Fish MicroRNA Responses to Thermal Stress: Insights and Implications for Aquaculture and Conservation Amid Global Warming
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Review Paper Selection Criteria
No. | Author, Year | Article Title |
---|---|---|
1 | Bizuayehu et al., 2015 [51] | Temperature during early development has long-term effects on microRNA expression in Atlantic cod |
2 | Qiang et al., 2017 [49] | The expression profiles of miRNA-mRNA of early response in genetically improved farmed tilapia (Oreochromis niloticus) liver by acute heat stress |
3 | Zhang et al., 2017 [47] | Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish |
4 | Bao et al., 2018 [48] | Responses of blood biochemistry, fatty acid composition, and expression of microRNAs to heat stress in genetically improved farmed tilapia (Oreochromis niloticus) |
5 | Huang et al., 2018 [45] | Identification and characterization of microRNAs in the liver of rainbow trout in response to heat stress by high-throughput sequencing |
6 | Ma et al., 2019 [46] | High-throughput sequencing reveals microRNAs in response to heat stress in the head kidney of rainbow trout (Oncorhynchus mykiss) |
7 | Sun et al., 2019a [37] | Potential regulation by miRNAs on glucose metabolism in liver of common carp (Cyprinus carpio) at different temperatures |
8 | Sun et al., 2019b [41] | Analysis of miRNA-seq in the liver of common carp (Cyprinus carpio L.) in response to different environmental temperatures |
9 | Vasadia et al., 2019 [42] | Characterization of thermally sensitive miRNAs reveals a central role of the FoxO signaling pathway in regulating the cellular stress response of an extreme stenotherm, Trematomus bernacchii |
10 | Huang et al., 2022 [44] | miR-301b-5p and its target gene nfatc2ip regulate inflammatory responses in the liver of rainbow trout (Oncorhynchus mykiss) under high-temperature stress |
11 | Liu et al., 2022 [36] | Gene ssa-miR-301a-3p improves rainbow trout (Oncorhynchus mykiss) resistance to heat stress by targeting hsp90b2 |
12 | Zhao et al., 2023 [43] | Potential role of miR-8159-x in heat stress response in rainbow trout (Oncorhynchus mykiss) |
13 | Liu et al., 2024 [50] | Integrated transcriptome and microRNA analysis reveals molecular responses to high-temperature stress in the liver of American shad (Alosa sapidissima) |
2.2. MicroRNAs and Enrichment Analysis
3. Results
3.1. Differential microRNA of Thermal Stress
3.2. MicroRNAs and Enrichment Analysis
4. Discussion
4.1. MicroRNAs in Glucose Homeostasis and Energy Provisioning
4.2. MicroRNAs in Immunomodulation
4.3. MicroRNAs in Heat Shock Proteins and Physiological Processes
4.4. MicroRNAs in Acute and Chronic Heat Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MiRNA | MicroRNA |
AMPK | AMP-activated protein kinase |
ATP | Adenosine triphosphate |
cAMP | Cyclic adenosine monophosphate |
CG | Control group |
DEMs | Differentially expressed miRNAs |
ECM | Extracellular matrix |
GO | Gene Ontology |
HOXB13 | Homeobox B13 |
HSPs | Heat shock proteins |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MAPK | Mitogen-activated protein kinase |
MSK1/2 | Mitogen-activated protein kinase kinases 1 and 2 |
NF-κB | Nuclear factor kappa-B |
PFKLA | Phosphofructokinase liver isoform A |
PI3K/AKT | Phosphoinositide 3-kinase/protein kinase B |
qRT-PCR | Quantitative Real-time polymerase chain reaction |
TCA cycle | Citrate cycle |
temp | Temperature |
TG | Treatment group |
TNF | Tumor necrosis factor |
TWIST2 | Twist family BHLH transcription factor 2 |
References
- Naz, S.; Iqbal, S.; Khan, R.; Chatha, A.; Naz, S. Aquaculture Fish Responses Towards Temperature Stress: A Critical Review. In Toxicology and Human Health; Springer: Singapore, 2023; pp. 83–132. [Google Scholar]
