 118. [Google Scholar] [CrossRef]
- Weiss, A.; Attisano, L. The TGFβ Superfamily Signaling Pathway. WIREs Dev. Biol. 2013, 2, 47–63. [Google Scholar] [CrossRef]
- Kumar, S.; Rajput, P.K.; Bahire, S.V.; Jyotsana, B.; Kumar, V.; Kumar, D. Differential Expression of BMP/SMAD Signaling and Ovarian-Associated Genes in the Granulosa Cells of FecB Introgressed GMM Sheep. Syst. Biol. Reprod. Med. 2020, 66, 185–201. [Google Scholar] [CrossRef]
- Bahire, S.V.; Rajput, P.K.; Kumar, V.; Kumar, D.; Kataria, M.; Kumar, S. Quantitative Expression of mRNA Encoding BMP/SMAD Signaling Genes in the Ovaries of Booroola Carrier and Non-Carrier GMM Sheep. Reprod. Domest. Anim. 2019, 54, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.J.; Maretto, S.; Islam, A.; Bikoff, E.K.; Robertson, E.J. Dose-Dependent Smad1, Smad5, and Smad8 Signaling in the Early Mouse Embryo. Dev. Biol. 2006, 296, 104–118. [Google Scholar] [CrossRef]
- Li, Q.; Pangas, S.A.; Jorgez, C.J.; Graff, J.M.; Weinstein, M.; Matzuk, M.M. Redundant Roles of SMAD2 and SMAD3 in Ovarian Granulosa Cells In Vivo. Mol. Cell. Biol. 2008, 28, 7001–7011. [Google Scholar] [CrossRef] [PubMed]
- Wijayanti, D.; Zhang, S.; Yang, Y.; Bai, Y.; Akhatayeva, Z.; Pan, C.; Zhu, H.; Qu, L.; Lan, X. Goat SMAD Family Member 1 (SMAD1): mRNA Expression, Genetic Variants, and Their Associations with Litter Size. Theriogenology 2022, 193, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Wijayanti, D.; Luo, Y.; Bai, Y.; Pan, C.; Qu, L.; Guo, Z.; Lan, X. New Insight into Copy Number Variations of Goat SMAD2 Gene and Their Associations with Litter Size and Semen Quality. Theriogenology 2023, 206, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Wijayanti, D.; Zhang, S.; Bai, Y.; Pan, C.; Chen, H.; Qu, L.; Guo, Z.; Lan, X. Investigation on mRNA Expression and Genetic Variation within Goat SMAD2 Gene and Its Association with Litter Size. Anim. Biotechnol. 2023, 34, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, X.; Qi, T.; Hui, Y.; Yan, H.; Qu, L.; Lan, X.; Pan, C. Whole-Genome Sequencing to Identify Candidate Genes for Litter Size and to Uncover the Variant Function in Goats (Capra hircus). Genomics 2021, 113, 142–150. [Google Scholar] [CrossRef]
- Kempisty, B.; Jackowska, M.; Woźna, M.; Antosik, P.; Piotrowska, H.; Zawierucha, P.; Bukowska, D.; Jaśkowski, J.M.; Nowicki, M.; Brüssow, K.P. Expression and Cellular Distribution of INHA and INHB Before and After In Vitro Cultivation of Porcine Oocytes Isolated from Follicles of Different Size. BioMed Res. Int. 2012, 2012, 742829. [Google Scholar] [CrossRef]
- Andreone, L.; Velásquez, E.V.; Abramovich, D.; Ambao, V.; Loreti, N.; Croxatto, H.B.; Parborell, F.; Tesone, M.; Campo, S. Regulation of Inhibin/Activin Expression in Rat Early Antral Follicles. Mol. Cell. Endocrinol. 2009, 309, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Abuzahra, M.; Wijayanti, D.; Effendi, M.H.; Mustofa, I.; Munyaneza, J.P.; Eid, L.A.; Ugbo, E.N. Association of INHA Gene Polymorphisms with Litter Size Trait in Indonesian Thin-Tailed Sheep. Trop. Anim. Sci. J. 2024, 47, 3. [Google Scholar] [CrossRef]
- Han, Y.; Jiang, T.; Liu, A.; Liu, L. Role and Regulatory Mechanism of Inhibin in Animal Reproductive System. Theriogenology 2023, 202, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Li, K.; Chen, S.; Man, C.; Wang, F.; Li, L. Association between INHA Gene Polymorphisms and Litter Size in Hainan Black Goats. PeerJ 2023, 11, e15381. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Z.; E, G.X.; Zeng, Y.; Han, Y.G.; Huang, Y.F.; Na, R.S. Three SNPs within Exons of INHA and ACVR2B Genes Are Significantly Associated with Litter Size in Dazu Black Goats. Reprod. Domest. Anim. 2021, 56, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Y.; He, Y.Q.; Ge, Y.; Chu, M.X.; Jin, M.; Zhang, Y.J.; Wang, J.Y.; Ma, X.K.; Di, R.; Huang, D.W.; et al. Polymorphism of Inhibin A Gene and Its Relationship with Litter Size in Chinese Indigenous Goat. J. Anim. Plant Sci. 2017, 27, 1488–1495. [Google Scholar]
- Isa, A.M.; Bemji, M.N.; Wheto, M.; Williams, T.J.; Ibeagha-Awemu, E.M. Mutations in Inhibin Alpha Gene and Their Association with Litter Size in Kalahari Red and Nigerian Goats. Livest. Sci. 2017, 203, 106–109. [Google Scholar] [CrossRef]
- Zoheir, K.M.; El-Halawany, N.; Harisa, G.I.; Yang, L. Preliminary Investigation on Activin-A as a Candidate Gene Affecting Litter Size in Goats. Pak. J. Zool. 2015, 47, 3. [Google Scholar]
- Wu, W.; Hua, G.; Yang, L.; Wen, Q.; Zhang, C.; Zoheir, K.M.; Chen, S. Association Analysis of the INHA Gene with Litter Size in Boer Goats. Small Rumin. Res. 2009, 82, 139–143. [Google Scholar] [CrossRef]
- Saranya, S.K.; Thomas, M.; Aravindakshan, T.V.; Venkatachalapathy, R.T.; Sukumaran, J.; Kanakkaparambil, R. Diplotype-Based Assessment of GNRHR Gene Polymorphisms and Their Role in Determining Litter Size at Birth in the Malabari Goat Population of South India. Small Rumin. Res. 2024, 233, 107229. [Google Scholar] [CrossRef]
