ShenQiGan Extract Repairs Intestinal Barrier in Weaning-Stressed Piglets by Modulating Inflammatory Factors, Immunoglobulins, and Short-Chain Fatty Acids
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of CAG
2.2. Determination of CAG Components
2.3. Animals, Experimental Design, and Management
- 1.
- At 07:30 daily, residual feed was collected, oven-dried, and weighed (±0.1 g).
- 2.
- Daily feed provision = Previous residual + 1.2 × estimated daily consumption.
- 3.
- Feed offered three times daily (08:00, 13:00, 18:00)
- 4.
- Daily intake = Total offered − Next day’s dried residual.
- 5.
- ADFI (g/pig/day) = Σ(29-day intake)/(20 pigs × 29 days).
2.4. Serum Immunoglobulin and Inflammatory Factor Levels
2.5. Scanning Electron Microscopy
2.6. Hematoxylin and Eosin (HE) Staining
2.7. Tissue PAS Staining
2.8. RT-qPCR
2.9. Western Blotting
2.10. Levels of SCFAs in Cecum Contents
Chromatographic Conditions
2.11. Data Analysis
3. Results
3.1. Component Analysis of CAG
3.2. CAG Improves Growth Performance of Weaned Piglets
3.3. CAG Regulates Serum Levels of Immunoglobulins and Inflammatory Factors
3.4. CAG Regulation of SCFAs Levels in Weaned Piglets
3.5. CAG Improves Intestinal Barrier in Weaned PIglets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADFI | Average daily feed intake |
ADG | Average daily gain |
CAG | Extraction of ShenQiGan |
CD | Crypt depth |
F/G | Feed-to-weight ratio |
FBW | Final body weight |
IBW | Initial body weight |
References
- Wu, Y.; Zhang, X.; Liu, X.; Zhao, Z.; Tao, S.; Xu, Q.; Zhao, J.; Dai, Z.; Zhang, G.; Han, D.; et al. Galactooligosaccharides and Limosilactobacillus reuteri synergistically alleviate gut inflammation and barrier dysfunction by enriching Bacteroides acidifaciens for pentadecanoic acid biosynthesis. Nat. Commun. 2024, 15, 9291. [Google Scholar] [CrossRef]
- Noblet, J.; Dourmad, J.Y.; Etienne, M.; Le Dividich, J. Energy metabolism in pregnant sows and newborn pigs. J. Anim. Sci. 1997, 75, 2708–2714. [Google Scholar] [CrossRef] [PubMed]
- Tokach, M.D.; Dial, G.D. Managing the lactating sow for optimal weaning and rebreeding performance. The Veterinary Clinics of North America. Food Anim. Pract. 1992, 8, 559–573. [Google Scholar] [CrossRef]
- Yan, H.; Yan, S.; Li, Z.; Zhang, T.; He, J.; Yu, B.; Yu, J.; Luo, J.; Wu, A.; Pu, J.; et al. Mulberry leaf benefits the intestinal epithelial barrier via direct anti-oxidation and indirect modulation of microbiota in pigs. Phytomedicine 2024, 135, 156217. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Liu, M.; Tang, J.; Chen, H.; Chen, D.; Yu, B.; He, J.; Yu, J.; Zheng, P. Dietary Leucine Supplementation Improves the Mucin Production in the Jejunal Mucosa of the Weaned Pigs Challenged by Porcine Rotavirus. PLoS ONE 2015, 10, e0137380. [Google Scholar] [CrossRef]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Y.; Duan, G.; Han, M.; Gong, S.; Yang, Z.; Duan, Y.; Chen, Q.; Li, F. The Effect of Dietary Leucine Supplementation on Antioxidant Capacity and Meat Quality of Finishing Pigs under Heat Stress. Antioxidants 2022, 11, 1373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, W.; Yang, Y.; Zhang, L.; Wang, T. Leucine alters blood parameters and regulates hepatic protein synthesis via mammalian/mechanistic target of rapamycin activation in intrauterine growth-restricted piglets. J. Anim. Sci. 2022, 100, skac109. [Google Scholar] [CrossRef]