- Handeland, S.O.; Imsland, A.K.; Stefansson, S.O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 2008, 283, 36–42. [Google Scholar] [CrossRef]
- Watson, S.A.; Allan, B.J.M.; McQueen, D.; Nicol, S.J.; Parsons, D.M.; Pether, S.M.J.; Pope, S.; Setiawan, A.; Smith, N.R.; Wilson, C.J.; et al. Ocean warming has a greater effect than acidification on the early life history development and swimming performance of a large circumglobal pelagic fish. Glob. Change Biol. 2018, 24, 4368–4385. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, X.; Li, P.; Liu, Y.; Song, M.; Li, F.; Ou, J.; Lai, J. Integrated metabolomic and transcriptomic responses to heat stress in a high-altitude fish, Triplophysa siluroides. Fish. Shellfish. Immunol. 2023, 142, 109118. [Google Scholar] [CrossRef] [PubMed]
- Soyano, K.; Mushirobira, Y. The Mechanism of Low-Temperature Tolerance in Fish. Adv. Exp. Med. Biol. 2018, 1081, 149–164. [Google Scholar]
- Takegaki, T.; Takeshita, F. Winter mortality of young mudskipper fish: Effects of size, temperature and energy depletion. J. Exp. Mar. Biol. Ecol. 2020, 530–531, 151436. [Google Scholar] [CrossRef]
- Gorissen, M.; Flik, G. 3—The Endocrinology of the Stress Response in Fish: An Adaptation-Physiological View. Fish Physiol. 2016, 35, 75–111. [Google Scholar]
- Barton, B.A. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef]
- Vasseur, D.A.; Delong, J.P.; Gilbert, B.; Greig, H.S.; Harley, C.D.G.; McCann, K.S.; Savage, V.M.; Tunney, T.D.; O’Connor, M.I. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132612. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Gentry, R.R.; Halpern, B.S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2018, 2, 1745–1750. [Google Scholar] [CrossRef]
- Sandblom, E.; Clark, T.D.; Gräns, A.; Ekström, A.; Brijs, J.; Sundström, L.F.; Odelström, A.; Adill, A.; Aho, T.; Jutfelt, F. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 2016, 7, 11447. [Google Scholar] [CrossRef]
- Barbarossa, V.; Bosmans, J.; Wanders, N.; King, H.; Bierkens, M.F.P.; Huijbregts, M.A.J.; Schipper, A.M. Threats of global warming to the world’s freshwater fishes. Nat. Commun. 2021, 12, 1701. [Google Scholar] [CrossRef] [PubMed]
- Dahlke, F.T.; Wohlrab, S.; Butzin, M.; Pörtner, H.O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 2020, 369, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Ackerly, D.D. Community Assembly, Niche Conservatism, and Adaptive Evolution in Changing Environments. Int. J. Plant Sci. 2003, 164, S165–S184. [Google Scholar] [CrossRef]
- Brauer, C.J.; Sandoval-Castillo, J.; Gates, K.; Hammer, M.P.; Unmack, P.J.; Bernatchez, L.; Beheregaray, L.B. Natural hybridization reduces vulnerability to climate change. Nat. Clim. Change 2023, 13, 282–289. [Google Scholar] [CrossRef]
- Díaz, F.; Re, A.D.; González, R.A.; Sánchez, L.N.; Leyva, G.; Valenzuela, F. Temperature preference and oxygen consumption of the largemouth bass Micropterus salmoides (Lacépède) acclimated to different temperatures. Aquac. Res. 2007, 38, 1387–1394. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, X.; Wang, Z.; Meng, Z.; Huang, B.; Guan, C. Physiological response of juvenile turbot (Scophthalmus maximus L.) during hyperthermal stress. Aquaculture 2020, 529, 735645. [Google Scholar] [CrossRef]
- Bilyk, K.T.; Sformo, T.L. Varying heat tolerance among Arctic nearshore fishes. Polar Biol. 2021, 44, 607–612. [Google Scholar] [CrossRef]
- Bilyk, K.T.; Devries, A.L. Heat tolerance and its plasticity in Antarctic fishes. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 158, 382–390. [Google Scholar] [CrossRef]
- Peck, L.S.; Morley, S.A.; Richard, J.; Clark, M.S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 2014, 217, 16–22. [Google Scholar] [CrossRef]
- Tabin, J.A.; Aspiras, A.; Martineau, B.; Riddle, M.; Kowalko, J.; Borowsky, R.; Rohner, N.; Tabin, C.J. Temperature preference of cave and surface populations of Astyanax mexicanus. Dev. Biol. 2018, 441, 338–344. [Google Scholar] [CrossRef]