- Bemji, M.N.; Isa, A.M.; Ibeagha-Awemu, E.M.; Wheto, M. Polymorphisms of Caprine GnRHR Gene and Their Association with Litter Size in West African Dwarf Goats. Mol. Biol. Rep. 2018, 45, 63–69. [Google Scholar] [CrossRef]
- Tang, B.; Huang, X.; Han, C.; Li, L.; Xie, K.; Li, X.; Bao, C.; Huang, Y.; Luo, B.; Huang, Z.; et al. SNP Detection of GnRHR Gene and Its Association with Litter Size Traits in Giant Panda. J. Anim. Plant Sci. 2019, 29, 2. [Google Scholar]
- Naor, Z. Signaling by G-Protein-Coupled Receptor (GPCR): Studies on the GnRH Receptor. Front. Neuroendocrinol. 2009, 30, 10–29. [Google Scholar] [CrossRef]
- Li, G.; Wu, H.P.; Fu, M.Z.; Zhou, Z.Q. Novel Single Nucleotide Polymorphisms of GnRHR Gene and Their Association with Litter Size in Goats. Arch. Anim. Breed. 2011, 54, 618–624. [Google Scholar] [CrossRef]
- Yang, W.; Tang, K.; Zhang, C.; Xu, D.; Wen, Q.; Yang, L. Polymorphism of the GnRHR Gene and Its Association with Litter Size in Boer Goats. S. Afr. J. Anim. Sci. 2011, 41, 398–402. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Hu, M.L.; Zhang, Z.J. Polymorphism of Exon 1, 2 of GnRHR Gene and Its Correlation with the Litter Size in Goat. Chin. Herbiv. Sci. 2010, 4, 13–16. [Google Scholar]
- An, X.P.; Han, D.; Hou, J.X.; Li, G.; Wang, J.G.; Yang, M.M.; Song, Y.X.; Zhou, G.Q.; Wang, Y.N.; Ling, L.; et al. GnRHR Gene Polymorphisms and Their Effects on Reproductive Performance in Chinese Goats. Small Rumin. Res. 2009, 85, 130–134. [Google Scholar] [CrossRef]
- Chen, J. Polymorphism of GnRHR Gene and Its Relationship with Prolificacy of Small Tail Han Sheep. J. Agric. Biotechnol. 2008, 16, 230–236. [Google Scholar]
- Priyanka, B.; Kumari, G.A.; Raju, J.; Shankaraiah, P. Role of Kisspeptin in Livestock Reproduction. Pharm. Innov. J. 2018, 7, 728–731. [Google Scholar]
- Dungan, H.M.; Clifton, D.K.; Steiner, R.A. Mini Review: Kisspeptin Neurons as Central Processors in the Regulation of Gonadotropin-Releasing Hormone Secretion. Endocrinology 2006, 147, 1154–1158. [Google Scholar] [CrossRef]
- Smith, J.T.; Clifton, D.K.; Steiner, R.A. Regulation of the Neuroendocrine Reproductive Axis by Kisspeptin-GPR54 Signaling. Reproduction 2006, 131, 623–630. [Google Scholar] [CrossRef]
- An, X.; Ma, T.; Hou, J.; Fang, F.; Han, P.; Yan, Y.; Zhao, H.; Song, Y.; Wang, J.; Cao, B. Association Analysis Between Variants in KiSS1 Gene and Litter Size in Goats. BMC Genet. 2013, 14, 63. [Google Scholar] [CrossRef]
- De Roux, N.E.; Genin, J.; Carel, F.; Matsuda, J.; Chaussain, J.L.; Milgrom, E. Hypogonadotropic Hypogonadism Due to Loss of Function of the KiSS1-Derived Peptide Receptor GPR54. Proc. Natl. Acad. Sci. USA 2003, 100, 10972–10976. [Google Scholar] [CrossRef] [PubMed]
- Funes, S.; Hedrick, J.; Vassileva, G.; Markowitz, L.; Abbondanzo, S.; Golovko, A.; Yang, S.; Monsma, F.; Gustafson, E. The KiSS-1 Receptor GPR54 Is Essential for the Development of the Murine Reproductive System. Biochem. Biophys. Res. Commun. 2003, 312, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Othman, O.E.; Darwish, H.R.; Abou-Eisha, A.; El-Din, A.E.; Abdel-Samad, M.F. DNA Characterization and Polymorphism of KiSS1 Gene in Egyptian Small Ruminant Breeds. Afr. J. Biotechnol. 2015, 14, 2335–2340. [Google Scholar] [CrossRef]
- Jeet, V.; Magotra, A.; Bangar, Y.C.; Kumar, S.; Garg, A.R.; Yadav, A.S.; Bahurupi, P. Evaluation of Candidate Point Mutation of Kisspeptin 1 Gene Associated with Litter Size in Indian Goat Breeds and Its Effect on Transcription Factor Binding Sites. Domest. Anim. Endocrinol. 2022, 78, 106676. [Google Scholar] [CrossRef] [PubMed]
- Rahawy, M.A.; Al-Mutar, H.A. Association of the KiSS1 Gene with Litter Size in Cyprus and Iraqi Black Goats. Vet. World 2021, 14, 1995–1999. [Google Scholar] [CrossRef] [PubMed]
- An, X.P.; Hou, J.X.; Lei, Y.N.; Gao, T.Y.; Cao, B.Y. Polymorphism and DNA Methylation in the Promoter Modulate KISS1 Gene Expression and Are Associated with Litter Size in Goats. Anim. Reprod. Sci. 2015, 155, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Maitra, A.; Sharma, R.; Ahlawat, S.; Tantia, M.S.; Roy, M.; Prakash, V. Association Analysis of Polymorphisms in Caprine KiSS1 Gene with Reproductive Traits. Anim. Reprod. Sci. 2014, 151, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.X.; An, X.P.; Wang, J.G.; Song, Y.X.; Cui, Y.H.; Wang, Y.F.; Chen, Q.J.; Cao, B.Y. New Genetic Polymorphisms of KiSS-1 Gene and Their Association with Litter Size in Goats. Small Rumin. Res. 2011, 96, 106–110. [Google Scholar] [CrossRef]
- Cao, G.L.; Chu, M.X.; Fang, L.; Di, R.; Feng, T.; Li, N. Analysis on DNA Sequence of KiSS-1 Gene and Its Association with Litter Size in Goats. Mol. Biol. Rep. 2010, 37, 3921–3929. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, S.; Sharma, R.; Maitra, A.; Borana, K.; Tantia, M.S.; Prakash, V. Association Analysis of a Novel SNP in GPR54 Gene with Reproductive Traits in Indian Goats. Indian J. Dairy Sci. 2015, 68, 39–44. [Google Scholar]
- Maitra, A.; Sharma, R.; Ahlawat, S.; Tantia, M.S. Novel Genetic Polymorphisms in Caprine GPR54 Gene Associated with Reproductive Functions. Indian J. Anim. Sci. 2014, 84, 1196–1201. [Google Scholar] [CrossRef]