- Liao, W.L. Effects of extract from Codonopsis pilosula on the growth performance, biochemical indexes in serum, and intestinal health of weaned piglets. Anim. Breed. Feed 2024, 23, 10–16. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Yu, M.; Chen, R.C.; Zhang, B.; Sun, X.; Shu, Z. Protective Effect and Mechanism of Total Saponins of Codonopsis Radix on Cognitive Dysfunuction in Aging Mice. Chin. J. Exp. Tradit. 2024, 30, 70–76. [Google Scholar] [CrossRef]
- Li, J.; Wei, B.J.; Li, J.H.; Zhou, J.; Jiang, T.; Sun, L. Development of Shenqi composite tea and its antioxidant activity analysis. J. Res. Diet. Sci. Cult. 2024, 41, 50–57. [Google Scholar] [CrossRef]
- Wang, L.Z. Effect of fermented compound Codonopsis pilosula on growth performance and serum immunoglobulin of weaned piglets. Contemp. Anim. Husb. 2024, 8, 31–32. [Google Scholar]
- Lu, G.D.; Hou, J.; Chen, Z.J.; Yang, F.D.; Wang, J.J. Study on Difference and Correlation of Traits, Inorganic Elements and Lobetyoli of Dangshen (Codonopsis Radix) from Different Origins in Gansu Province. J. Shandong Univ. Tradit. 2024, 48, 613–621+648. [Google Scholar] [CrossRef]
- Liu, M. Research on the Pharmacological Activity of Microbial Metabolites During the Astragalus Membranaceus Processing. Ind. Microbiol. 2024, 54, 214–216. [Google Scholar]
- Zhang, Y.Q.; Tan, Y.H.; Guo, S.Z.; Jiang, H.L.; Zhao, X.Y.; Gao, G.P.; Shi, Q.M. Effects of Astragalus polysaccharides and Buzhong Yiqi powder on growth performance, serum biochemical indexes, immune performance, and antioxidant capacity of Ussuri raccoon dog. Feed Res. 2024, 47, 83–87. [Google Scholar] [CrossRef]
- Wen, F.; Shu, P. Network Pharmacology Study of Huangqi (Astragalus Membranaceus)-Dangshen (Codonopsis pilosula) in Treatment of Gastric Cancer. Chin. Arch. Tradit. Chin. Med. 2021, 39, 89–94+267–268. [Google Scholar] [CrossRef]
- Pan, X.; Xuan, W.J. The Mechanism of Astragaloside IV Regulating thePI3K/AKT Signaling Pathway on Gentamicin Induced Ototoxicity Damage. J. Audiol. Speech Pathol. 2025, 1–5. [Google Scholar]
- Yu, J.; Liu, Y.Z.; Zhou, W.; Liu, R.Y.; Zhao, H.M.; Deng, B.L. A review on pharmacological effects of the Buzhong Yiqi decoction and its active components in regulating energy metabolism. Clin. J. Chin. Med. 2024, 16, 133–138. [Google Scholar]
- Liu, N.; Liang, J.L.; Li, J.L.; Wang, F.X.; Xi, S.Y.; Zhao, C.Z.; Wang, Y.J. Effect and metabolomic analysis of the mechanism of Buzhong Yiqi decoction on mice with high-altitude stress ulcer. J. Xiamen Univ. 2024, 63, 943–953. [Google Scholar]
