Changes in Serum Proteins in Cats with Obesity: A Proteomic Approach
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Aspects
2.2. Animals and Inclusion Criteria
2.3. Samples
2.4. Sample Preparation for Multiplex Proteomics
2.5. Nano-LC–MS/MS Analysis and Row Data Processing
2.6. Statistics for Proteomics Data
2.7. Bioinformatic Analysis
2.8. Validation of Albumin Results
3. Results
Validation of Albumin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zoran, D.L. Obesity in Dogs and Cats: A Metabolic and Endocrine Disorder. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 221–239. [Google Scholar] [CrossRef] [PubMed]
- Ward, E.W.; German, A.J.; Churchill, J.A. The Global Pet Obesity Initiative Position Statement Uniform Definition of Obesity. 2019. Available online: https://www.petobesityprevention.org/global-pet-obesity-initiative#:~:text=In%202018%2C%20APOP%20created%20the%20Global%20Pet%20Obesity,1%29%20Creates%20a%20uniform%20definition%20of%20pet%20obesity (accessed on 4 December 2024).
- Maes, H.H.M.; Neale, M.C.; Eaves, L.J. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 1997, 27, 325–351. [Google Scholar] [CrossRef] [PubMed]
- Tarkosova, D.; Story, M.M.; Rand, J.S.; Svoboda, M. Feline obesity—Prevalence, risk factors, pathogenesis, associated conditions and assessment: A review. Vet. Med. 2016, 61, 295–307. [Google Scholar] [CrossRef]
- Graff, M.; Scott, R.A.; Justice, A.E.; Young, K.L.; Feitosa, M.F.; Barata, L.; Winkler, T.W.; Chu, A.Y.; Mahajan, A.; Hadley, D.; et al. Genome-wide physical activity interactions in adiposity—A meta-analysis of 200,452 adults. PLoS Genet. 2017, 13, e1006528. [Google Scholar] [CrossRef]
- German, A.J.; Ryan, V.H.; German, A.C.; Wood, I.S.; Trayhurn, P. Obesity, its associated disorders and the role of inflammatory adipokines in companion animals. Vet. J. 2010, 185, 4–9. [Google Scholar] [CrossRef]
- German, A.J. The Growing Problem of Obesity in Dogs and Cats. J. Nutr. 2006, 136, 1940S–1946S. [Google Scholar] [CrossRef]
- Hoenig, M.; Thomaseth, K.; Waldron, M.; Ferguson, D.C. Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R227–R234. [Google Scholar] [CrossRef] [PubMed]
- Cave, N.J.; Allan, F.J.; Schokkenbroek, S.L.; Metekohy, C.A.M.; Pfeiffer, D.U. A cross-sectional study to compare changes in the prevalence and risk factors for feline obesity between 1993 and 2007 in New Zealand. Prev. Vet. Med. 2012, 107, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Colliard, L.; Paragon, B.M.; Lemuet, B.; Bénet, J.J.; Blanchard, G. Prevalence and risk factors of obesity in an urban population of healthy cats. J. Feline Med. Surg. 2009, 11, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Brandacher, G.; Golderer, G.; Kienzl, K.; Werner, E.R.; Margreiter, R.; Weiss, H.G. Potential applications of global protein expression analysis (proteomics) in morbid obesity and bariatric surgery. Obes. Surg. 2008, 18, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P. Current application of proteomics in biomarker discovery for inflammatory bowel disease. World J. Gastrointest. Pathophysiol. 2016, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Dayarathna, M.K.D.R.; Hancock, W.S.; Hincapie, M. A two step fractionation approach for plasma proteomics using immunodepletion of abundant proteins and multi-lectin affinity chromatography: Application to the analysis of obesity, diabetes, and hypertension diseases. J. Sep. Sci. 2008, 31, 1156–1166. [Google Scholar] [CrossRef]