- An, X.P.; Han, P.; Hou, J.X.; Zhao, H.B.; Yan, Y.; Ma, T.; Fang, F.; Meng, F.X.; Song, Y.X.; Wang, J.G.; et al. Molecular Cloning and Characterization of KISS1 Promoter and Effect of KISS1 Gene Mutations on Litter Size in the Goat. Genet. Mol. Res. 2013, 12, 4308–4316. [Google Scholar] [CrossRef]
- Chu, M.; Xiao, C.; Feng, T.; Fu, Y.; Cao, G.; Fang, L.; Di, R.; Tang, Q.; Huang, D.; Ma, Y.; et al. Polymorphisms of KiSS-1 and GPR54 Genes and Their Relationships with Litter Size in Sheep. Mol. Biol. Rep. 2012, 39, 3291–3297. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.Q.; Chu, M.X.; Cao, G.L.; Fang, L.; Di, R.; Feng, T.; Huang, D.W.; Li, N. Association Between Polymorphism of GPR54 Gene and Litter Size in Small Tail Han Sheep. Livest. Sci. 2012, 143, 97–103. [Google Scholar] [CrossRef]
- Cao, G.L.; Chu, M.X.; Fang, L.; Feng, T.; Di, R.; Li, N. Analysis on DNA Sequence of GPR54 Gene and Its Association with Litter Size in Goats. Mol. Biol. Rep. 2011, 38, 3839–3848. [Google Scholar] [CrossRef]
- Feng, T.; Zhao, Y.Z.; Chu, M.X.; Zhang, Y.J.; Fang, L.; Di, R.; Cao, G.L.; Li, N. Association Between Sexual Precocity and Alleles of KISS-1 and GPR54 Genes in Goats. Anim. Biotechnol. 2009, 20, 172–176. [Google Scholar] [CrossRef]
- Zama, A.M.; Hudson, F.P.; Bedell, M.A. Analysis of hypomorphic Kitl(sl) mutants suggests different requirements for KITL in proliferation and migration of mouse primordial germ cells. Biol. Reprod. 2005, 73, 639–647. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, X.; Jiang, Y.; Shen, Y.; Xie, H.; Pan, P.; Huang, Y.; Wei, Y.; Jiang, Q. Population validation of reproductive gene mutation loci and association with the litter size in Nubian goat. Arch. Anim. Breed. 2021, 64, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zhang, J.; Li, W.; Wang, W.; Li, F.; Yue, X. Association of polymorphisms in candidate genes with the litter size in two sheep breeds. Animals 2019, 9, 958. [Google Scholar] [CrossRef] [PubMed]
- An, X.P.; Hou, J.X.; Gao, T.Y.; Lei, Y.N.; Song, Y.X.; Wang, J.G.; Cao, B.Y. Association analysis between variants in KITLG gene and litter size in goats. Gene 2015, 558, 126–130. [Google Scholar] [CrossRef]
- An, X.P.; Hou, J.X.; Lei, Y.N.; Gao, T.Y.; Song, Y.X.; Wang, J.G.; Cao, B.Y. Two mutations in the 5′-flanking region of the KITLG gene are associated with litter size of dairy goats. Anim. Genet. 2015, 46, 308–311. [Google Scholar] [CrossRef] [PubMed]
- An, X.P.; Hou, J.X.; Li, G.; Song, Y.X.; Wang, J.G.; Chen, Q.J.; Cui, Y.H.; Wang, Y.F.; Cao, B.Y. Polymorphism identification in the goat KITLG gene and association analysis with litter size. Anim. Genet. 2012, 43, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, P.; Rashidi, A.; Rostamzadeh, J.; Razmkabir, M. A novel variant in the promoter region of miR-9 gene strongly affects litter size in Markhoz goats. Theriogenology 2020, 158, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Luconi, M.; Cantini, G.; Baldi, E.; Forti, G. Role of a-kinase anchoring proteins (AKAPs) in reproduction. Front. Biosci. 2011, 16, 1315–1330. [Google Scholar] [CrossRef] [PubMed]
- Newhall, K.J.; Criniti, A.R.; Cheah, C.S.; Smith, K.C.; Kafer, K.E.; Burkart, A.D.; McKnight, G.S. Dynamic anchoring of PKA is essential during oocyte maturation. Curr. Biol. 2006, 16, 321–327. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, R.; Bai, Y.; Yang, Y.; Song, X.; Lan, X.; Pan, C. A deletion mutation within the goat AKAP13 gene is significantly associated with litter size. Anim. Biotechnol. 2023, 34, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Binder, A.K.; Rodriguez, K.F.; Hamilton, K.J.; Stockton, P.S.; Reed, C.E.; Korach, K.S. The absence of ER-β results in altered gene expression in ovarian granulosa cells isolated from in vivo preovulatory follicles. Endocrinology 2013, 154, 2174–2187. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, P.; Rashidi, A.; Nazari-Ghadikolaei, A.; Rostamzadeh, J.; Razmkabir, M.; Huson, H.J. Genome-wide association study reveals novel candidate genes for litter size in Markhoz goats. Front. Vet. Sci. 2022, 9, 1045589. [Google Scholar] [CrossRef]
- Kang, Z.; Bai, Y.; Lan, X.; Zhao, H. Goat AKAP12: Indel mutation detection, association analysis with litter size and alternative splicing variant expression. Front. Genet. 2021, 12, 648256. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.W.; Meng, T.G.; Jiang, Z.Z.; Dong, M.Z.; Schatten, H.; Xu, X.; Wang, Z.B.; Sun, Q.Y. Protein phosphatase 6 protects prophase I-arrested oocytes by safeguarding genomic integrity. PLoS Genet. 2016, 12, e1006513. [Google Scholar] [CrossRef]
- Hu, M.W.; Wang, Z.B.; Teng, Y.; Jiang, Z.Z.; Ma, X.S.; Hou, N.; Cheng, X.; Schatten, H.; Xu, X.; Yang, X.; et al. Loss of protein phosphatase 6 in oocytes causes failure of meiosis II exit and impaired female fertility. J. Cell Sci. 2015, 128, 3769–3780. [Google Scholar] [CrossRef]
