Effects of Adding Hydroxytyrosol to the Diet of Pigs in the Nursery Phase on Growth Performance, Biochemical Markers, and Fatty Acid Profile
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.1.1. Facilities
2.1.2. Piglets/Feeds and Treatments
2.1.3. Zootechnical Performance
2.1.4. Serum Variables
2.1.5. Morphometric Variables and Tissue Collection
2.1.6. Behavioral Analysis
2.1.7. Lipid Profile Analysis
2.2. Experiment 2
Assessment of Digestibility Coefficients
2.3. Statistical Analysis
3. Results
3.1. Performance
3.2. Serum Biochemistry
3.3. Intestinal Histology
3.4. Behaviors
3.5. Lipid Concentration
3.6. Apparent Digestibility Coefficients
4. Discussion
4.1. Performance
4.2. Serum Biochemistry
4.3. Intestinal Histology
4.4. Behavior
4.5. Lipid Profile of Meat
4.6. Digestibility Coefficients
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, X.; Tsai, T.; Howe, S.; Zhao, J. Weaning induced gut dysfunction and nutritional interventions in nursery pigs: A partial review. Animals 2021, 11, 1279. [Google Scholar] [CrossRef]
- Han, H.; Zhong, R.; Zhou, Y.; Xiong, B.; Chen, L.; Jiang, Y.; Liu, L.; Sun, H.; Tan, J.; Tao, F.; et al. Hydroxytyrosol benefits boar semen quality via improving gut microbiota and blood metabolome. Front. Nutr. 2022, 8, 815922. [Google Scholar] [CrossRef]
- Leskovec, J.; Levart, A.; Salobir, J.; Rezar, V. Do olive polyphenols negatively affect nutrient digestibility in pigs? J. Central Eur. Agric. 2018, 19, 846–851. [Google Scholar] [CrossRef]
- Cavalheiro, C.V.; Rosso, V.D.; Paulus, E.; Cichoski, A.J.; Wagner, R.; de Menezes, C.R.; Barin, J.S. Composição química de folhas de oliveira (Olea europaea L.) da região de Caçapava do Sul, RS. Ciênc. Rural 2014, 44, 1874–1879. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [PubMed]
- Laviano, H.D.; Gómez, G.; Escudero, R.; Nuñez, Y.; García-Casco, J.M.; Muñoz, M.; Heras-Molina, A.; López-Bote, C.; González-Bulnes, A.; Óvilo, C.; et al. Maternal supplementation of vitamin E or its combination with hydroxytyrosol increases the gut health and short chain fatty acids of piglets at weaning. Antioxidants 2023, 12, 1761. [Google Scholar] [CrossRef] [PubMed]
- Dias, K.M.M.; Oliveira, C.H.; Calderano, A.A.; Rostagno, H.S.; Gomes, K.M.; O’connor, K.E.; Davis, R.; Walsh, M.; Britton, J.; Altieri, E.A.; et al. Dietary Hydroxytyrosol Supplementation on Growth Performance, Gut Morphometry, and Oxidative and Inflammatory Status in LPS-Challenged Broilers. Animals 2024, 14, 871. [Google Scholar] [CrossRef]
- Wen, X.; Wan, F.; Zhong, R.; Chen, L.; Zhang, H. Hydroxytyrosol alleviates intestinal oxidative stress by regulating bile acid metabolism in a piglet model. Int. J. Mol. Sci. 2024, 25, 5590. [Google Scholar] [CrossRef] [PubMed]
- Dias, K.M.M.; Oliveira, C.H.; Calderano, A.A.; Rostagno, H.S.; O’connor, K.E.; Davis, R.; Walsh, M.; Britton, J.; Altieri, E.A.; Albino, L.F.T. Effects of hydroxytyrosol supplementation on performance, fat and blood parameters of broiler chickens. Animals 2023, 14, 119. [Google Scholar] [CrossRef]
- Garcia-Contreras, C.; Vazquez-Gomez, M.; Pardo, Z.; Heras-Molina, A.; Pesantez, J.L.; Encinas, T.; Torres-Rovira, L.; Astiz, S.; Nieto, R.; Ovilo, C.; et al. Polyphenols and IUGR pregnancies: Effects of maternal hydroxytyrosol supplementation on hepatic fat accretion and energy and fatty acids profile of fetal tissues. Nutrients 2019, 11, 1534. [Google Scholar] [CrossRef]
- Auñon-Calles, D.; Canut, L.; Visioli, F. Toxicological evaluation of pure hydroxytyrosol. Food Chem. Toxicol. 2013, 55, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Auñon-Calles, D.; Giordano, E.; Bohnenberger, S.; Visioli, F. Hydroxytyrosol is not genotoxic in vitro. Pharmacol. Res. 2013, 74, 87–93. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; Teixeira, M.L.; Rodrigues, P.B.; Oliveira, R.F.; et al. Tabelas Brasileiras Para Aves e Suínos, 4th ed.; Departamento de Zootecnia-UFV: Viçosa, Brazil, 2017. [Google Scholar]
- Imprensa Nacional. No. 65; DOU—Imprensa Nacional: Brasilia, Brazil, 2006; pp. 1–31. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/alimentacao-animal/arquivos-alimentacao-animal/legislacao/instrucao-normativa-no-65-de-21-de-novembro-de-2006.pdf (accessed on 1 July 2022).