- Liu, Z.Y.; Zhao, Z.; Chen, Y.; Cao, H.; Chen, S.; Wang, Z.M.; Gao, T.; Yang, X. Improvement of Thyroid Injury in AIT Mice by Inhibiting Ferroptosis Through Regulation of Nrf2/PPARγ/GPX4 Pathway by Buzhong Yiqitang. Chin. J. Exp. Tradit. Med. Formulae 2024, 30, 10–18. [Google Scholar] [CrossRef]
- Li, X.H.; Zhao, Z.; Chen, Y.R.; Cao, H.M.; Chen, S.; Wang, Z.M.; Liu, Z.; Yang, X.; Gao, T. Effect of Buzhong Yiqitang on Fas/FADD/Caspase-8 Cell Apoptotic Signaling Pathway in Mice with Autoimmune Thyroiditis. Chin. J. Exp. Tradit. Med. Formulae 2024, 30, 27–34. [Google Scholar] [CrossRef]
- Li, X.H.; Zhao, Z.; Chen, Y.R.; Cao, H.M.; Chen, S.; Wang, Z.M.; Gao, T.; Liu, Z.; Yang, X. Mechanism of Buzhong Yiqitang in Improving Autoimmune Thyroiditis by Regulating Th17 Cells Through miR-155/Ndfip1/Pten Axis. Chin. J. Exp. Tradit. Med. Formulae 2024, 30, 19–26. [Google Scholar] [CrossRef]
- Zhao, Z.; Jin, Z.; Li, Z.Z.; Guo, X.L.; Li, J.Y.; Gao, T.R.; Li, P.; Wang, Z.M.; Yin, Y.P.; Liu, Z.Y.; et al. Mechanism of Buzhong Yiqitang in Ameliorating Thyroiditis Damage in AIT Mice by Modulating TLR4/NF-κB/AIM2 Signaling Pathway. Chin. J. Exp. Tradit. Med. Formulae 2024, 30, 1–9. [Google Scholar] [CrossRef]
- Long, S.R.; Shang, W.X.; Zhang, H.R.; Jiang, M.; Wang, J.J.; Liu, R.D.; Wang, Z.Q.; Cui, J.; Sun, H. Trichinella-derived protein ameliorates colitis by altering the gut microbiome and improving intestinal barrier function. Int. Immunopharmacol. 2024, 127, 111320. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, N.; Su, X.; Gao, Y.; Yang, R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023, 12, 793. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Song, L.; Wang, X.; Xu, Y.; Liu, Z.; Zhao, D.; Wang, S.; Fan, X.; Wang, Z.; Gao, C. A bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri CO21 regulates the intestinal mucosal immunity and enhances the protection of piglets against enterotoxigenic Escherichia coli K88 challenge. Gut Microbes 2021, 13, 1956281. [Google Scholar] [CrossRef]
- Niu, Y.L.; Guo, R.X.; Ma, H.F.; Wei, Y.M.; Ji, P.; Hua, Y.L. Astragali Radix-Codonopsis Radix on the Process Optimization of Active Ingredients and Evaluation of Its Antioxidant Activity. Chin. Wild Plant Resour. 2025, 44, 17–26. [Google Scholar]
- Fu, J.; Wang, Z.; Huang, L.; Zheng, S.; Wang, D.; Chen, S.; Zhang, H.; Yang, S. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. PTR 2014, 28, 1275–1283. [Google Scholar] [CrossRef]
- Luan, F.; Ji, Y.; Peng, L.; Liu, Q.; Cao, H.; Yang, Y.; He, X.; Zeng, N. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Codonopsis pilosula: A review. Carbohydr. Polym. 2021, 261, 117863. [Google Scholar] [CrossRef]
- Yi, L.K.; Chen, X.; Bai, Y.B.; Wang, W.W.; Wei, X.J.; Zhang, Z.J.; Yu, X.Y.; Zhu, Z.; Zhang, J.Y. Research progress on the antibacterial synergistic effects and mechanisms of flavonoids. Heilongjiang Anim. Sci. Vet. 2024, 21–27. [Google Scholar] [CrossRef]