- Fardilha, M.; Esteves, S.L.; Korrodi-Gregório, L.; Pelech, S.; da Cruz e Silva, O.A.; da Cruz e Silva, E. Protein phosphatase 1 complexes modulate sperm motility and present novel targets for male infertility. MHR Basic Sci. Reprod. Med. 2011, 17, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Bo, D.; Bi, Y.; Areb, E.; Zhu, H.; Pan, C.; Lan, X. Analysis of goat PPP6C mRNA profile, detection of genetic variations, and their associations with litter size. Anim. Reprod. Sci. 2024, 268, 107544. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Li, J.; Zhu, H.; Liu, J.; Dong, S.; Li, L.; Qu, L.; Chen, H.; Song, X.; Lan, X. Deletion mutation within the goat PPP3CA gene identified by GWAS significantly affects litter size. Reprod. Fertil. Dev. 2021, 33, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhang, T.; Liu, N.; Wang, C.; Guo, Z.; Pan, C.; Zhu, H.; Lan, X. Investigation of copy number variations (CNVs) of the goat PPP3CA gene and their effect on litter size and semen quality. Animals 2022, 12, 445. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Huang, Y.F. Selection signatures of litter size in Dazu black goats based on a whole genome sequencing mixed pools strategy. Mol. Biol. Rep. 2019, 46, 5517–5523. [Google Scholar] [CrossRef]
- Tao, L.; He, X.Y.; Jiang, Y.T.; Lan, R.; Li, M.; Li, Z.M.; Yang, W.F.; Hong, Q.H.; Chu, M.X. Combined approaches to reveal genes associated with litter size in Yunshang black goats. Anim. Genet. 2020, 51, 924–934. [Google Scholar] [CrossRef]
- Lan, X.Y.; Pan, C.Y.; Chen, H.; Zhang, C.L.; Li, J.Y.; Zhao, M.; Lei, C.Z.; Zhang, A.L.; Zhang, L. An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 2007, 73, 8–12. [Google Scholar] [CrossRef]
- Işık, R.; Bilgen, G. Associations between genetic variants of the POU1F1 gene and production traits in Saanen goats. Arch. Anim. Breed. 2019, 62, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, Y.; Bai, Y.; Yang, H.; Yan, H.; Liu, J.; Shi, L.; Song, X.; Li, L.; Dong, S.; et al. Relationship between SNPs of POU1F1 gene and litter size and growth traits in Shaanbei white cashmere goats. Animals 2019, 9, 114. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, W.; Yang, H.; Wang, M.; Yan, H.; Zhu, H.; Liu, J.; Qu, L.; Lan, X.; Pan, C. A novel missense mutation (L280V) within POU1F1 gene strongly affects litter size and growth traits in goat. Theriogenology 2019, 135, 198–203. [Google Scholar] [CrossRef]
- Feng, T.; Chu, M.X.; Cao, G.L.; Tang, Q.Q.; Di, R.; Fang, L.; Li, N. Polymorphisms of caprine POU1F1 gene and their association with litter size in Jining Grey goats. Mol. Biol. Rep. 2012, 39, 4029–4038. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, J.; Qin, P.; Yan, X.; Gong, X.; Li, X.; Liu, Y.; Li, Y.; Yu, T.; Zhang, Y.; et al. Analysis of serum reproductive hormones and ovarian genes in pubertal female goats. J. Ovarian Res. 2023, 16, 69. [Google Scholar] [CrossRef] [PubMed]
- Akhatayeva, Z.; Mao, C.; Jiang, F.; Pan, C.; Lin, C.; Hao, K.; Lan, T.; Chen, H.; Zhang, Q.; Lan, X. Indel variants within the PRL and GHR genes associated with sheep litter size. Reprod. Domest. Anim. 2020, 55, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, Y.; Huang, K.; Zeng, W.; Xu, D.; Wen, Q.; Yang, L. The association of two single nucleotide polymorphisms (SNPs) in growth hormone (GH) gene with litter size and superovulation response in goat-breeds. Genet. Mol. Biol. 2011, 34, 49–55. [Google Scholar] [CrossRef] [PubMed]
- El-Shorbagy, H.M.; Abdel-Aal, E.S.; Mohamed, S.A.; El-Ghor, A.A. Association of PRLR, IGF1, and LEP genes polymorphism with milk production and litter size in Egyptian Zaraibi goat. Trop. Anim. Health Prod. 2022, 54, 321. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Hou, J.; Gao, T.; Lei, Y.; Li, G.; Song, Y.; Wang, J.; Cao, B. Single-nucleotide polymorphisms g.151435C>T and g.173057T>C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats. Theriogenology 2015, 83, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; An, X.P.; Fu, M.Z.; Hou, J.X.; Sun, R.P.; Zhu, G.Q.; Wang, J.G.; Cao, B.Y. Polymorphism of PRLR and LHβ genes by SSCP marker and their association with litter size in Boer goats. Livest. Sci. 2011, 136, 281–286. [Google Scholar] [CrossRef]
- An, D.; Chen, X.; Li, Z.; Dai, L.; Huang, J.; Xiao, M.; Liu, H.; Xu, J.; Ruan, Y. Genetic variation in the BLM gene and its expression in the ovaries is closely related to kidding number in goats. Theriogenology 2024, 218, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.; Mou, H.L.; Na, R.S.; Wang, X.; Hu, P.F.; Ceccobelli, S.; Huang, Y.F.; E, G.X. Multiomic meta-analysis suggests a correlation between steroid hormone-related genes and litter size in goats. Anim. Genet. 2024, 55, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Ding, Y.; Zhang, X.; Zhou, Y.; Liu, Y.; Li, T.; Xiao, L. Whole-genome resequencing reveals new mutations in candidate genes for Beichuan-white goat prolificacy. Anim. Biotechnol. 2024, 35, 2258166. [Google Scholar] [CrossRef]
- Maskur, M.M.; Depamede, S.N. Identification of fecXG and fecB mutations and their association with litter size in Kacang and Boerka goats. Adv. Anim. Vet. Sci. 2023, 11, 124–131. [Google Scholar] [CrossRef]