- Imprensa Nacional. No. 14; DOU—Imprensa Nacional: Brasilia, Brazil, 2016. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/alimentacao-animal/arquivos-alimentacao-animal/legislacao/instrucao-normativa-no-14-de-15-de-julho-de-2016.pdf (accessed on 1 July 2022).
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 1990; Volume 1. [Google Scholar]
- Belote, B.L.; Soares, I.; Tujimoto-Silva, A.; Sanches, A.W.; Kraieski, A.L.; Santin, E. Applying I see inside histological methodology to evaluate gut health in broilers challenged with Eimeria. Vet. Parasitol. 2019, 276, 100004. [Google Scholar] [CrossRef] [PubMed]
- Kraieski, A.L.; Hayashi, R.M.; Sanches, A.; Almeida, G.C.; Santin, E. Effect of aflatoxin experimental ingestion and Eimeira vaccine challenges on intestinal histopathology and immune cellular dynamic of broilers: Applying an Intestinal Health Index. Poult. Sci. 2017, 96, 1078–1087. [Google Scholar] [CrossRef]
- Martin, P.; Bateson, P. Measuring Behaviour, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973, 22, 475–476. [Google Scholar] [PubMed]
- Simionato, J.I.; Garcia, J.C.; dos Santos, G.T.; Oliveira, C.C.; Visentainer, J.V.; de Souza, N.E. Additions and corrections—Validation of the determination of fatty acids in milk by gas chromatography. J. Braz. Chem. Soc. 2015, 26, 828. [Google Scholar] [CrossRef]
- Pekas, J.C. Versatile swine laboratory apparatus for physiologic and metabolic studies. J. Anim. Sci. 1968, 27, 1303–1306. [Google Scholar] [CrossRef]
- Adeola, O. Digestion and balance techniques in pigs. In Swine Nutrition, 2nd ed.; Lewis, A.J., Southern, L.L., Eds.; CRC Press: Boca Raton, FL, USA, 2000; Volume 40, pp. 903–916. [Google Scholar]
- Sakomura, N.K.; Rostagno, H.S. Métodos de Pesquisa em Nutrição de Monogástricos, 2nd ed.; Funep: Jaboticabal, SP, Brazil, 2016. [Google Scholar]
- Norkeaw, R.; Arjin, C.; Sartsook, A.; Chaiwang, N.; Mekchay, S.; Sommano, S.R.; Ruksiriwanich, W.; Sringarm, K. Antioxidant activities of plant extracts and essential oil-cyclodextrin complexes and their effect on lipid accumulation in porcine adipocytes in vitro. Vet. Integr. Sci. 2021, 20, 209–229. [Google Scholar] [CrossRef]
- Orengo, J.; Hernández, F.; Martínez-Miró, S.; Sánchez, C.J.; Rubio, C.P.; Madrid, J. Effects of commercial antioxidants in feed on growth performance and oxidative stress status of weaned piglets. Animals 2021, 11, 266. [Google Scholar] [CrossRef]
- Eliopoulos, C.; Papadomichelakis, G.; Voitova, A.; Chorianopoulos, N.; Haroutounian, S.A.; Markou, G.; Arapoglou, D. Improved Antioxidant Blood Parameters in Piglets Fed Diets Containing Solid-State Fermented Mixture of Olive Mill Stone Waste and Lathyrus clymenum Husks. Antioxidants 2024, 13, 630. [Google Scholar] [CrossRef]