- Joo, J.I.; Kim, D.H.; Choi, J.W.; Yun, J.W. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. J. Proteome Res. 2010, 9, 2977–2987. [Google Scholar] [CrossRef] [PubMed]
- Tvarijonaviciute, A.; Gutiérrez, A.M.; Miller, I.; Razzazi-Fazeli, E.; Tecles, F.; Ceron, J.J. A proteomic analysis of serum from dogs before and after a controlled weight-loss program. Domest. Anim. Endocrinol. 2012, 43, 271–277. [Google Scholar] [CrossRef]
- Jiao, Y.; Yang, M.; Fang, L.; Yan, Y.; Fu, Z.; Li, M.; Li, L.; Liu, Z.; Hu, X.; Wu, B.; et al. Serum proteomic analysis identified ITIH4 as a potential novel biomarker for feline infectious peritonitis. J. Proteom. 2025, 310, 105338. [Google Scholar] [CrossRef]
- Jiwaganont, P.; Roytrakul, S.; Thaisakun, S.; Sukumolanan, P.; Petchdee, S. Investigation of coagulation and proteomics profiles in symptomatic feline hypertrophic cardiomyopathy and healthy control cats. BMC Vet. Res. 2024, 20, 292. [Google Scholar] [CrossRef] [PubMed]
- Jiwaganont, P.; Jaturanratsamee, K.; Thaisakun, S.; Roytrakul, S.; Petchdee, S. Analysis of serum proteomic in cats with polycystic kidney disease-1 gene mutation. Heliyon 2024, 10, e35577. [Google Scholar] [CrossRef] [PubMed]
- Meachem, M.D.; Snead, E.R.; Kidney, B.A.; Jackson, M.L.; Dickinson, R.; Larson, V.; Simko, E. A comparative proteomic study of plasma in feline pancreatitis and pancreatic carcinoma using 2-dimensional gel electrophoresis to identify diagnostic biomarkers: A pilot study. Can. J. Vet. Res. 2015, 79, 184–189. [Google Scholar]
- Yu, J.; Boland, L.; Catt, M.; Puk, L.; Wong, N.; Krockenberger, M.; Bennett, P.; Ruaux, C.; Wasinger, V.C. Serum proteome profiles in cats with chronic enteropathies. J. Vet. Intern. Med. 2023, 37, 1358–1367. [Google Scholar] [CrossRef]
- Rešetar Maslov, D.; Farkaš, V.; Rubić, I.; Kuleš, J.; Beletić, A.; Beer Ljubić, B.; Šmit, I.; Mrljak, V.; Torti, M. Serum Proteomic Profiles Reflect the Stages of Myxomatous Mitral Valve Disease in Dogs. Int. J. Mol. Sci. 2023, 24, 7142. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Kuleš, J.; Lovrić, L.; Gelemanović, A.; Beer Ljubić, B.; Rubić, I.; Bujanić, M.; Konjević, D. Complementary liver and serum protein profile in wild boars infected by the giant liver fluke Fascioloides magna using tandem mass tags quantitative approach. J. Proteom. 2021, 247, 104332. [Google Scholar] [CrossRef]
- Komsta, L.; Komsta, M.L. Package ‘Outliers’. R Package v.0.14. 2015. Available online: https://cran.r-project.org/web/packages/outliers/outliers.pdf (accessed on 4 December 2024).
- Mizorogi, T.; Kobayashi, M.; Ohara, K.; Okada, Y.; Yamamoto, I.; Arai, T.; Kawasumi, K. Effects of Age on Inflammatory Profiles and Nutrition/Energy Metabolism in Domestic Cats. Vet. Med. Res. Rep. 2020, 11, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Yamka, R.M.; Friesen, K.G.; Frantz, N.Z. Identification of Canine Markers Related to Obesity and the Effects of Weight Loss on the Markers of Interest. Int. J. Appl. Res. Vet. Med. 2006, 4, 282–292. [Google Scholar]