- Rodricks, C.C.; Venkatachalapathy, R.T.; Manoj, M.; Pillai, H.B.; Valsalan, J. Expression profile and association of ghrelin gene polymorphism with growth and litter traits in Indian goat breeds. Small Rumin. Res. 2023, 225, 107016. [Google Scholar] [CrossRef]
- Ruan, Y.; Dai, L.; Huang, J.; Xiao, M.; Xu, J.; An, D.; Chen, J.; Chen, X. A novel nonsynonymous SNP in the OLR1 gene associated with litter size in Guizhou white goats. Theriogenology 2023, 200, 1. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiang, J.; Wang, G.; Zhou, P.; Li, J.; Chen, C.; Liu, L.; Li, N.; Xia, Y.; Ren, H. Genome-wide association analysis of nine reproduction and morphological traits in three goat breeds from Southern China. Anim. Biosci. 2023, 36, 191–199. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Ruan, Y.; Guo, W.; Chen, J.; Tang, W.; Ji, Q.; Fu, K. Effect of CTSS non-synonymous mutations on litter size in Qianbei Ma goats. Front. Vet. Sci. 2023, 10, 1276673. [Google Scholar] [CrossRef]
- Wang, P.; Li, W.; Liu, Z.; He, X.; Lan, R.; Liu, Y.; Chu, M. Analysis of the association of two SNPs in the promoter regions of the PPP2R5C and SLC39A5 genes with litter size in Yunshang black goats. Animals 2022, 12, 2801. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, X.; Zhu, M.; Wang, W.; Ao, Z.; Zhao, J.; Tang, W.; Hong, L. Cathepsin D knockdown regulates biological behaviors of granulosa cells and affects litter size traits in goats. J. Zhejiang Univ. Sci. B 2021, 22, 893. [Google Scholar] [CrossRef] [PubMed]
- Pillai, H.B.; Venkatachalapathy, R.T. Association of inhibin alpha gene polymorphism with litter size and growth in Malabari goats of India. Small Rumin. Res. 2020, 192, 106188. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Wang, J.J.; Zhang, T.; Zhai, H.L.; Shen, W. Copy-number variation in goat genome sequence: A comparative analysis of the different litter size trait groups. Gene 2019, 696, 40–46. [Google Scholar] [CrossRef]
- Silpa, M.V.; Naicy, T.; Aravindakshan, T.V.; Radhika, G.; Boswell, A.; Mini, M. Sirtuin3 (SIRT3) gene molecular characterization and SNP detection in prolific and low prolific goat breeds. Theriogenology 2018, 122, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Ariyarathne, H.B.; Ariyaratne, H.B.; Lokugalappatti, L.G. Single nucleotide polymorphism of candidate genes in non-descript local goats of Sri Lanka. Livest. Sci. 2017, 196, 49–54. [Google Scholar] [CrossRef]
- El-Tarabany, M.S.; Zaglool, A.W.; El-Tarabany, A.A.; Awad, A. Association analysis of polymorphism in KiSS1 gene with reproductive traits in goats. Anim. Reprod. Sci. 2017, 180, 92–99. [Google Scholar] [CrossRef]
- Naicy, T.; Venkatachalapathy, R.T.; Aravindakshan, T.V.; Radhika, G.; Raghavan, K.C.; Mini, M.; Shyama, K. Nerve Growth Factor gene ovarian expression, polymorphism identification, and association with litter size in goats. Theriogenology 2016, 86, 2172–2178. [Google Scholar] [CrossRef] [PubMed]
- Naicy, T.; Venkatachalapathy, R.T.; Aravindakshan, T.V.; Raghavan, K.C.; Mini, M.; Shyama, K. Relative abundance of tissue mRNA and association of the single nucleotide polymorphism of the goat NGF gene with prolificacy. Anim. Reprod. Sci. 2016, 173, 42–48. [Google Scholar] [CrossRef]
- Xiong, Q.; Chai, J.; Li, X.; Suo, X.; Zhang, N.; Tao, H.; Liu, Y.; Yang, Q.; Jiang, S.; Chen, M. Two tagSNPs in the prolactin receptor gene are associated with growth and litter traits in Boer and Macheng Black crossbred goats. Livest. Sci. 2016, 193, 71–77. [Google Scholar] [CrossRef]
- Ahlawat, S.; Sharma, R.; Maitra, A.; Tantia, M.S. Current status of molecular genetics research of goat fecundity. Small Rumin. Res. 2015, 125, 34–42. [Google Scholar] [CrossRef]
- Ling, Y.H.; Quan, Q.; Xiang, H.; Zhu, L.; Chu, M.X.; Zhang, X.R.; Han, C.Y. Expression profiles of differentially expressed genes affecting fecundity in goat ovarian tissues. Genet. Mol. Res. 2015, 14, 18743–18752. [Google Scholar] [CrossRef] [PubMed]
- Heikal, H.S.; El Naby, W.S. Genetic improvement of litter size in four goat breeds in Egypt using polymorphism in bone morphogenetic protein 15 gene. Adv. Anim. Vet. Sci. 2017, 5, 410–415. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Wu, C.J.; Zeng, W.B.; Huang, K.K.; Li, X.; Feng, J.H.; Wang, D.; Hua, G.H.; Xu, D.Q.; Wen, Q.Y.; et al. Polymorphism in exon 3 of follicle stimulating hormone beta (FSHB) subunit gene and its association with litter traits and superovulation in the goat. Small Rumin. Res. 2011, 96, 53–57. [Google Scholar] [CrossRef]
- Yang, C.; He, J.; Mao, J.; Ren, Y.; Liu, G.; Wei, C.; Zhang, G.; Tian, K.; Huang, X. Genome-wide DNA methylation analysis and functional validation of litter size traits in Jining Grey goats. Genes 2024, 15, 353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tang, X.; Li, D.; Tong, X.; Min, L.; Chen, W.; Ju, X.; Xu, B. The identification of RPL4 as a hub gene associated with goat litter size via weighted gene co-expression network analysis. Animals 2024, 14, 1470. [Google Scholar] [CrossRef]