- Liu, A.; Li, Z.; Jin, X.; Wu, Q.; Hu, H.; Zhang, C. An encapsulated organic acid and essential oil mixture improves the intestinal health of weaned piglets by altering intestinal inflammation and antioxidative capacity. Animals 2022, 12, 2426. [Google Scholar] [CrossRef]
- Bilal, R.M.; Liu, C.; Zhao, H.; Wang, Y.; Farag, M.R.; Alagawany, M.; Hassan, F.-U.; Elnesr, S.S.; Elwan, H.A.M.; Qiu, H.; et al. Olive oil: Nutritional applications, beneficial health aspects and its prospective application in poultry production. Front. Pharmacol. 2021, 12, 723040. [Google Scholar] [CrossRef]
- Zou, X.; Zeng, M.; Zheng, Y.; Zheng, A.; Cui, L.; Cao, W.; Wang, X.; Liu, J.; Xu, J.; Feng, Z. Comparative study of hydroxytyrosol acetate and hydroxytyrosol in activating phase II enzymes. Antioxidants 2023, 12, 1834. [Google Scholar] [CrossRef]
- Klem, T.B.; Bleken, E.; Morberg, H.; Thoresen, S.I.; Framstad, T. Hematologic and biochemical reference intervals for Norwegian crossbreed grower pigs. Vet. Clin. Pathol. 2010, 39, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Elmaksoud, H.A.A.; Motawea, M.H.; Desoky, A.A.; Elharrif, M.G.; Ibrahimi, A. oxidative stress and apoptosis resulted in ulcerative colitis. Biomed. Pharmacother. 2021, 142, 112073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Long, S.; Wang, H.; Piao, X. Dietary 25-hydroxycholecalciferol modulates gut microbiota and improves the growth. Front. Microbiol. 2023, 13, 1095509. [Google Scholar] [CrossRef] [PubMed]
- Ferlisi, F.; De Ciucis, C.G.; Trabalza-Marinucci, M.; Fruscione, F.; Mecocci, S.; Franzoni, G.; Zinellu, S.; Galarini, R.; Razzuoli, E.; Cappelli, K. Olive mill waste-water extract enriched in hydroxytyrosol and tyrosol modulates host–pathogen interaction in IPEC-J2 cells. Animals 2024, 14, 564. [Google Scholar] [CrossRef]
- Gómez, G.; Laviano, H.D.; García-Casco, J.M.; Escudero, R.; Muñoz, M.; Heras-Molina, A.; González-Bulnes, A.; Óvilo, C.; López-Bote, C.; Rey, A.I. Different effect of vitamin E or hydroxytyrosol supplementation to sow’s diet on oxidative status and performances of weaned piglets. Antioxidants 2023, 12, 1504. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, M.; Mo, J.; Lan, G.; Liang, J. Dietary supplementation ellagic acid on the growth. Front. Vet. Sci. 2022, 9, 980271. [Google Scholar] [CrossRef]
- Rodríguez-Morató, J.; Xicota, L.; Fitó, M.; Farré, M.; Dierssen, M.; De La Torre, R. Potential Role of Olive Oil Phenolic Compounds in the Prevention of Neurodegenerative Diseases. Molecules 2015, 20, 4655–4680. [Google Scholar] [CrossRef]