- Wang, M.; Huang, H.; Wang, L.; Yang, H.; He, S.; Liu, F.; Tu, Q.; He, S. Herbal Extract Mixture Modulates Intestinal Antioxidative Capacity and Microbiota in Weaning Piglets. Front. Microbiol. 2021, 12, 706758. [Google Scholar] [CrossRef]
- Lallès, J.P.; Bosi, P.; Smidt, H.; Stokes, C.R. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc. 2007, 66, 260–268. [Google Scholar] [CrossRef]
- Tang, X.; Xiong, K. Intrauterine Growth Retardation Affects Intestinal Health of Suckling Piglets via Altering Intestinal Antioxidant Capacity, Glucose Uptake, Tight Junction, and Immune Responses. Oxidative Med. Cell. Longev. 2022, 2022, 2644205. [Google Scholar] [CrossRef]
- Qin, L.; Ji, W.; Wang, J.; Li, B.; Hu, J.; Wu, X. Effects of dietary supplementation with yeast glycoprotein on growth performance, intestinal mucosal morphology, immune response and colonic microbiota in weaned piglets. Food Funct. 2019, 10, 2359–2371. [Google Scholar] [CrossRef]
- Tang, M.; Laarveld, B.; Van Kessel, A.G.; Hamilton, D.L.; Estrada, A.; Patience, J.F. Effect of segregated early weaning on postweaning small intestinal development in pigs. J. Anim. Sci. 1999, 77, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- Bomba, L.; Minuti, A.; Moisá, S.J.; Trevisi, E.; Eufemi, E.; Lizier, M.; Chegdani, F.; Lucchini, F.; Rzepus, M.; Prandini, A.; et al. Gut response induced by weaning in piglet features marked changes in immune and inflammatory response. Funct. Integr. Genom. 2014, 14, 657–671. [Google Scholar] [CrossRef]
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H.; Yang, S.; Li, Z.; Zhong, J.; Fang, R. Epidermal Growth Factor and Intestinal Barrier Function. Mediat. Inflamm. 2016, 2016, 1927348. [Google Scholar] [CrossRef] [PubMed]
- Gou, H.Z.; Zhang, Y.L.; Ren, L.F.; Li, Z.J.; Zhang, L. How do intestinal probiotics restore the intestinal barrier? Front. Microbiol. 2022, 13, 929346. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim. Sci. J. 2020, 91, e13357. [Google Scholar] [CrossRef]
- Smith, F.; Clark, J.E.; Overman, B.L.; Tozel, C.C.; Huang, J.H.; Rivier, J.E.F.; Blikslager, A.T.; Moeser, A.J. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest Liver Physiol. 2010, 298, G352–G363. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: Living life on the edge of the wall. Am. J. Pathol. 2008, 173, 1243–1252. [Google Scholar] [CrossRef]
- Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Vancamelbeke, M.; Vermeire, S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, J.; Lin, Q.; Yu, M.; Lu, J.; Feng, J.; Hu, C. Effects of Curcumin on Mitochondrial Function, Endoplasmic Reticulum Stress, and Mitochondria-Associated Endoplasmic Reticulum Membranes in the Jejunum of Oxidative Stress Piglets. J. Agric. Food Chem. 2022, 70, 8974–8985. [Google Scholar] [CrossRef]