- Fang, X.; Gu, B.; Chen, M.; Sun, R.; Zhang, J.; Zhao, L.; Zhao, Y. Genome-wide association study of the reproductive traits of the Dazu Black Goat (Capra hircus) using whole-genome resequencing. Genes 2023, 14, 1960. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, X.; Lan, X.; Zhu, H.; Qu, L.; Pan, C. Polymorphism within the GATA binding protein 4 gene is significantly associated with goat litter size. Anim. Biotechnol. 2023, 34, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Wang, Z.; Wang, Q.; Liu, H.; Guo, Z.; Pan, C.; Chen, H.; Zhu, H.; Wu, L.; Lan, X. Are copy number variations within the FecB gene significantly associated with morphometric traits in goats? Animals 2022, 12, 1547. [Google Scholar] [CrossRef]
- Ghaffarilaleh, V.; Javanmard, A.; Saberivand, A.; Asadzadeh, N.; Masoudi, R.; Barfourooshi, H.J.; Rashidi, A.; Eghbalsaied, S. Variation and frequency of supernumerary teats, litter size, histological features and the fibroblast growth factor 2 (FGF-2) gene expression pattern in goats. Theriogenology 2022, 179, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Mi, F.; Wu, X.; Wang, Z.; Wang, R.; Lan, X. Relationships between the Mini-InDel variants within the goat CFAP43 gene and body traits. Animals 2022, 12, 3447. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, R.; Pan, C.; Chen, H.; Qu, L.; Wu, L.; Guo, Z.; Zhu, H.; Lan, X. Genetic variations and mRNA expression of goat DNAH1 and their associations with litter size. Cells 2022, 11, 1371. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bi, Y.; Wang, Z.; Zhu, H.; Liu, M.; Wu, X.; Pan, C. Goat SNX29: mRNA expression, InDel and CNV detection, and their associations with litter size. Front. Vet. Sci. 2022, 9, 981315. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; E, G.X.; Wang, J.B.; Xu, S.S.; Yang, X.Q. Single nucleotide polymorphisms in the 3′ UTR of follistatin-like 4 and scavenger receptor class B member 1 are associated with Dazu black goat litter size. Can. J. Anim. Sci. 2022, 102, 473–479. [Google Scholar] [CrossRef]
- Bi, Y.; Feng, W.; Kang, Y.; Wang, K.; Yang, Y.; Qu, L.; Chen, H.; Lan, X.; Pan, C. Detection of mRNA expression and copy number variations within the goat FecB gene associated with litter size. Front. Vet. Sci. 2021, 8, 758705. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Zhang, S.; Li, J.; He, L.; Kang, Y.; Chen, H.; Lan, X.; Pan, C. The mRNA expression profile of the goat prion protein testis-specific (PRNT) gene and its associations with litter size. Theriogenology 2021, 165, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Xin, D.; Bai, Y.; Bi, Y.; He, L.; Kang, Y.; Pan, C.; Zhu, H.; Chen, H.; Qu, L.; Lan, X. Insertion/deletion variants within the IGF2BP2 gene identified in reported genome-wide selective sweep analysis reveal a correlation with goat litter size. J. Zhejiang Univ. Sci. B 2021, 22, 757. [Google Scholar] [CrossRef] [PubMed]
- Jiang, E.; Kang, Z.; Wang, X.; Liu, Y.; Liu, X.; Wang, Z.; Li, X.; Lan, X. Detection of insertions/deletions (InDels) within the goat Runx2 gene and their association with litter size and growth traits. Anim. Biotechnol. 2021, 32, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Cui, W.; Chen, M.; Zhang, X.; Song, X.; Pan, C. A 21-bp indel within the LLGL1 gene is significantly associated with litter size in goat. Anim. Biotechnol. 2021, 32, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zhang, Y.; Yang, Y.; Hu, H.; Lan, X.; Pan, C. The KMT2A gene: mRNA differential expression in the ovary and a novel 13-nt nucleotide sequence variant associated with litter size in cashmere goats. Domest. Anim. Endocrinol. 2021, 74, 106538. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Z.; Wang, X.; Li, Y.; Qu, L.; Lan, X. A novel 4-bp insertion within the goat CFAP43 gene and its association with litter size. Small Rumin. Res. 2021, 202, 106456. [Google Scholar] [CrossRef]
- Bi, Y.; Li, J.; Wang, X.; He, L.; Lan, K.; Qu, L.; Lan, X.; Song, X.; Pan, C. Two novel rare strongly linked missense SNPs (P27R and A85G) within the GDF9 gene were significantly associated with litter size in Shaanbei white cashmere (SBWC) goats. Front. Vet. Sci. 2020, 7, 406. [Google Scholar] [CrossRef]
- Hu, W.; Tang, J.; Zhang, Z.; Tang, Q.; Yan, Y.; Wang, P.; Wang, X.; Liu, Q.; Guo, X.; Jin, M.; et al. Polymorphisms in the ASMT and ADAMTS1 gene may increase litter size in goats. Vet. Med. Sci. 2020, 6, 775–787. [Google Scholar] [CrossRef]
- Hui, Y.; Zhang, Y.; Wang, K.; Pan, C.; Chen, H.; Qu, L.; Song, X.; Lan, X. Goat DNMT3B: An indel mutation detection, association analysis with litter size and mRNA expression in gonads. Theriogenology 2020, 147, 108–115. [Google Scholar] [CrossRef]
- Islam, R.; Liu, X.; Gebreselassie, G.; Abied, A.; Ma, Q.; Ma, Y. Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese Arbas Cashmere goat. Genes Genom. 2020, 42, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Hui, Y.; Zhang, S.; Wang, M.; Yan, H.; Zhu, H.; Qu, L.; Lan, X.; Pan, C. A deletion mutation within the ATBF1 gene is strongly associated with goat litter size. Anim. Biotechnol. 2020, 31, 174–180. [Google Scholar] [CrossRef]