- Silva, S.; Sepodes, B.; Rocha, J.; Direito, R.; Fernandes, A.; Brites, D.; Freitas, M.; Fernandes, E.; Bronze, M.; Figueira, M. Protective effects of hydroxytyrosol-supplemented refined olive oil in animal models of acute inflammation and rheumatoid arthritis. J. Nutr. Biochem. 2015, 26, 360–368. [Google Scholar] [CrossRef]
- Piotti, P.; Pierantoni, L.; Albertini, M.; Pirrone, F. Veterinary Clinics of North America: Small Animal Practice. Vet. Clin. N. Am. Small Anim. Pr. 2024, 54, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nordgreen, J.; Edwards, S.A.; Boyle, L.A.; Bolhuis, J.E.; Veit, C.; Sayyari, A.; Marin, D.E.; Dimitrov, I.; Janczak, A.M.; Valros, A. A proposed role for pro-inflammatory cytokines in damaging behavior in pigs. Front. Vet. Sci. 2020, 7, 646. [Google Scholar] [CrossRef]
- Huang, Y.; He, Z.; Li, H.; Li, F.; Wu, Z. Effect of antioxidant on the fatty acid composition and lipid oxidation of intramuscular lipid in pressurized pork. Meat Sci. 2012, 91, 137–141. [Google Scholar] [CrossRef]
- Su, H.; Shi, P.; Shen, Z.; Meng, H.; Meng, Z.; Han, X.; Chen, Y.; Fan, W.; Fa, Y.; Yang, C.; et al. High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering. Commun. Biol. 2023, 6, 1125. [Google Scholar] [CrossRef]
- Fan, Y.; Meng, H.-M.; Hu, G.-R.; Li, F.-L. Biosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms. Appl. Microbiol. Biotechnol. 2018, 102, 3027–3035. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Yu, X.; Gao, J.-M. A mini review of nervonic acid: Source. Food Chem. 2019, 301, 125286. [Google Scholar] [CrossRef]
- Namiecinska, M.; Piatek, P.; Lewkowicz, P. Nervonic acid synthesis substrates as essential components in profiled lipid supplementation for more effective central nervous system regeneration. Int. J. Mol. Sci. 2024, 25, 3792. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Pastorelli, G.; Cannata, S.; Tavaniello, S.; Maiorano, G.; Corino, C. Effect of long term dietary supplementation with plant extract on carcass characteristics meat quality and oxidative stability in pork. Meat Sci. 2013, 95, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Paiva-Martins, F.; Barbosa, S.; Pinheiro, V.; Mourão, J.L.; Outor-Monteiro, D. The effect of olive leaves supplementation on the feed digestibility. Meat Sci. 2009, 82, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Ferlisi, F.; Tang, J.; Cappelli, K.; Trabalza-Marinucci, M. Dietary supplementation with olive oil co-products rich in polyphenols: A novel nutraceutical approach in monogastric animal nutrition. Front. Vet. Sci. 2023, 10, 1272274. [Google Scholar] [CrossRef] [PubMed]
Ingredients, kg/ton * | Pre-I (0–7 d) | Pre-II (8–14 d) | Initial (15–42 d) |
---|---|---|---|