- Shahjahan, M.; Islam, M.J.; Hossain, M.T.; Mishu, M.A.; Hasan, J.; Brown, C. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Sci. Total Environ. 2022, 843, 156910. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.R.; Mahmoud, H.K.; El-Sayed, S.A.A.; Ahmed, S.Y.A.; Alagawany, M.; Abou-Zeid, S.M. Neurobehavioral, physiological and inflammatory impairments in response to bifenthrin intoxication in Oreochromis niloticus fish: Role of dietary supplementation with Petroselinum crispum essential oil. Aquat. Toxicol. 2021, 231, 105715. [Google Scholar] [CrossRef] [PubMed]
- Schreck, C.B.; Tort, L. 1—The Concept of Stress in Fish. Fish Physiol. 2016, 35, 1–34. [Google Scholar]
- Raza, S.H.A.; Abdelnour, S.A.; Alotaibi, M.A.; AlGabbani, Q.; Naiel, M.A.E.; Shokrollahi, B.; Noreldin, A.E.; Jahejo, A.R.; Shah, M.A.; Alagawany, M.; et al. MicroRNAs mediated environmental stress responses and toxicity signs in teleost fish species. Aquaculture 2022, 546, 737310. [Google Scholar] [CrossRef]
- Pai, B. Regulating the regulators: Understanding miRNA biogenesis and decay in adult skeletal muscles. FEBS J. 2023, 290, 5689–5691. [Google Scholar] [CrossRef]
- Babar, I.A.; Slack, F.J.; Weidhaas, J.B. miRNA modulation of the cellular stress response. Future Oncol. 2008, 4, 289–298. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Chen, C.Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303, 83–86. [Google Scholar] [CrossRef]
- Pedersen, I.M.; Cheng, G.; Wieland, S.; Volinia, S.; Croce, C.M.; Chisari, F.V.; David, M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007, 449, 919–922. [Google Scholar] [CrossRef]
- Leung, A.K.L.; Sharp, P.A. MicroRNA Functions in Stress Responses. Mol. Cell 2010, 40, 205–215. [Google Scholar] [CrossRef]
- Noman, A.; Fahad, S.; Aqeel, M.; Ali, U.; Amanullah; Anwar, S.; Baloch, S.K.; Zainab, M. miRNAs: Major modulators for crop growth and development under abiotic stresses. Biotechnol. Lett. 2017, 39, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Herkenhoff, M.E.; Oliveira, A.C.; Nachtigall, P.G.; Costa, J.M.; Campos, V.F.; Hilsdorf, A.W.S.; Pinhal, D. Fishing Into the MicroRNA Transcriptome. Front. Genet. 2018, 9, 88. [Google Scholar] [CrossRef]
- Wang, F.; Dai, A.Y.; Tao, K.; Xiao, Q.; Huang, Z.L.; Gao, M.; Li, H.; Wang, X.; Cao, W.X.; Feng, W.L. Heat shock protein-70 neutralizes apoptosis inducing factor in Bcr/Abl expressing cells. Cell Signal 2015, 27, 1949–1955. [Google Scholar] [CrossRef]
- Kroemer, G. Heat shock protein 70 neutralizes apoptosis-inducing factor. Sci. World J. 2001, 1, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, F.; Kang, Y.; Liu, X. Gene ssa-miR-301a-3p improves rainbow trout (Oncorhynchus mykiss) resistance to heat stress by targeting hsp90b2. PeerJ 2022, 10, e13476. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, Q.; Zhao, L.; Cui, C.; Wu, H.; Liao, L.; Tang, G.; Yang, S.; Yang, S. Potential regulation by miRNAs on glucose metabolism in liver of common carp (Cyprinus carpio) at different temperatures. Comp. Biochem. Physiol. Part D Genomics Proteom. 2019, 32, 100628. [Google Scholar] [CrossRef]
- Ising, M.; Holsboer, F. Genetics of stress response and stress-related disorders. Dialogues Clin. Neurosci. 2006, 8, 433–444. [Google Scholar] [CrossRef]
- Barrett, R.D.; Paccard, A.; Healy, T.M.; Bergek, S.; Schulte, P.M.; Schluter, D.; Rogers, S.M. Rapid evolution of cold tolerance in stickleback. Proc. Biol. Sci. 2011, 278, 233–238. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, L.; Wu, H.; Lian, W.; Cui, C.; Du, Z.; Luo, W.; Li, M.; Yang, S. Analysis of miRNA-seq in the liver of common carp (Cyprinus carpio L.) in response to different environmental temperatures. Funct. Integr. Genom. 2019, 19, 265–280. [Google Scholar] [CrossRef]