- Wang, K.; Kang, Z.; Jiang, E.; Yan, H.; Zhu, H.; Liu, J.; Qu, L.; Lan, X.; Pan, C. Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). Theriogenology 2020, 146, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Pan, Y.; He, L.; Song, X.; Chen, H.; Pan, C.; Qu, L.; Zhu, H.; Lan, X. Multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes: The relationships between genetic variation and litter size in goats. Gene 2020, 753, 144778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, S.; Tang, Q.; Jiang, E.; Wang, K.; Lan, X.; Pan, C. Goat sperm associated antigen 17 protein gene (SPAG17): Small and large fragment genetic variation detection, association analysis, and mRNA expression in gonads. Genomics 2020, 112, 5115–5121. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yan, H.; Wang, K.; Cui, Y.; Chen, R.; Liu, J.; Zhu, H.; Qu, L.; Pan, C. Goat SPEF2: Expression profile, indel variants identification and association analysis with litter size. Theriogenology 2019, 139, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.H.; Zhang, J.H.; Huang, Y.F.; Zhao, Y.J.; Na, R.S.; Zhao, Z.Q.; Ma, Y.H.; Chu, M.X.; Basang, W.D.; Zhu, Y.B.; et al. Genome-wide selection signatures analysis of litter size in Dazu black goats using single-nucleotide polymorphism. 3 Biotech 2019, 9, 336. [Google Scholar] [CrossRef]
- Ghoreishi, H.; Fathi-Yosefabad, S.; Shayegh, J.; Barzegari, A. Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Arch. Anim. Breed. 2019, 62, 565–570. [Google Scholar] [CrossRef]
- Kang, Z.; Jiang, E.; Wang, K.; Pan, C.; Chen, H.; Yan, H.; Zhu, H.; Liu, J.; Qu, L.; Lan, X. Goat membrane associated ring-CH-type finger 1 (MARCH1) mRNA expression and association with litter size. Theriogenology 2019, 128, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Zhang, S.; He, L.; Zhu, H.; Wang, Z.; Yan, H.; Huang, Y.; Dang, R.; Lei, C.; Chen, H.; et al. A 14-bp functional deletion within the CMTM2 gene is significantly associated with litter size in goat. Theriogenology 2019, 139, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yan, H.; Wang, K.; Cui, Y.; Zhou, T.; Xu, H.; Zhu, H.; Liu, J.; Lan, X.; Qu, L.; et al. Goat PDGFRB: Unique mRNA expression profile in gonad and significant association between genetic variation and litter size. R. Soc. Open Sci. 2019, 6, 180805. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yan, H.; Wang, K.; Xu, H.; Zhang, X.; Zhu, H.; Liu, J.; Qu, L.; Lan, X.; Pan, C. Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. Front. Genet. 2018, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yan, H.; Xu, H.; Yang, Q.; Zhang, S.; Pan, C.; Chen, H.; Zhu, H.; Liu, J.; Qu, L.; et al. A novel indel within goat casein alpha S1 gene is significantly associated with litter size. Gene 2018, 671, 161–169. [Google Scholar] [CrossRef]
- Yan, H.; Jiang, E.; Zhu, H.; Hu, L.; Liu, J.; Qu, L. The novel 22 bp insertion mutation in a promoter region of the PITX2 gene is associated with litter size and growth traits in goats. Arch. Anim. Breed. 2018, 61, 329–336. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, F.; Wang, K.; Liu, J.; Zhu, H.; Pan, C.; Qu, L. A novel 12 bp deletion within goat LHX4 gene significantly affected litter size. Arch. Anim. Breed. 2018, 61, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, H.; Wang, K.; Zhou, T.; Chen, M.; Zhu, H.; Pan, C.; Zhang, E. Goat CTNNB1: mRNA expression profile of alternative splicing in testis and association analysis with litter size. Gene 2018, 679, 297–304. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.; Wang, K.; Zhang, S.; Pan, C.; Chen, H.; Qu, L.; Yan, H.; Lan, X. A novel 12-bp indel polymorphism within the GDF9 gene is significantly associated with litter size and growth traits in goats. Anim. Genet. 2017, 48, 735–736. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Song, Y.; Bu, S.; Ma, H.; Gao, K.; Hou, J.; Wang, S.; Lei, Z.; Cao, B. Association of polymorphisms at the microRNA binding site of the caprine KITLG 3′-UTR with litter size. Sci. Rep. 2016, 6, 25691. [Google Scholar] [CrossRef]
- An, X.P.; Hou, J.X.; Gao, T.Y.; Cao, B.Y. Cloning and expression of caprine KIT gene and associations of polymorphisms with litter size. Anim. Prod. Sci. 2015, 56, 1579–1584. [Google Scholar] [CrossRef]
- Hou, J.X.; An, X.P.; Han, P.; Peng, J.Y.; Cao, B.Y. Two missense mutations in exon 9 of caprine PRLR gene were associated with litter size. Anim. Genet. 2015, 46, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Cao, G.L.; Chu, M.X.; Di, R.; Huang, D.W.; Liu, Q.Y.; Pan, Z.Y.; Jin, M.; Zhang, Y.J.; Li, N. Identification and verification of differentially expressed genes in the caprine hypothalamic-pituitary-gonadal axis that are associated with litter size. Mol. Reprod. Dev. 2015, 82, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.J.; Xu, H.Z.; Zhao, Z.Q.; Narisu, M.; Mao, J.W.; Guan, D.L.; Xie, C. Polymorphisms of osteopontin gene and their association with placental efficiency and prolificacy in goats. J. Appl. Anim. Res. 2015, 43, 272–278. [Google Scholar] [CrossRef]