Ground Corn | 9.800 | 41.145 | 63.963 |
Pre-gelatinized Corn | 25.600 | 10.000 | 0.000 |
Soybean Meal | 14.350 | 19.800 | 25.850 |
Micronized Soy | 8.050 | 6.000 | 2.490 |
Soy Protein Concentrate | 4.000 | 1.500 | 0.000 |
Whey | 20.000 | 10.000 | 0.000 |
Cookie waste | 6.000 | 3.000 | 0.000 |
Dehydrated Egg Flour | 4.000 | 2.000 | 0.000 |
Sugar | 4.000 | 2.500 | 0.984 |
Calcitic Limestone | 0.850 | 0.600 | 0.780 |
Dicalcium Phosphate | 0.900 | 1.020 | 1.259 |
Bewi® | 0.000 | 0.000 | 2.840 |
Sodium Bicarbonate | 0.075 | 0.100 | 0.380 |
Refined Salt | 0.100 | 0.250 | 0.230 |
L-Lysine 98.5% | 0.480 | 0.465 | 0.330 |
DL-Methionine 99% | 0.210 | 0.180 | 0.108 |
L-Threonine 98.5% | 0.240 | 0.220 | 0.125 |
L-Tryptophan 98% | 0.045 | 0.045 | 0.018 |
L-Isoleucine 97.5% | 0.000 | 0.005 | 0.000 |
L-Valine 98% | 0.075 | 0.075 | 0.000 |
Hostazym X100® | 0.010 | 0.010 | 0.010 |
OptiPhos Plus® | 0.003 | 0.005 | 0.003 |
Sucram C 150® | 0.020 | 0.020 | 0.020 |
Banox® | 0.010 | 0.010 | 0.010 |
Zinc Oxide | 0.175 | 0.125 | 0.050 |
Inert® | 0.608 | 0.525 | 0.150 |
Vitamin mineral supplement | 0.400 1 | 0.400 2 | 0.400 3 |
Calculated composition, (as feed base) ** | |||
Calcium, % | 0.80 | 0.66 | 0.71 |
Available Phosphorus, % | 0.39 | 0.35 | 0.33 |
Metabolizable Energy, Mcal/kg | 3.49 | 3.37 | 3.34 |
Crude Protein, % | 20.3 | 19.3 | 18.0 |
Digestible Lysine, % | 1.43 | 1.29 | 1.07 |
Digestible Methionine + Cystine, % | 0.80 | 0.73 | 0.61 |
Digestible Tryptophan, % | 0.28 | 0.25 | 0.21 |
Digestible Threonine, % | 0.96 | 0.86 | 0.69 |
Digestible Valine, % | 0.97 | 0.889 | 0.75 |
Digestible Isoleucine, % | 0.83 | 0.75 | 0.67 |
HT Inclusion Levels, mg/kg of Feed | Qualitative Analysis | Regression Analysis | ||||||
---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 50 | p= | SEM | Linear | Quadratic | |
Initial BW, kg | 7.30 | 7.29 | 7.31 | 7.30 | 1.000 | 0.103 | NA | NA |
Final BW, kg | 26.43 | 26.25 | 26.8 | 25.78 | 0.873 | 0.381 | NA | NA |
Average daily feed intake (DFI), kg/day | ||||||||
DFI 0–7 days | 0.277 | 0.269 | 0.310 | 0.327 | 0.477 | 0.014 | NA | NA |
DFI 0–14 days | 0.376 | 0.382 | 0.400 | 0.403 | 0.626 | 0.008 | NA | NA |
DFI 0–28 days | 0.559 | 0.569 | 0.570 | 0.553 | 0.914 | 0.009 | NA | NA |
DFI 0–42 days | 0.773 | 0.731 | 0.774 | 0.742 | 0.626 | 0.014 | NA | NA |
Average daily weight gain (DWG), kg/day | ||||||||
DWG 0–7 days | 0.139 | 0.152 | 0.174 | 0.133 | 0.321 | 0.008 | NA | NA |
DWG 0–14 days | 0.254 | 0.266 | 0.259 | 0.267 | 0.814 | 0.005 | NA | NA |
DWG 0–28 days | 0.365 | 0.369 | 0.368 | 0.364 | 0.993 | 0.007 | NA | NA |
DWG 0–42 days | 0.456 | 0.451 | 0.464 | 0.440 | 0.795 | 0.008 | NA | NA |
Feed conversion (FC), kg/kg * | ||||||||