- Benabdelkamel, H.; Masood, A.; Almidani, G.M.; Alsadhan, A.A.; Bassas, A.F.; Duncan, M.W.; Alfadda, A.A. Mature adipocyte proteome reveals differentially altered protein abundances between lean, overweight and morbidly obese human subjects. Mol. Cell. Endocrinol. 2015, 401, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Sirico, M.L.; Guida, B.; Procino, A.; Pota, A.; Sodo, M.; Grandaliano, G.; Simone, S.; Pertosa, G.; Riccio, E.; Memoli, B. Human Mature Adipocytes Express Albumin and This Expression Is Not Regulated by Inflammation. Mediat. Inflamm. 2012, 2012, 236796. [Google Scholar] [CrossRef] [PubMed]
- Yoo, W.; Lee, J.; Park, S.; Kim, Y.-S.; Lim, C.; Yoon, E.; Hur, G.; Oh, J. Albumin expression is required for adipocyte differentiation of 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2010, 397, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Tvarijonaviciute, A.; Ceron, J.J.; de Torre, C.; Ljubić, B.B.; Holden, S.L.; Queau, Y.; Morris, P.J.; Pastor, J.; German, A.J. Obese dogs with and without obesity-related metabolic dysfunction—A proteomic approach. BMC Vet. Res. 2016, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Navarrete, J.M.; Fernández-Real, J.M. The complement system is dysfunctional in metabolic disease: Evidences in plasma and adipose tissue from obese and insulin resistant subjects. Semin. Cell Dev. Biol. 2019, 85, 164–172. [Google Scholar] [CrossRef]
- Richard, A.J.; White, U.; Elks, C.M.; Stephens, J.M. Adipose Tissue: Physiology to Metabolic Dysfunction; MDText.com, Inc.: Portland, OR, USA, 2000. [Google Scholar]
- Hernández-Mijares, A.; Bañuls, C.; Bellod, L.; Jover, A.; Solá, E.; Morillas, C.; Víctor, V.M.; Rocha, M. Effect of weight loss on C3 and C4 components of complement in obese patients. Eur. J. Clin. Investig. 2012, 42, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Pankov, R.; Yamada, K.M. Fibronectin at a glance. J. Cell Sci. 2002, 115, 3861–3863. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Park, H.S.; Lee, J.A.; Song, Y.S.; Jang, Y.J.; Kim, J.H.; Lee, Y.J.; Heo, Y. Fibronectin gene expression in human adipose tissue and its associations with obesity-related genes and metabolic parameters. Obes. Surg. 2013, 23, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Li, X.; Scherer, P.E. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr. Physiol. 2023, 13, 4387–4407. [Google Scholar]
- Suda, T.; Takatori, H.; Hayashi, T.; Kaji, K.; Nio, K.; Terashima, T.; Shimakami, T.; Arai, K.; Yamashita, T.; Mizukoshi, E.; et al. Plasma Antithrombin III Levels Can Be a Prognostic Factor in Liver Cirrhosis Patients with Portal Vein Thrombosis. Int. J. Mol. Sci. 2023, 24, 7732. [Google Scholar] [CrossRef]
- Amiral, J.; Seghatchian, J. Revisiting antithrombin in health and disease, congenital deficiencies and genetic variants, and laboratory studies on α and β forms. Transfus. Apher. Sci. 2018, 57, 291–297. [Google Scholar] [CrossRef]