- Vasadia, D.J.; Zippay, M.L.; Place, S.P. Characterization of thermally sensitive miRNAs reveals a central role of the FoxO signaling pathway in regulating the cellular stress response of an extreme stenotherm, Trematomus bernacchii. Mar. Genom. 2019, 48, 100698. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, Z.; Quan, J.; Sun, J.; Li, L.; Lu, J. Potential role of miR-8159-x in heat stress response in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2023, 268, 110877. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Gu, W.; Liu, E.; Wang, B.; Wang, G.; Dong, F.; Guo, F.; Jiao, W.; Sun, Y.; Wang, X.; et al. miR-301b-5p and its target gene nfatc2ip regulate inflammatory responses in the liver of rainbow trout (Oncorhynchus mykiss) under high temperature stress. Ecotoxicol. Environ. Saf. 2022, 242, 113915. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, Y.; Ma, F.; Kang, Y.; Liu, Z.; Wang, J. Identification and characterization of microRNAs in the liver of rainbow trout in response to heat stress by high-throughput sequencing. Gene 2018, 679, 274–281. [Google Scholar] [CrossRef]
- Ma, F.; Liu, Z.; Huang, J.; Li, Y.; Kang, Y.; Liu, X.; Wang, J. High-throughput sequencing reveals microRNAs in response to heat stress in the head kidney of rainbow trout (Oncorhynchus mykiss). Funct. Integr. Genom. 2019, 19, 775–786. [Google Scholar] [CrossRef]
- Zhang, C.; Tong, C.; Tian, F.; Zhao, K. Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish. PLoS ONE 2017, 12, e0186433. [Google Scholar] [CrossRef]
- Bao, J.W.; Qiang, J.; Tao, Y.F.; Li, H.X.; He, J.; Xu, P.; Chen, D.J. Responses of blood biochemistry, fatty acid composition and expression of microRNAs to heat stress in genetically improved farmed tilapia (Oreochromis niloticus). J. Therm. Biol. 2018, 73, 91–97. [Google Scholar] [CrossRef]
- Qiang, J.; Bao, W.J.; Tao, F.Y.; He, J.; Li, X.H.; Xu, P.; Sun, L.Y. The expression profiles of miRNA-mRNA of early response in genetically improved farmed tilapia (Oreochromis niloticus) liver by acute heat stress. Sci. Rep. 2017, 7, 8705. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Z.; Li, Y.; Zhu, W.; Feng, B.; Xu, W.; Fu, J.; Wei, P.; Luo, M.; Dong, Z. Integrated transcriptome and microRNA analysis reveals molecular responses to high-temperature stress in the liver of American shad (Alosa sapidissima). BMC Genom. 2024, 25, 656. [Google Scholar] [CrossRef]
- Bizuayehu, T.T.; Johansen, S.D.; Puvanendran, V.; Toften, H.; Babiak, I. Temperature during early development has long-term effects on microRNA expression in Atlantic cod. BMC Genom. 2015, 16, 305. [Google Scholar] [CrossRef]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, W460–W466. [Google Scholar] [CrossRef] [PubMed]
- Blödorn, E.B.; Domingues, W.B.; Nunes, L.S.; Komninou, E.R.; Pinhal, D.; Campos, V.F. MicroRNA roles and their potential use as selection tool to cold tolerance of domesticated teleostean species: A systematic review. Aquaculture 2021, 540, 736747. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Roush, S.; Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol. 2008, 18, 505–516. [Google Scholar] [CrossRef]
- Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000, 403, 901–906. [Google Scholar] [CrossRef]
- Sokol, N.S.; Xu, P.; Jan, Y.N.; Ambros, V. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes. Dev. 2008, 22, 1591–1596. [Google Scholar] [CrossRef]
- Lancman, J.J.; Caruccio, N.C.; Harfe, B.D.; Pasquinelli, A.E.; Schageman, J.J.; Pertsemlidis, A.; Fallon, J.F. Analysis of the regulation of lin-41 during chick and mouse limb development. Dev. Dyn. 2005, 234, 948–960. [Google Scholar] [CrossRef]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef]