FC 0–7 days | 1.854 | 1.790 | 1.789 | 1.821 | 0.988 | 0.071 | NA | NA |
FC 0–14 days | 1.446 a | 1.441 ab | 1.495 a | 1.323 b | 0.051 | 0.021 | 0.028 | 0.041 * |
FC 0–28 days | 1.535 | 1.544 | 1.545 | 1.468 | 0.085 | 0.013 | 0.023 | 0.34 * |
FC 0–42 days | 1.693 | 1.623 | 1.708 | 1.664 | 0.264 | 0.024 | NA | NA |
HT Inclusion Levels, mg/kg of Feed | Qualitative Analysis | Regression Analysis | ||||||
---|---|---|---|---|---|---|---|---|
Variables | 0 | 5 | 10 | 50 | p= | SEM | Linear | Quadratic |
Serum biochemistry as d 14 | ||||||||
ALB | 2.31 | 2.44 | 2.38 | 2.25 | 0.658 | 0.054 | NA | NA |
CHOL | 79.82 | 75.30 | 77.55 | 69.38 | 0.691 | 3.258 | NA | NA |
FERRI | 108.98 | 79.40 | 105.58 | 109.10 | 0.842 | 11.586 | NA | NA |
GGT | 32.48 | 39.23 | 26.20 | 33.17 | 0.127 | 1.952 | NA | NA |
GLU | 114.17 | 104.67 | 107.83 | 111.33 | 0.690 | 2.841 | NA | NA |
PCR | 28.32 | 28.35 | 28.22 | 28.02 | 0.144 | 0.056 | NA | NA |
TP | 4.53 | 4.53 | 4.72 | 4.33 | 0.303 | 0.072 | NA | NA |
AST | 58.97 | 78.13 | 77.17 | 56.48 | 0.366 | 5.634 | NA | NA |
ALT | 60.28 | 69.88 | 61.95 | 69.13 | 0.945 | 4.519 | NA | NA |
UREA | 9.40 | 6.87 | 8.53 | 7.85 | 0.480 | 0.780 | NA | NA |
TG | 69.42 | 41.20 | 52.43 | 45.42 | 0.930 | 7.930 | NA | NA |
Serum biochemistry as d 35 | ||||||||
ALB | 2.39 | 2.52 | 2.53 | 2.38 | 0.568 | 0.046 | NA | NA |
CHOL | 89.17 | 90.83 | 97.28 | 94.70 | 0.344 | 1.717 | NA | NA |
FERRI | 96.15 | 73.65 | 100.93 | 95.68 | 0.662 | 8.063 | NA | NA |
GGT | 35.58 ab | 44.03 a | 30.27 b | 41.45 ab | 0.018 | 1.786 | 0.347 | 0.369 |
GLU | 114.83 b | 120.50 ab | 134.67 a | 119.83 ab | 0.035 | 2.624 | 0.930 | 0.019 |
PCR | 28.25 | 28.08 | 28.12 | 28.15 | 0.653 | 0.047 | NA | NA |
TP | 4.92 | 4.90 | 5.00 | 4.92 | 0.925 | 0.054 | NA | NA |
AST | 45.65 | 45.42 | 47.98 | 49.40 | 0.833 | 1.762 | NA | NA |
ALT | 59.00 | 65.73 | 64.95 | 84.60 | 0.125 | 4.150 | NA | NA |
UREA | 15.90 | 16.07 | 11.62 | 13.93 | 0.331 | 0.958 | NA | NA |
TG | 55.63 | 53.58 | 57.33 | 53.53 | 0.956 | 2.637 | NA | NA |
HT Inclusion Levels, mg/kg of Feed | Qualitative Analysis | Regression Analysis | ||||||
---|---|---|---|---|---|---|---|---|
Items | 0 | 5 | 10 | 50 | p= | SEM | Linear | Quadratic |
PROENT | 0.70 | 0.65 | 0.79 | 0.75 | 0.347 | 0.029 | NA | NA |
INFEP | 0.42 | 0.29 | 0.47 | 0.44 | 0.487 | 0.042 | NA | NA |
INFLP | 1.57 | 1.20 | 1.18 | 1.65 | 0.026 | 0.073 | 0.106 | 0.014 |
GLOB | 0.10 | 0.05 | 0.12 | 0.08 | 0.870 | 0.025 | NA | NA |
CONG | 0.43 | 0.18 | 0.28 | 0.23 | 0.355 | 0.051 | NA | NA |
SUM | 3.22 | 2.38 | 2.84 | 3.16 | 0.056 | 0.125 | 0.332 | 0.240 |
HT Inclusion Levels, mg/kg of Feed | Qualitative Analysis | Regression Analysis | ||||||