- Kuzi, S.; Segev, G.; Haruvi, E.; Aroch, I. Plasma antithrombin activity as a diagnostic and prognostic indicator in dogs: A retrospective study of 149 dogs. J. Vet. Intern. Med. 2010, 24, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Blokhin, I.O.; Lentz, S.R. Mechanisms of thrombosis in obesity. Curr. Opin. Hematol. 2013, 20, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Kornblith, L.Z.; Howard, B.; Kunitake, R.; Redick, B.; Nelson, M.; Cohen, M.J.; Callcut, R. Obesity and clotting: Body mass index independently contributes to hypercoagulability after injury. J. Trauma Acute Care Surg. 2015, 78, 30–36. [Google Scholar] [CrossRef]
- Bjornvad, C.R.; Wiinberg, B.; Kristensen, A.T. Obesity increases initial rate of fibrin formation during blood coagulation in domestic shorthaired cats. J. Anim. Physiol. Anim. Nutr. 2012, 96, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Jialal, I.; Pahwa, R. Fetuin-A is also an adipokine. Lipids Health Dis. 2019, 18, 73. [Google Scholar] [CrossRef]
- Dalamaga, M.; Karmaniolas, K.; Chamberland, J.; Nikolaidou, A.; Lekka, A.; Dionyssiou-Asteriou, A.; Mantzoros, C.S. Higher fetuin-A, lower adiponectin and free leptin levels mediate effects of excess body weight on insulin resistance and risk for myelodysplastic syndrome. Metabolism 2013, 62, 1830–1839. [Google Scholar] [CrossRef] [PubMed]
- Suemanotham, N.; Photcharatinnakorn, P.; Chantong, B.; Buranasinsup, S.; Phochantachinda, S.; Sakcamduang, W.; Reamtong, O.; Thiangtrongjit, T.; Chatchaisak, D. Curcuminoid supplementation in canine diabetic mellitus and its complications using proteomic analysis. Front. Vet. Sci. 2022, 9, 1057972. [Google Scholar] [CrossRef] [PubMed]
- Canales, N.A.G.; Marina, V.M.; Castro, J.S.; Jiménez, A.A.; Mendoza-Hernández, G.; McCarron, E.L.; Roman, M.B.; Castro-Romero, J.I. A1BG and C3 are overexpressed in patients with cervical intraepithelial neoplasia III. Oncol. Lett. 2014, 8, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.; Ding, B.; Zhang, Y.; Xia, Q.; Li, Y.; Zhu, B. Proteomic profiling differences in serum from silicosis and chronic bronchitis patients: A comparative analysis. J. Thorac. Dis. 2016, 8, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Luo, L.; Liu, L.; Wang, Z.; Chen, R.; Wu, Y.; Xiao, X. Serpin family proteins as potential biomarkers and therapeutic drugs in stroke: A systematic review and meta-analysis on clinical/preclinical studies. CNS Neurosci. Ther. 2023, 29, 1738–1749. [Google Scholar] [CrossRef] [PubMed]
- Kuai, X.; Lv, J.; Zhang, J.; Xu, M.; Ji, J. Serpin Family A Member 1 Is Prognostic and Involved in Immunological Regulation in Human Cancers. Int. J. Mol. Sci. 2023, 24, 11566. [Google Scholar] [CrossRef]
- Teng, K.T.; McGreevy, P.D.; Toribio, J.A.L.M.L.; Raubenheimer, D.; Kendall, K.; Dhand, N.K. Associations of body condition score with health conditions related to overweight and obesity in cats. J. Small Anim. Pract. 2018, 59, 603–615. [Google Scholar] [CrossRef]
- Watson, F.L.; Püttmann-Holgado, R.; Thomas, F.; Lamar, D.L.; Hughes, M.; Kondo, M.; Rebel, V.I.; Schmucker, D. Extensive Diversity of Ig-Superfamily Proteins in the Immune System of Insects. Science 2005, 309, 1874–1878. [Google Scholar] [CrossRef]