- Esquela-Kerscher, A.; Johnson, S.M.; Bai, L.; Saito, K.; Partridge, J.; Reinert, K.L.; Slack, F.J. Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system. Dev. Dyn. 2005, 234, 868–877. [Google Scholar] [CrossRef]
- Johnson, S.; Lin, S.; Slack, F. The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev. Biol. 2003, 259, 364–379. [Google Scholar] [CrossRef]
- Mouchiroud, L.; Eichner, L.J.; Shaw, R.J.; Auwerx, J. Transcriptional coregulators: Fine-tuning metabolism. Cell Metab. 2014, 20, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Shaw, R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol. Cell 2017, 66, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Craig, P.M.; Trudeau, V.L.; Moon, T.W. Profiling hepatic microRNAs in zebrafish: Fluoxetine exposure mimics a fasting response that targets AMP-activated protein kinase (AMPK). PLoS ONE 2014, 9, e95351. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.T.; Rossi, I.C.; Kucharski, L.C.; Da Silva, R.S. Hepatopancreas gluconeogenesis and glycogen content during fasting in crabs previously maintained on a high-protein or carbohydrate-rich diet. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2004, 137, 383–390. [Google Scholar] [CrossRef]
- Bacca, H.; Huvet, A.; Fabioux, C.; Daniel, J.Y.; Delaporte, M.; Pouvreau, S.; Van Wormhoudt, A.; Moal, J. Molecular cloning and seasonal expression of oyster glycogen phosphorylase and glycogen synthase genes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005, 140, 635–646. [Google Scholar] [CrossRef]
- Stark, R.; Kibbey, R.G. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: Has it been overlooked? Biochim. Biophys. Acta 2014, 1840, 1313–1330. [Google Scholar] [CrossRef]
- Stark, R.; Guebre-Egziabher, F.; Zhao, X.; Feriod, C.; Dong, J.; Alves, T.C.; Ioja, S.; Pongratz, R.L.; Bhanot, S.; Roden, M.; et al. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis. J. Biol. Chem. 2014, 289, 7257–7263. [Google Scholar] [CrossRef]
- Wu, H.; Pang, P.; Liu, M.D.; Wang, S.; Jin, S.; Liu, F.Y.; Sun, C.F. Upregulated miR-20a-5p expression promotes proliferation and invasion of head and neck squamous cell carcinoma cells by targeting of TNFRSF21. Oncol. Rep. 2018, 40, 1138–1146. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Shen, J.; Wu, X.; Li, Y. miR-20a-5p inhibits proliferation of lung cancer A549 cells by down-regulating HOXB13. Nan Fang. Yi Ke Da Xue Xue Bao 2022, 42, 568–574. [Google Scholar]
- Chen, Y.J.; Mahieu, N.G.; Huang, X.; Singh, M.; Crawford, P.A.; Johnson, S.L.; Gross, R.W.; Schaefer, J.; Patti, G.J. Lactate metabolism is associated with mammalian mitochondria. Nat. Chem. Biol. 2016, 12, 937–943. [Google Scholar] [CrossRef]
- Rabinowitz, J.D.; Enerbäck, S. Lactate: The ugly duckling of energy metabolism. Nat. Metab. 2020, 2, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Thakral, S.; Ghoshal, K. miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr. Gene Ther. 2015, 15, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Qiang, J.; Tao, Y.F.; He, J.; Xu, P.; Bao, J.W.; Sun, Y.L. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene. Aquat. Toxicol. 2017, 182, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, S.; Marzolf, B.; Troisch, P.; Brightman, A.; Hu, Z.; Hood, L.E.; Galas, D.J. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA 2009, 106, 4402–4407. [Google Scholar] [CrossRef] [PubMed]
- Jopling, C. Liver-specific microRNA-122: Biogenesis and function. RNA Biol. 2012, 9, 137–142. [Google Scholar] [CrossRef]
- Bandiera, S.; Pfeffer, S.; Baumert, T.F.; Zeisel, M.B. miR-122—A key factor and therapeutic target in liver disease. J. Hepatol. 2015, 62, 448–457. [Google Scholar] [CrossRef]
- Fu, Z.J.; Chen, Y.; Xu, Y.Q.; Lin, M.A.; Wen, H.; Chen, Y.T.; Pan, P.L. Regulation of miR-30b in cancer development, apoptosis, and drug resistance. Open Life Sci. 2022, 17, 102–106. [Google Scholar] [CrossRef]