- Ge, P.; Luo, Y.; Okoye, C.S.; Chen, H.; Liu, J.; Zhang, G.; Xu, C.; Chen, H. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: A troublesome trio for acute pancreatitis. Biomed. Pharmacother. 2020, 132, 110770. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ho, S.B. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr. Gastroenterol. Rep. 2010, 12, 319–330. [Google Scholar] [CrossRef]
- Wang, L.X.; Zhu, F.; Li, J.Z.; Li, Y.L.; Ding, X.Q.; Yin, J.; Xiong, X.; Yang, H.S. Epidermal growth factor promotes intestinal secretory cell differentiation in weaning piglets via Wnt/β-catenin signalling. Animal 2020, 14, 790–798. [Google Scholar] [CrossRef]
- Hedemann, M.S.; Højsgaard, S.; Jensen, B.B. Lectin histochemical characterisation of the porcine small intestine around weaning. Res. Vet. Sci. 2007, 82, 257–262. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, X.; Wang, X.; Tan, B.; Li, T.; Yin, Y. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets. PLoS ONE 2016, 11, e0150216. [Google Scholar] [CrossRef]
- Wells, J.M.; Brummer, R.J.; Derrien, M.; MacDonald, T.T.; Troost, F.; Cani, P.D.; Theodorou, V.; Dekker, J.; Méheust, A.; de Vos, W.M.; et al. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G171–G193. [Google Scholar] [CrossRef]
- Brandtzaeg, P. The increasing power of immunohistochemistry and immunocytochemistry. J. Immunol. Methods 1998, 216, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Duarte, M.E.; Sevarolli Loftus, A.; Kim, S.W. Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Front. Vet. Sci. 2021, 8, 628258. [Google Scholar] [CrossRef] [PubMed]
- Al-Sadi, R.; Boivin, M.; Ma, T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front. Biosci. 2009, 14, 2765–2778. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Hou, L.; Sun, L.; Gao, J.; Gao, K.; Yang, X.; Jiang, Z.; Wang, L. Intestinal morphology and immune profiles are altered in piglets by early-weaning. Int. Immunopharmacol. 2022, 105, 108520. [Google Scholar] [CrossRef]
- Deng, Q.; Tan, X.; Wang, H.; Wang, Q.; Huang, P.; Li, Y.; Li, J.; Huang, J.; Yang, H.; Yin, Y. Changes in cecal morphology, cell proliferation, antioxidant enzyme, volatile fatty acids, lipopolysaccharide, and cytokines in piglets during the postweaning period. J. Anim. Sci. 2020, 98, skaa046. [Google Scholar] [CrossRef]
- Yi, H.; Jiang, D.; Zhang, L.; Xiong, H.; Han, F.; Wang, Y. Developmental expression of STATs, nuclear factor-κB and inflammatory genes in the jejunum of piglets during weaning. Int. Immunopharmacol. 2016, 36, 199–204. [Google Scholar] [CrossRef]
- Wen, X.; Wan, F.; Zhong, R.; Chen, L.; Zhang, H. Hydroxytyrosol Alleviates Intestinal Oxi-dative Stress by Regulating Bile Acid Metabolism in a Piglet Model. Int. J. Mol. Sci. 2024, 25, 5590. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Lin, Z.; Liu, C.; Zhang, Y.; Zhang, S.; Zhou, M.; Zhao, J.; Liu, H.; Ma, X. Clostrid-ium butyricum alleviates weaned stress of piglets by improving intestinal immune function and gut microbiota. Food Chem. 2023, 405, 135014. [Google Scholar] [CrossRef]