- Tanner, A.E.; Martin, J.; Saker, K.E. Oxidative stress and inflammatory state induced by obesity in the healthy feline. J. Anim. Physiol. Anim. Nutr. 2007, 91, 163–166. [Google Scholar] [CrossRef]
Variable | Control | Obesity | p |
---|---|---|---|
Sex, males/females | 5/5 | 5/5 | 0.178 |
Age, years | 2.3 (1–8) | 4.5 (1–12) | 0.107 |
BW, kg | 4.3 (2.4–6.5) | 6.2 (4.9–9.0) | 0.002 |
BCS | 3 (3–3) | 4.8 (4.5–5) | <0.001 |
Accession (UniProt) | Protein Name | Mean Control | Mean Obese | Log2(FC) | p Value |
---|---|---|---|---|---|
P49064 | Albumin OS = Felis catus OX = 9685 GN = ALB PE = 1 SV = 1 | 0.971 | 1.045 | 0.106 | 0.011 |
A0A2I2U7Y0 | Albumin OS = Felis catus OX = 9685 GN = ALB PE = 4 SV = 3 | 0.97 | 1.045 | 0.107 | 0.009 |
A0A5F5XCT0 | Alpha-1-B glycoprotein OS = Felis catus OX = 9685 GN = A1BG PE = 4 SV = 1 | 1.091 | 0.95 | −0.200 | 0.007 |
M3W0W4 | Alpha-1-B glycoprotein OS = Felis catus OX = 9685 GN = A1BG PE = 4 SV = 3 | 1.09 | 0.951 | −0.197 | 0.007 |
A0A5F5XVZ8 | Alpha-2-HS-glycoprotein OS = Felis catus OX = 9685 GN = AHSG PE = 4 SV = 1 | 0.905 | 1.135 | 0.327 | 0.017 |
A0A5F5Y4L1 | Alpha-2-HS-glycoprotein OS = Felis catus OX = 9685 GN = AHSG PE = 4 SV = 1 | 0.879 | 1.151 | 0.389 | 0.009 |
A0A337SD37 | Alpha-2-HS-glycoprotein OS = Felis catus OX = 9685 GN = AHSG PE = 4 SV = 2 | 0.879 | 1.151 | 0.389 | 0.009 |
M3WLL8 | Antithrombin-III OS = Felis catus OX = 9685 GN = SERPINC1 PE = 3 SV = 1 | 0.894 | 1.016 | 0.185 | 0.023 |
A0A5F5XER5 | C3-beta-c OS = Felis catus OX = 9685 PE = 4 SV = 1 | 0.908 | 0.984 | 0.116 | 0.045 |
A0A5F5XIJ2 | C3-beta-c OS = Felis catus OX = 9685 PE = 4 SV = 1 | 0.908 | 0.984 | 0.116 | 0.045 |
A0A5F5XZV0 | C3-beta-c OS = Felis catus OX = 9685 PE = 4 SV = 1 | 0.908 | 0.984 | 0.116 | 0.045 |
A0A5F5Y2A2 | C3-beta-c OS = Felis catus OX = 9685 PE = 4 SV = 1 | 0.908 | 0.984 | 0.116 | 0.045 |
A0A5F5Y2U5 | C3-beta-c OS = Felis catus OX = 9685 PE = 4 SV = 1 | 0.908 | 0.984 | 0.116 | 0.045 |
A0A5F5Y592 | C3-beta-c OS = Felis catus OX = 9685 PE = 4 SV = 1 | 0.908 | 0.984 | 0.116 | 0.045 |
M3WJK3 | C4b-binding protein alpha chain OS = Felis catus OX = 9685 GN = C4BPA PE = 4 SV = 4 | 0.939 | 1.008 | 0.102 | 0.027 |
M3VUN7 | Complement C8 gamma chain OS = Felis catus OX = 9685 GN = C8G PE = 3 SV = 1 | 0.913 | 1.067 | 0.225 | 0.002 |
A0A5F5XM81 | Complement factor H OS = Felis catus OX = 9685 GN = LOC101089505 PE = 4 SV = 1 | 0.914 | 1.032 | 0.175 | 0.001 |
A0A5F5XMT8 | Complement factor H OS = Felis catus OX = 9685 GN = LOC101089505 PE = 4 SV = 1 | 0.94 | 1.031 | 0.133 | 0.023 |
A0A5F5XS16 | Complement factor H OS = Felis catus OX = 9685 GN = LOC101089505 PE = 4 SV = 1 | 0.944 | 1.031 | 0.127 | 0.035 |
A0A5F5XWF0 | Complement factor H OS = Felis catus OX = 9685 GN = LOC101089505 PE = 4 SV = 1 | 0.944 | 1.031 | 0.127 | 0.035 |
A0A337S3R0 | Complement factor H OS = Felis catus OX = 9685 GN = LOC101089505 PE = 4 SV = 2 | 0.951 | 1.045 | 0.136 | 0.023 |
A0A337SWF2 | Fibronectin OS = Felis catus OX = 9685 GN = FN1 PE = 4 SV = 1 | 1.39 | 0.827 | −0.749 | 0.043 |