- Han, X.; Li, H.; Liu, S.; Zhao, Z. Study on the Potential Mechanism of miR-22-5p in Non-Small-Cell Lung Cancer. Dis. Markers 2022, 2022, 3750734. [Google Scholar] [CrossRef]
- Guo, J.; Zhong, X.; Tan, Q.; Yang, S.; Liao, J.; Zhuge, J.; Hong, Z.; Deng, Q.; Zuo, Q. miR-301a-3p induced by endoplasmic reticulum stress mediates the occurrence and transmission of trastuzumab resistance in HER2-positive gastric cancer. Cell Death Dis. 2021, 12, 696. [Google Scholar] [CrossRef]
- Gilyazova, I.; Asadullina, D.; Kagirova, E.; Sikka, R.; Mustafin, A.; Ivanova, E.; Bakhtiyarova, K.; Gilyazova, G.; Gupta, S.; Khusnutdinova, E.; et al. MiRNA-146a-A Key Player in Immunity and Diseases. Int. J. Mol. Sci. 2023, 24, 12767. [Google Scholar] [CrossRef]
- Mortazavi-Jahromi, S.S.; Aslani, M.; Mirshafiey, A. A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunol. Lett. 2020, 227, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Ocansey, D.K.W.; Wang, B.; Wang, L.; Xu, Z. Mucin-Type O-Glycans: Barrier, Microbiota, and Immune Anchors in Inflammatory Bowel Disease. J. Inflamm. Res. 2021, 14, 5939–5953. [Google Scholar] [CrossRef] [PubMed]
- Brockhausen, I.; Argüeso, P. 3.10—Mucin-Type O-Glycans: Biosynthesis and Functions. In Comprehensive Glycoscience, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 3, pp. 233–252. [Google Scholar]
- Mathien, S.; Tesnière, C.; Meloche, S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol. Rev. 2021, 73, 263–296. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, Y.; Li, C.; Ai, K.; Li, K.; Li, H.; Yang, J. The evolutionarily conserved MAPK/Erk signaling promotes ancestral T-cell immunity in fish via c-Myc-mediated glycolysis. J. Biol. Chem. 2020, 295, 3000–3016. [Google Scholar] [CrossRef]
- Jen-Liang, S.; Pai-Sheng, C.; Gunnar, J.; Min-Liang, K. Function and Regulation of Let-7 Family microRNAs. MicroRNA. 2012, 1, 34–39. [Google Scholar]
- Keane, A.J.; Sanz-Nogués, C.; Jayasooriya, D.; Creane, M.; Chen, X.; Lyons, C.J.; Sikri, I.; Goljanek-Whysall, K.; O’Brien, T. miR-1, miR-133a, miR-29b and skeletal muscle fibrosis in chronic limb-threatening ischaemia. Sci. Rep. 2024, 14, 29393. [Google Scholar] [CrossRef]
- Chan, K.L.; Poller, W.C.; Swirski, F.K.; Russo, S.J. Central regulation of stress-evoked peripheral immune responses. Nat. Rev. Neurosci. 2023, 24, 591–604. [Google Scholar] [CrossRef]
- Sharma, K.; Akre, S.; Chakole, S.; Wanjari, M.B. Stress-Induced Diabetes: A Review. Cureus 2022, 14, e29142. [Google Scholar] [CrossRef]
- Barreto, R.E.; Volpato, G.L. Stress responses of the fish Nile tilapia subjected to electroshock and social stressors. Braz. J. Med. Biol. Res. 2006, 39, 1605–1612. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Z.; Zhang, J.; Wang, M.; Yue, T.; Wang, W.; Wu, Y.; Zhang, Z.; Xiong, W.; Wang, C.; et al. Hypothalamus-sympathetic-liver axis mediates the early phase of stress-induced hyperglycemia in the male mice. Nat. Commun. 2024, 15, 8632. [Google Scholar] [CrossRef]
- Alexandri, C.; Stamatopoulos, B.; Rothé, F.; Bareche, Y.; Devos, M.; Demeestere, I. MicroRNA profiling and identification of let-7a as a target to prevent chemotherapy-induced primordial follicles apoptosis in mouse ovaries. Sci. Rep. 2019, 9, 9636. [Google Scholar] [CrossRef] [PubMed]
- Cantet, J.M.; Yu, Z.; Ríus, A.G. Heat Stress-Mediated Activation of Immune-Inflammatory Pathways. Antibiotics 2021, 10, 1285. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Bhatta, R.; Gaughan, J.B.; Dunshea, F.R.; Lacetera, N. Review: Adaptation of animals to heat stress. Animal 2018, 12, s431–s444. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E.; Bellomo, R. Stress hyperglycemia: An essential survival response! Crit. Care 2013, 17, 305. [Google Scholar] [CrossRef]
Author, Year | Species | CG Temp/°C | TG Temp/°C | Experimental Design | Methods |