- Chu, M.; Yan, Y.; Wang, P.; Guligena; Yang, H.; Hao, G.; Yu, J.; Tang, Q.; Feng, T.; Cao, G.; et al. Polymorphism of AA-NAT gene and its relationship with litter size of Jining Grey goat of China. Anim. Sci. Pap. Rep. 2013, 31, 15–26. [Google Scholar]
- Guo, X.; Li, Y.; Chu, M.; Feng, C.; Di, R.; Liu, Q.; Feng, T.; Cao, G.; Huang, D.; Fang, L.; et al. Polymorphism of 5’ regulatory region of caprine FSHR gene and its association with litter size in Jining Grey goat. Turk. J. Vet. Anim. Sci. 2013, 37, 497–503. [Google Scholar] [CrossRef]
- Chu, M.X.; Peng, Z.L.; Chen, H.Q.; Zhang, Y.J.; Fang, L.; Di, R.; Cao, G.L.; Feng, T.; Li, N. Polymorphism in exon 2 of INHBB gene and its relationship with litter size in Jining Grey goats. Anim. Sci. Pap. Rep. 2012, 30, 57–63. [Google Scholar]
- Hou, J.; An, X.; Li, G.; Wang, Y.; Song, Y.; Cao, B. Exploring polymorphisms and their effects on reproductive traits of the INHA and INHβA genes in three goat breeds. Anim. Sci. J. 2012, 83, 273–278. [Google Scholar] [CrossRef]
- Feng, T.; Geng, C.X.; Lang, X.Z.; Chu, M.X.; Cao, G.L.; Di, R.; Fang, L.; Chen, H.Q.; Liu, X.L.; Li, N. Polymorphisms of caprine GDF 9 gene and their association with litter size in Jining Grey goats. Mol. Biol. Rep. 2011, 38, 5189–5197. [Google Scholar] [CrossRef]
- Di, R.; Yi, J.; Chu, M.-X.; Cao, G.-L.; Feng, T.; Fang, L.; Zhou, Z.-X. DNA polymorphism of introns 1 and 2 of Prolactin Receptor Gene and its association with litter size in goats. Anim. Sci. Pap. Rep. 2011, 29, 343–350. [Google Scholar]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Madan, P. Differential regulation of Hippo signaling pathway components between 8-cell and blastocyst stages of bovine preimplantation embryogenesis. Mol. Reprod. Dev. 2022, 89, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H. Roles and regulations of Hippo signaling during preimplantation mouse development. Dev. Growth Differ. 2017, 59, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lorthongpanich, C.; Issaragrisil, S. Emerging role of the Hippo signaling pathway in position sensing and lineage specification in mammalian preimplantation embryos. Biol. Reprod. 2015, 92, 143. [Google Scholar] [CrossRef]
- Sharma, J.; Antenos, M.; Madan, P. A comparative analysis of Hippo signaling pathway components during murine and bovine early mammalian embryogenesis. Genes 2021, 12, 281. [Google Scholar] [CrossRef]
- Wu, Z.; Guan, K.L. Hippo signaling in embryogenesis and development. Trends Biochem. Sci. 2021, 46, 51–63. [Google Scholar] [CrossRef]
- Zhu, M.; Xu, M.; Zhang, J.; Zheng, C. The role of Hippo pathway in ovarian development. Front. Physiol. 2023, 14, 1198873. [Google Scholar] [CrossRef]
- Clark, K.L.; George, J.W.; Przygrodzka, E.; Plewes, M.R.; Hua, G.; Wang, C.; Davis, J.S. Hippo signaling in the ovary: Emerging roles in development, fertility, and disease. Endocr. Rev. 2022, 43, 1074–1096. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liang, W.; Luo, Y.; Wang, J.; Liu, X.; Li, S.; Hao, Z. Transforming growth factor-β1 mediates the SMAD4/BMF pathway to regulate ovarian granulosa cell apoptosis in small tail Han sheep. Theriogenology 2024, 214, 360–369. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Cao, H.; Liu, S.; Cao, B. Effects of TG interaction factor 1 on synthesis of estradiol and progesterone in granulosa cells of goats through SMAD2/3-SP1 signaling pathway. Anim. Reprod. Sci. 2021, 229, 106750. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Du, X.; Wang, L.; Shi, K.; Li, Q. TGF-β1 controls porcine granulosa cell states: A miRNA-mRNA network view. Theriogenology 2021, 160, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Agno, J.E.; Edson, M.A.; Nagaraja, A.K.; Nagashima, T.; Matzuk, M.M. Transforming growth factor β receptor type 1 is essential for female reproductive tract integrity and function. PLoS Genet. 2011, 7, e1002320. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Liu, Y.; Wang, P.; Liu, Z.; Zhang, R.; Chu, M.; Zhao, A. NTRK2 Promotes Sheep Granulosa Cells Proliferation and Reproductive Hormone Secretion and Activates the PI3K/AKT Pathway. Animals 2024, 14, 1465. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Han, Y.; Chen, Y.; Liu, X.; Liang, H.; Wang, C.; Khan, M.Z. Potential Candidate Genes Associated with Litter Size in Goats: A Review. Animals 2025, 15, 82. https://doi.org/10.3390/ani15010082
Chen W, Han Y, Chen Y, Liu X, Liang H, Wang C, Khan MZ. Potential Candidate Genes Associated with Litter Size in Goats: A Review. Animals. 2025; 15(1):82. https://doi.org/10.3390/ani15010082
Chicago/Turabian StyleChen, Wenting, Ying Han, Yinghui Chen, Xiaotong Liu, Huili Liang, Changfa Wang, and Muhammad Zahoor Khan. 2025. "Potential Candidate Genes Associated with Litter Size in Goats: A Review" Animals 15, no. 1: 82. https://doi.org/10.3390/ani15010082
APA StyleChen, W., Han, Y., Chen, Y., Liu, X., Liang, H., Wang, C., & Khan, M. Z. (2025). Potential Candidate Genes Associated with Litter Size in Goats: A Review. Animals, 15(1), 82. https://doi.org/10.3390/ani15010082