---|---|---|---|---|---|---|---|---|
Behaviors | 0 | 5 | 10 | 50 | Treat. | SEM | Linear | Quadratic |
FEEDWAT | 32.8 | 26.9 | 27.7 | 28.3 | 0.101 | 0.993 | NA | NA |
ACTBEH | 12.7 ab | 9.6 b | 14.0 a | 11.9 ab | 0.031 | 0.630 | 0.693 | 0.631 |
INACTBEH | 23.8 | 30.9 | 27.5 | 29.8 | 0.303 | 1.453 | NA | NA |
INTERAC | 30.7 | 32.6 | 30.8 | 30.0 | 0.720 | 1.011 | NA | NA |
HT Inclusion Levels, mg/kg of Feed | Qualitative Analysis | Regression Analysis | ||||||
---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 50 | p= | SEM | Linear | Quadratic | |
Fat extracted, % | 1.48 | 1.41 | 1.47 | 1.58 | 0.516 | 0.041 | NA | NA |
Capric | 0.198 a | 0.253 a | 0.079 ab | 0.022 b | 0.004 | 0.036 | 0.040 | 0.096 |
Undecanoic | 0.27 | 0.21 | 0.125 | 0.123 | 0.357 | 0.035 | NA | NA |
Lauric | 0.266 | 0.329 | 0.270 | 0.079 | 0.065 | 0.036 | 0.010 | 0.033 * |
Myristic | 4.896 | 4.536 | 4.74 | 4.842 | 0.951 | 0.221 | NA | NA |
Pentadecanoic | 0.992 | 0.967 | 0.883 | 0.846 | 0.507 | 0.038 | NA | NA |
Palmitic | 151.1 | 138.8 | 157.6 | 139.3 | 0.426 | 4.681 | NA | NA |
Palmitoleic | 12.12 | 10.78 | 12.95 | 10.43 | 0.448 | 0.607 | NA | NA |
Heptadecanoic | 2.96 | 3.08 | 2.67 | 2.65 | 0.832 | 0.157 | NA | NA |
cis-10-Heptadecenoic | 1.635 | 1.637 | 1.835 | 1.768 | 0.692 | 0.07 | NA | NA |
Stearic | 86.88 | 79.73 | 89.227 | 78.61 | 0.363 | 2.491 | NA | NA |
Oleic | 164.9 | 143.6 | 175.2 | 147.6 | 0.173 | 5.763 | NA | NA |
Linoleic | 111.3 | 99.7 | 107.96 | 94.0 | 0.337 | 3.625 | NA | NA |
Arachidic | 0.956 | 0.913 | 1.087 | 0.889 | 0.200 | 0.035 | NA | NA |
Linolenic | 1.128 | 1.132 | 1.075 | 0.764 | 0.069 | 0.061 | 0.009 | 0.036 * |
cis-11-Eicosenoic | 2.607 | 2.275 | 2.845 | 2.329 | 0.082 | 0.090 | 0.330 | 0.391 |
a- Linolenic | 2.806 | 2.623 | 2.732 | 2.351 | 0.593 | 0.121 | NA | NA |
cis-11,14-Eicosadienoic | 3.308 | 2.734 | 3.137 | 2.846 | 0.119 | 0.094 | NA | NA |
Behenic | 0.535 | 0.683 | 0.686 | 0.575 | 0.201 | 0.031 | NA | NA |
cis-8,11,14-Eicosatrienoic | 3.202 | 2.853 | 3.07 | 2.728 | 0.324 | 0.097 | NA | NA |
Erucic | 0.414 | 0.552 | 0.265 | 0.377 | 0.537 | 0.067 | NA | NA |
Arachidonic | 28.69 | 25.06 | 26.59 | 21.08 | 0.041 | 1.008 | 0.008 | 0.029 * |
cis-13,16-Docosadienoic | 0.327 | 0.263 | 0.215 | 0.176 | 0.114 | 0.026 | NA | NA |
Lignoceric | 0.52 b | 0.72 ab | 0.77 a | 0.58 ab | 0.029 | 0.035 | 0.569 | 0.015 |
cis-5,8,11,14,17-Eicosapentaenoic | 0.59 a | 0.51 ab | 0.46 ab | 0.38 b | 0.028 | 0.027 | 0.006 | 0.009 * |
Nervonic | 0.582 b | 0.733 b | 0.743 b | 1.214 a | <0.001 | 0.061 | <0.001 | <0.001 * |
cis-4,7,10,13,16,19-Docosahexaenoic | 1.056 | 0.893 | 0.862 | 0.766 | 0.169 | 0.047 | NA | NA |
∑ SFA | 249.55 | 230.24 | 258.17 | 215.53 | 0.263 | 8.239 | NA | NA |