---|---|---|---|---|---|
Bizuayehu et al., 2015 [51] | Gadus morhua (Atlantic cod) | 4/9.5 | 4/9.5 | Embryos incubated in 8 incubators at 4 °C and 8 at 9.5 °C. 5 d post-hatching, 4 °C juveniles in 4 incubators heated to 9.5 °C, and 9.5 °C juveniles in 4 incubators cooled to 4 °C, at 0.9 °C/d, 4 incubators were cooled to 4 °C, respectively. The rising and cooling rates were 0.9 °C/d | Small RNA seq. and qRT-PCR |
Qiang et al., 2017 [49] | Oreochromis niloticus (tilapia) | 28 | 35.5/36/36.5/37/37.5/38/38.5/39 | Acclimated at 28 °C for 14 d, CG was kept at other temps for 4 d | Small RNA seq. and qRT-PCR |
Zhang et al., 2017 [47] | Gymnocypris Przewalskii (Tibetan naked carp) | 16 | 24 | The CG was maintained at 16 °C. The TG was heated at 0.8˚C/h for 12 h at 24˚C | Small RNA seq. and qRT-PCR |
Bao et al., 2018 [48] | Oreochromis niloticus (tilapia) | 28 | 35 | Domestication at 28 °C for three weeks was maintained at 28 °C in the CG and 35 °C in the TG. Samples were taken after 0, 6, 12, 24 and 48 h | Small RNA seq. and qRT-PCR |
Huang et al., 2018 [45] | Oncorhynchus mykiss (rainbow trout) | 18 | 24 | Acclimated at 18 °C for 7 d, the CG was kept at 18 °C for 7 d, and the temp change rate in the TG was 1 °C/d. Samples were taken after 7 d | Small RNA seq. and qRT-PCR |
Ma et al., 2019 [46] | Oncorhynchus mykiss (rainbow trout) | 18 | 24 | Acclimated at 18 °C for 7 d, the CG was kept at 18 °C for 7 d, and the temp change rate in the TG was 1 °C/d. Samples were taken after 7 d | Small RNA seq. and qRT-PCR |
Sun et al., 2019a [37] | Cyprinus carpio L. (normal carp) | 17 | 5, 30 | The temp in the CG remained unchanged, and the temp change rate in the TG was 1 °C/h, with a maximum change of 7 °C/d. Samples were taken after 18 d | Small RNA seq. and qRT-PCR |
Sun et al., 2019b [41] | Cyprinus carpio L. (normal carp) | 17 | 5, 30 | After domestication for 7 d, the CG was kept at 17 °C, and the temp change rate in the TG was 1° C/h to the treatment temp, with a maximum of 7 °C/d. Samples were taken after 18 d | Small RNA seq. and qRT-PCR |
Vasadia et al., 2019 [42] | Trematomus bernacchii (Emerald rockcod) | −1.5 | 3.5 | Experimental temp. −1.5 °C and 3.5 °C were directly treated for 56 d, Samples were taken after 7/28/56 d | Small RNA seq. And qRT-PCR |
Huang et al., 2022 [44] | Oncorhynchus mykiss (rainbow trout) | 16 | 26 | After 14 d of acclimation at 16 °C, the CG continued to maintain 16 °C, and the TG increased to 26 °C at 1 °C/d | Small RNA seq. and qRT-PCR |
Liu et al., 2022 [36] | Oncorhynchus mykiss (rainbow trout) | 18 | 24 | CG was kept at 18 °C for 7 d, and the temp change rate in the TG was 1 °C/d. Samples were taken after 7 d | Small RNA seq. and qRT-PCR |
Zhao et al., 2023 [43] | Oncorhynchus mykiss (rainbow trout) | 18 | 24 | In vitro hepatocytes were cultured in a flask at test temp for 7 d | Small RNA seq. and qRT-PCR |
Liu et al., 2024 [50] | Alosa sapidissima (American shad) | 27 | 24, 30 | Test temps directly treated for 3 d | Small RNA seq. and qRT-PCR |
Author, Year | Test Organ | Up-Regulated | Down-Regulated |
---|---|---|---|
Bizuayehu et al., 2015 [51] | Liver | miR-130b, miR-19b, miR-301c, miR-205, miR-451a | miR-10b, miR-181a, miR-214, miR-206, miR-192, miR-218a, miR-124a, miR-221 |
gonad | miR-30c, miR-27c | ||
pituitary | miR-449 | ||
Qiang et al., 2017 [49] | Liver | miR-142a-5p, miR-730-5p, miR-7132a-5P, miR-146a-5p, miR-7132b-3p, miR-1-3p, miR-1, PC-3p, miR-26d-5p, miR-133b-3p, miR-194, miR-199a-3p, miR-194-3p, miR-122, miR-10c, mir-100-2-p3, miR-16b-5p, miR-26a-4-3p, let-7j, miR-200b-3p, miR-7132b-5p, miR-1338-5p, let-7d, let-7d-5p, miR-22a-3p, miR-199a-3p, miR-140-3p, miR-24, miR-338-3p, miR-125b-5p, miR-7, miR-7a-5p, PC-5p, miR-194a, miR-125a, miR-125b-5p | miR-7a-5P, miR-122, miR-133a-3p, miR-142, miR-142a-3p, miR-133b-3p, miR-122-5p, miR-125a, PC-5p, miR-1-4-5p |