A0A2I2USM8 | Ig-like domain-containing protein OS = Felis catus OX = 9685 PE = 4 SV = 2 | 0.785 | 1.044 | 0.411 | 0.028 |
A0A5F5XW04 | Serpin family A member 1 OS = Felis catus OX = 9685 GN = SERPINA1 PE = 3 SV = 1 | 0.941 | 1.08 | 0.199 | 0.003 |
M3WCX1 | Serpin family A member 1 OS = Felis catus OX = 9685 GN = SERPINA1 PE = 3 SV = 2 | 0.964 | 1.074 | 0.156 | 0.011 |
M3WNL1 | Solute carrier family 12 member 4 OS = Felis catus OX = 9685 GN = SLC12A4 PE = 3 SV = 3 | 1.119 | 0.941 | −0.250 | 0.007 |
A0A337SAI9 | Uncharacterized protein OS = Felis catus OX = 9685 PE = 4 SV = 1 | 1.372 | 0.768 | −0.837 | 0.005 |
A0A337S7U4 | Uncharacterized protein OS = Felis catus OX = 9685 PE = 4 SV = 2 | 1.372 | 0.768 | −0.837 | 0.005 |
A0A337S7W6 | Uncharacterized protein OS = Felis catus OX = 9685 PE = 4 SV = 2 | 1.372 | 0.768 | −0.837 | 0.005 |
A0A337SV91 | Uncharacterized protein OS = Felis catus OX = 9685 PE = 4 SV = 2 | 1.372 | 0.768 | −0.837 | 0.005 |
Group | Animal | Sex | BCS | Age | Albumin (2.5–3.6) |
---|---|---|---|---|---|
Normal-weight | 1 | MC | 5 | 6 | 3 |
2 | HC | 5 | 1 | 3.1 | |
3 | HC | 5 | 7 | 3.1 | |
4 | H | 5 | 1 | 3.0 | |
5 | HC | 5 | 2 | 3.1 | |
6 | MC | 5 | 6 | 3.0 | |
7 | HC | 5 | 3 | 3.1 | |
8 | MC | 5 | 2 | 3.2 | |
9 | HC | 5 | 6 | 3.6 | |
10 | MC | 5 | 12 | 3.3 | |
11 | MC | 4 | 22 | 3.6 | |
12 | HC | 5 | 1.5 | 3.6 | |
Median (25–75%) | 4.5 (1.6–6.8) | 3.1 (3.0–3.5) | |||
Overweight-obese | 1 | HC | 6 | 4 | 3.4 |
2 | MC | 6 | 2 | 3.1 | |
3 | HC | 6 | 1 | 3.3 | |
4 | H | 6 | 1 | 3.6 | |
5 | HC | 7 | 4 | 3.4 | |
6 | MC | 8 | 8 | 3.4 | |
7 | MC | 7 | 8 | 4 | |
8 | HC | 7 | 7 | 3.5 | |
9 | MC | 5 | 8 | 3.7 | |
10 | MC | 5 | 7 | 4.1 | |
11 | MC | 8 | 8 | 3.6 | |
12 | HC | 5.5 | 8 | 4.3 | |
Median (25–75%) | 7.0 (2.5–8.0) | 3.6 (3.4–3.9) | |||
p | 0.396 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cañadas-Vidal, E.; Muñoz-Prieto, A.; Rešetar Maslov, D.; Rubić, I.; González-Sánchez, J.C.; Garcia-Martinez, J.D.; Ceron, J.J.; Mrljak, V.; Pardo-Marin, L.; Martinez-Subiela, S.; et al. Changes in Serum Proteins in Cats with Obesity: A Proteomic Approach. Animals 2025, 15, 91. https://doi.org/10.3390/ani15010091
Cañadas-Vidal E, Muñoz-Prieto A, Rešetar Maslov D, Rubić I, González-Sánchez JC, Garcia-Martinez JD, Ceron JJ, Mrljak V, Pardo-Marin L, Martinez-Subiela S, et al. Changes in Serum Proteins in Cats with Obesity: A Proteomic Approach. Animals. 2025; 15(1):91. https://doi.org/10.3390/ani15010091
Chicago/Turabian StyleCañadas-Vidal, Esmeralda, Alberto Muñoz-Prieto, Dina Rešetar Maslov, Ivana Rubić, Juan C. González-Sánchez, Juan D. Garcia-Martinez, José J. Ceron, Vladimir Mrljak, Luis Pardo-Marin, Silvia Martinez-Subiela, and et al. 2025. "Changes in Serum Proteins in Cats with Obesity: A Proteomic Approach" Animals 15, no. 1: 91. https://doi.org/10.3390/ani15010091
APA StyleCañadas-Vidal, E., Muñoz-Prieto, A., Rešetar Maslov, D., Rubić, I., González-Sánchez, J. C., Garcia-Martinez, J. D., Ceron, J. J., Mrljak, V., Pardo-Marin, L., Martinez-Subiela, S., & Tvarijonaviciute, A. (2025). Changes in Serum Proteins in Cats with Obesity: A Proteomic Approach. Animals, 15(1), 91. https://doi.org/10.3390/ani15010091