∑ UFA | 334.6 | 296.9 | 339.9 | 301.9 | 0.298 | 9.811 | NA | NA |
∑ MUFA | 182.2 | 159.5 | 193.8 | 176.6 | 0.356 | 6.738 | NA | NA |
∑ PUFA | 152.4 | 137.4 | 146.1 | 125.4 | 0.277 | 5.097 | NA | NA |
UFA/SFA | 1.34 | 1.30 | 1.31 | 1.46 | 0.633 | 0.048 | NA | NA |
∑ω6 | 144.3 | 128.8 | 138.7 | 118.8 | 0.235 | 4.675 | NA | NA |
∑ω3 | 4.45 | 3.53 | 4.06 | 3.49 | 0.038 | 0.143 | 0.065 | 0.134 |
ω6/ω3 | 32.57 | 32.42 | 34.50 | 34.18 | 0.508 | 0.592 | NA | NA |
HT Inclusion Levels, mg/kg of Feed | Qualitative Analysis | Regression Analysis | |||||
---|---|---|---|---|---|---|---|
0 | 25 | 50 | p= | SEM | Linear | Quadratic | |
ADC of DM, % | 87.28 | 88.20 | 89.19 | 0.058 | 0.332 | 0.007 | 0.058 |
ADC of OM, % | 88.69 b | 89.83 ab | 90.56 a | 0.047 | 0.317 | 0.006 | 0.047 * |
ADC of GE, % | 85.29 | 86.29 | 87.61 | 0.059 | 0.409 | 0.008 | 0.059 |
AMU of GE, % | 83.66 b | 84.92 ab | 86.69 a | 0.011 | 0.452 | 0.001 | 0.011 * |
ADC of CP, % | 88.42 | 89.76 | 89.76 | 0.376 | 0.416 | 0.115 | 0.376 |
AMU of CP, % | 75.74 a | 76.89 a | 80.17 a | 0.048 | 0.799 | 0.008 | 0.048 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rofino, R.D.A.; Ficagna, C.A.; Zamboni, T.; Klein, B.; Altieri, E.A.; O’Connor, K.E.; Davis, R.; Walsh, M.; Tavernari, F.d.C.; Boiago, M.M.; et al. Effects of Adding Hydroxytyrosol to the Diet of Pigs in the Nursery Phase on Growth Performance, Biochemical Markers, and Fatty Acid Profile. Animals 2025, 15, 2268. https://doi.org/10.3390/ani15152268
Rofino RDA, Ficagna CA, Zamboni T, Klein B, Altieri EA, O’Connor KE, Davis R, Walsh M, Tavernari FdC, Boiago MM, et al. Effects of Adding Hydroxytyrosol to the Diet of Pigs in the Nursery Phase on Growth Performance, Biochemical Markers, and Fatty Acid Profile. Animals. 2025; 15(15):2268. https://doi.org/10.3390/ani15152268
Chicago/Turabian StyleRofino, Rafael Domingos Augusto, Cassio Antonio Ficagna, Taeline Zamboni, Bruna Klein, Enrico A. Altieri, Kevin E. O’Connor, Reeta Davis, Margaret Walsh, Fernando de Castro Tavernari, Marcel Manente Boiago, and et al. 2025. "Effects of Adding Hydroxytyrosol to the Diet of Pigs in the Nursery Phase on Growth Performance, Biochemical Markers, and Fatty Acid Profile" Animals 15, no. 15: 2268. https://doi.org/10.3390/ani15152268
APA StyleRofino, R. D. A., Ficagna, C. A., Zamboni, T., Klein, B., Altieri, E. A., O’Connor, K. E., Davis, R., Walsh, M., Tavernari, F. d. C., Boiago, M. M., Silva, A. S. d., & Paiano, D. (2025). Effects of Adding Hydroxytyrosol to the Diet of Pigs in the Nursery Phase on Growth Performance, Biochemical Markers, and Fatty Acid Profile. Animals, 15(15), 2268. https://doi.org/10.3390/ani15152268