- Tan, J.K.; Macia, L.; Mackay, C.R. Dietary fiber and SCFAs in the regulation of mucosal immunity. J. Allergy Clin. Immunol. 2023, 151, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.G.; Yokoyama, W.H.; German, J.B. Butyric acid from the diet: Actions at the level of gene expression. Crit. Rev. Food Sci. Nutr. 1998, 38, 259–297. [Google Scholar] [CrossRef]
- Westerholm, M.; Calusinska, M.; Dolfing, J. Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol. Rev. 2022, 46, fuab057. [Google Scholar] [CrossRef]
- Sivaprakasam, S.; Prasad, P.D.; Singh, N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther. 2016, 164, 144–151. [Google Scholar] [CrossRef]
- Abdelhalim, K.A. Short-chain fatty acids (SCFAs) from gastrointestinal disorders, metabolism, epigenetics, central nervous system to cancer-A mini-review. Chem. Biol. Interact. 2024, 388, 110851. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Ajuwon, K.M. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS ONE 2017, 12, e0179586. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Ajuwon, K.M. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells. PLoS ONE 2015, 10, e0145940. [Google Scholar] [CrossRef]
- Diao, H.; Jiao, A.R.; Yu, B.; Mao, X.B.; Chen, D.W. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. Genes Nutr. 2019, 14, 4. [Google Scholar] [CrossRef] [PubMed]
Item | Content |
---|---|
Ingredients | |
Corn | 55.0 |
Fishmeal | 1.0 |
Expanded soybean | 4.9 |
Soybean meal (46%) | 15.2 |
Fermented soybean meal (50%) | 8.1 |
Beer yeast powder | 1.0 |
Wheat | 4.0 |
Wheat bran | 3.0 |
Soybean oil | 0.5 |
Calcium hydrogen phosphate | 1.2 |
Talcum powder | 1.1 |
Sodium chloride | 0.5 |
Lysine | 2.0 |
Methionine | 1.0 |
Threonine | 1.5 |
Total | 100 |
Energy and nutrient levels | |
Crude protein | 21.3 |
Crude fiber | 5.0 |
Calcium | 1.0 |
Total phosphorus | 0.50 |
Neutral detergent fiber (MDF) | 14.9 |
Acid detergent fiber (ADF) | 7.50 |
OM | 93.62 |
NE (Kcal/Kg) | 2886 |
Fat | 5.52 |
Gene | Primer Sequences (5′–3′) |
---|---|
GAPDH | F: GTCGGAGTGAACGGATTTGGC R: GGAGGTCAATGAAGGGGTCA |
ZO-1 | F:ACCAGAAATACCTGACGGTGC R: GATGGCGTTACCCACAGCTT |
Occludin | F: CAGGTGCACCCTCCAGATTG R: TGGACTTTCAAGAGGCCTGG |
Occludin1 | F: TCTTTCTTATTTCAGGTCTGGCT R: ACTGGGGTCATGGGGTCATA |
MUC2 | F: CCAGGTCGAGTACATCCTGC R: GTGCTGACCATGGCCCC |
Components | Peak Time | Linear Regression Equation | Correlation Coefficient | Linear Range, μg/mL | Content, μg/mL |
---|---|---|---|---|---|
Calycosin-7-glucoside | 14.346 | Y = 65,174.87X + 19.85 | 0.999 | 6.0–48.0 | 19.8 |
Lobetyolin | 16.463 | Y = 8250.64X + 2.13 | 0.999 | 6.5–52.0 | 23.1 |
Liquiritin | 16.741 | Y = 13,007.68X + 30.51 | 0.999 | 29.0–232.0 | 86.8 |
Ononin | 18.221 | Y = 100,492.81X + 24.45 | 0.999 | 4.75–38.0 | 14.2 |
Calycosin | 26.358 | Y = 127,852.57X + 25.52 | 0.999 | 4.25–34.0 | 16.4 |
Liquiritigenin | 27.076 | Y = 25,221.09X + 13.98 | 0.999 | 9.87–79.0 | 35.7 |
Formononetin | 32.469 | Y = 106,533.80X + 84.61 | 0.999 | 5.1–41.0 | 17.2 |