Zhang et al., 2017 [47] | Whole body of larvae | miR-738, miR-124c-3p | miR-25-5p, let-7a-2-3p, let-7d-3p, let-7c-3-3p, miR-145, miR-125c-3p, let-7c-1-3p, miR-145-3p, miR-130c-5p, miR-139-3p |
Bao et al., 2018 [48] | Liver | miR-122, miR-1 | |
Huang et al., 2018 [45] | Liver | novel_698, miR-133a-3p, novel_1080, miR-33a-5p, miR-130a-5p, miR-454-3p, miR-338a-3p, miR-29b-3p, miR-22b-5p, miR-29b-3-5p, novel_204, novel_114, novel_407, novel_916, miR-489-5p, miR-210-5p, novel_966, miR-30a-3-3p, novel_250, novel_426 | novel_1249, miR-155-5p, let-7b-3p, novel_260, miR-301a-3p, miR-93a-5p, novel_178, miR-20a-5p, novel_316, novel_1001, novel_485, miR-145-3p, miR-106a-5p, miR-301d-3p, novel_311, miR-10a-5p, let-7c-3p, novel_1181, novel_325 |
Ma et al., 2019 [46] | Head kidney | novel_1931, novel_721, novel_694, novel_1198, novel_550, novel_2029, novel_505, novel_1101, novel_579, novel_246, novel_242, novel_660, let-7b-3p, miR-338a-5p, miR-181a-2-3p, miR-7132b-5p, novel_1171, novel_434, miR-19c-4-5p, miR-458-3p, novel_524, novel_228, novel_706, miR-462b-3p, novel_1685, novel_322, miR-301b-5p, novel_297, miR-203b-3p, novel_1560, miR-153a-3p, miR-202-3p, novel_341, miR-203a-3p, novel_563, novel_257, novel_799 | novel_121, miR-144-5p, novel_697, miR-7132a-3p, miR-138-5p, miR-1-3p, miR-133a-3p, novel_252, novel_1481, novel_1268, miR-499a-3p, novel_1081, miR-456-3p, novel_142, novel_535, miR-730a-5p, novel_964, novel_375, miR-150-5p, novel_503, novel_1111, novel_1109, miR-22b-3p, novel_451, nove1_1340, miR-22b-5p, novel_1597, novel_551, novel_449, novel_1235, miR-106b-5p, novel_1335, novel_398, novel_1428, let-7f-5p, novel_737, miR-146d-5p, miR-146d-3p, novel_1651, novel_949 |
Sun et al., 2019a; Sun et al., 2019b [37,41] | Liver | let-7a, miR-10d-5p, miR-128-3p, miR-27a-3p, miR-27d, miR-489, miR-449-5p | miR-122, miR-146a, miR-15b-5p, miR-20a-5p, miR-210-3p, miR-301a, miR-30b, miR-30d, miR-1, miR-155, miR-184, miR-187, miR-18a, miR-18b-5p, miR-203a-3p, miR-457b-5p, miR-459-5p, miR-9-5p |
Vasadia et al., 2019 [42] | Gill | miR-146a, miR-21, miR-21a, miR-21b | miR-22a, let-7a, let-7g, miR-26a, miR-30b, miR-200a, miR-203b, miR-725 |
Huang et al., 2022 [44] | Liver | miR-301b-5p | |
Liu et al., 2022 [36] | Liver | miR-301a-3p | |
Zhao et al., 2023 [43] | In vitro hepatocyte | miR-8159-x | |
Liu et al., 2024 [50] | Liver | miR-125a-3p, miR-92b-5p, miR-15a-3p, novel-m1018-5p, miR-20a-5p | novel-m0481-5p, miR-127, miR-127-3p, miR-199a-5p, miR-199b-5p, miR-106 |
Heart | novel-m0481-5p, miR-125a-3p, miR-125b-2-3p, miR-92b-5p, miR-15a-3p, novel-m1018-5p | ||
Brain | novel-m0481-5p, miR-125a-3p, miR-125b-2-3p, miR-92b-5p | ||
Eye | novel-m0481-5p, miR-125a-3p, miR-125b-2-3p, miR-92b-5p, miR-15a-3p, novel-m1018-5p | ||
Muscle | novel-m0481-5p, miR-125b-2-3p, miR-92b-5p, miR-15a-3p, novel-m1018-5p |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.; Meegaskumbura, M. Fish MicroRNA Responses to Thermal Stress: Insights and Implications for Aquaculture and Conservation Amid Global Warming. Animals 2025, 15, 624. https://doi.org/10.3390/ani15050624
Lin T, Meegaskumbura M. Fish MicroRNA Responses to Thermal Stress: Insights and Implications for Aquaculture and Conservation Amid Global Warming. Animals. 2025; 15(5):624. https://doi.org/10.3390/ani15050624
Chicago/Turabian StyleLin, Ting, and Madhava Meegaskumbura. 2025. "Fish MicroRNA Responses to Thermal Stress: Insights and Implications for Aquaculture and Conservation Amid Global Warming" Animals 15, no. 5: 624. https://doi.org/10.3390/ani15050624
APA StyleLin, T., & Meegaskumbura, M. (2025). Fish MicroRNA Responses to Thermal Stress: Insights and Implications for Aquaculture and Conservation Amid Global Warming. Animals, 15(5), 624. https://doi.org/10.3390/ani15050624