Item | Control | LCAG | MCAG | HCAG | SEM | p-Value |
---|---|---|---|---|---|---|
IBW, kg | 7.76 | 7.87 | 7.69 | 7.81 | 0.216 | 0.251 |
FBW, kg | 18.66 | 19.26 | 19.40 | 20.54 ** | 0.661 | 0.047 |
ADG, g/d | 375.86 | 392.78 | 403.98 | 438.72 ** | 19.319 | 0.015 |
ADFI, g/d | 522.31 | 542.14 | 542.75 | 557.58 | - | - |
F/G | 1.39 | 1.38 | 1.34 | 1.27 | - | - |
diarrhea rate, % | 20.09 | 10.90 | 12.60 | 10.95 | - | - |
Item | Control | LCAG | MCAG | HCAG | SEM | p-Value |
---|---|---|---|---|---|---|
IgA, ng/mL | 0.82 | 1.15 ** | 1.24 ** | 1.10 ** | 0.041 | 0.000 |
IgM, ng/mL | 118.83 | 117.36 | 118.62 | 149.06 ** | 5.133 | 0.017 |
IL-1β, pg/mL | 812.67 | 889.57 * | 692.13 ** | 757.00 | 35.128 | 0.003 |
IL-10, pg/mL | 104.84 | 112.31 | 108.28 | 108.26 | 4.042 | 0.843 |
TNF-α, pg/mL | 10.31 | 11.14 | 9.76 | 9.85 | 0.535 | 0.106 |
Item | Control | CAG | SEM | p-Value |
---|---|---|---|---|
Acetic acids, μmol/g | 2.41 | 4.26 ** | 0.162 | 0.000 |
Propionic acids, μmol/g | 1.02 | 1.47 * | 0.107 | 0.014 |
Butyric acids, μmol/g | 0.31 | 0.77 * | 0.125 | 0.021 |
Isobutyric acid, μmol/g | 0.017 | 0.069 * | 0.012 | 0.013 |
Valeric acids, μmol/g | 0.06 | 0.08 | 0.013 | 0.212 |
Isovaleric acids, μmol/g | 0.05 | 0.06 | 0.009 | 0.717 |
Item | Control | CAG | SEM | p-Value |
---|---|---|---|---|
Jejunum | ||||
VH, μm | 435.0 | 514.2 | 37.98 | 0.056 |
CD, μm | 226.8 | 197.5 * | 10.34 | 0.013 |
VH:CD | 1.9 | 2.6 ** | 0.14 | 0.000 |
Ileum | ||||
VH, μm | 385.1 | 521.1 ** | 21.37 | 0.000 |
CD, μm | 235.6 | 201.0 * | 11.91 | 0.013 |
VH:CD | 1.6 | 2.6 ** | 0.14 | 0.000 |
Item | Control | CAG | SEM | p-Value |
---|---|---|---|---|
Jejunum | 135.00 | 217.88 * | 22.126 | 0.020 |
Ileum | 142.44 | 253.55 * | 24.363 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Jiang, C.; Niu, Y.; Niu, C.; Chen, B.; Yuan, Z.; Hua, Y.; Wei, Y. ShenQiGan Extract Repairs Intestinal Barrier in Weaning-Stressed Piglets by Modulating Inflammatory Factors, Immunoglobulins, and Short-Chain Fatty Acids. Animals 2025, 15, 2218. https://doi.org/10.3390/ani15152218
Guo R, Jiang C, Niu Y, Niu C, Chen B, Yuan Z, Hua Y, Wei Y. ShenQiGan Extract Repairs Intestinal Barrier in Weaning-Stressed Piglets by Modulating Inflammatory Factors, Immunoglobulins, and Short-Chain Fatty Acids. Animals. 2025; 15(15):2218. https://doi.org/10.3390/ani15152218
Chicago/Turabian StyleGuo, Rongxia, Chenghui Jiang, Yanlong Niu, Chun Niu, Baoxia Chen, Ziwen Yuan, Yongli Hua, and Yanming Wei. 2025. "ShenQiGan Extract Repairs Intestinal Barrier in Weaning-Stressed Piglets by Modulating Inflammatory Factors, Immunoglobulins, and Short-Chain Fatty Acids" Animals 15, no. 15: 2218. https://doi.org/10.3390/ani15152218
APA StyleGuo, R., Jiang, C., Niu, Y., Niu, C., Chen, B., Yuan, Z., Hua, Y., & Wei, Y. (2025). ShenQiGan Extract Repairs Intestinal Barrier in Weaning-Stressed Piglets by Modulating Inflammatory Factors, Immunoglobulins, and Short-Chain Fatty Acids. Animals, 15(15), 2218. https://doi.org/10.3390/ani15152218