Effect of Dietary Addition of Lentinus edodes on Rumen Flora, Lactation, and Health of Dairy Goats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals, Experimental Design and Feeding
2.3. Feed Sample Collection and Analysis
2.4. Rumen Fluid Analysis
2.5. 16S rDNA Amplicon Sequencing of Rumen Fluid
2.6. Serum Indices Analysis
2.7. Goat Milk Analysis
2.8. Metabolomic Analysis of Goat Milk and Rumen Fluid
2.9. Data Analysis and Statistics
3. Results
3.1. Effect of LE on Feed Intake and Rumen Fermentation Parameters in Dairy Goats
3.2. Effect of LE on Rumen Flora in Dairy Goats
3.3. Effect of LE on Rumen Metabolites in Dairy Goats
3.4. Effect of LE on Serum Indices of Dairy Goats
3.5. Effect of LE on Lactation Performance and Milk Quality of Dairy Goats
3.6. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeder, M.A.; Hesse, B. The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 2000, 287, 2254–2257. [Google Scholar] [CrossRef]
- Miller, B.A.; Lu, C.D. Current status of global dairy goat production: An overview. Asian-Australas. J. Anim. Sci. 2019, 32, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Bao, J.; Hu, W.; Shang, M.; Zhang, L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Front. Genet. 2022, 13, 1044017. [Google Scholar] [CrossRef]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Ribeiro, S.D.A. Specialty products made from goat milk. Small Rumin. Res. 2010, 89, 225–233. [Google Scholar] [CrossRef]
- Sg, J.; Vm, N.; En, E. Yield performance of Pleurotus pulmonarius (Fries.) quelet, cultivated on different agro-forest wastes in Nigeria. World Rural. Obs. 2012, 5, 22–30. [Google Scholar]
- Yu, C.-X.; Zhang, Y.-R.; Ren, Y.-F.; Zhao, Y.; Song, X.-X.; Yang, H.-L.; Chen, M.-J. Composition and contents of fatty acids and amino acids in the mycelia of Lentinula edodes. Food Sci. Nutr. 2023, 11, 4038–4046. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R.; Correia, P.; Florença, S.; Gonçalves, I. Development of Products with Shiitake Mushroom: Chemical, Physical and Sensory Characterization. Chem. Res. J. 2019, 4, 30–39. [Google Scholar]
- Guo, F.C.; Kwakkel, R.P.; Williams, B.A.; Li, W.K.; Li, H.S.; Luo, J.Y.; Li, X.P.; Wei, Y.X.; Yan, Z.T.; Verstegen, M.W. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on growth performance of broilers. Br. Poult. Sci. 2004, 45, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Nisar, J.; Mustafa, I.; Anwar, H.; Sohail, M.U.; Hussain, G.; Ullah, M.I.; Faisal, M.N.; Bukhari, S.A.; Basit, A. Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes): A Species with Antioxidant, Immunomodulatory, and Hepatoprotective Activities in Hypercholesterolemic Rats. Int. J. Med. Mushrooms 2017, 19, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Liu, Y.; Liu, P.; Yin, L.; Chen, L.; Duan, W. Lentinan regulates the immune efficacy of macrophage for lung metastasis in triple negative breast. J. Funct. Foods 2023, 105, 105560. [Google Scholar] [CrossRef]
- Soroko, M.; Górniak, W.; Zielińska, P.; Górniak, A.; Śniegucka, K.; Nawrot, K.; Korczyński, M. Effect of Lentinula edodes on Morphological and Biochemical Blood Parameters of Horses. Animals 2022, 12, 1106. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, B.; Szacawa, E.; Bederska-Łojewska, D.; Dudek, K.; Pomierny, B.; Włodarczyk, A.; Kała, K.; Lazur, J.; Suchocki, P.; Budziszewska, B.; et al. Preliminary study on Se-enriched Lentinula edodes mycelium as a proposal of new feed additive in selenium deficiency. PLoS ONE 2020, 15, e0233456. [Google Scholar] [CrossRef]
- Latimer, G.W., Jr. (Ed.) Official Methods of Analysis of AOAC International; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, H.J.; Cui, Z.Q.; Zhang, Y.G. Effects of supplementation with Lactobacillus plantarum 299v on the performance, blood metabolites, rumen fermentation and bacterial communities of preweaning calves. Livest. Sci. 2020, 239, 104120. [Google Scholar] [CrossRef]
- Chen, J.; Kawamura, S.; Koseki, S. Effect of d-tryptophan on the psychrotrophic growth of Listeria monocytogenes and its application in milk. Food Control 2020, 110, 107048. [Google Scholar] [CrossRef]
- Russell, J.B.; Onodera, R.; Hino, T. 27—Ruminal protein fermentation: New perspectives on previous contradictions. In Physiological Aspects of Digestion and Metabolism in Ruminants; Tsuda, T., Sasaki, Y., Kawashima, R., Eds.; Academic Press: San Diego, CA, USA, 1991; pp. 681–697. [Google Scholar]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ. 2016, 545–546, 556–568. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, L.; Zhang, T.; Zhuang, D.; Wu, Q.; Yu, J.; Tian, C.; Zhang, Z. Gut microbiome signatures of extreme environment adaption in Tibetan pig. NPJ Biofilms Microbiomes 2023, 9, 27. [Google Scholar] [CrossRef]
- Chen, D.; Xiao, C.; Jin, H.; Yang, B.; Niu, J.; Yan, S.; Sun, Y.; Zhou, Y.; Wang, X. Exposure to atmospheric pollutants is associated with alterations of gut microbiota in spontaneously hypertensive rats. Exp. Ther. Med. 2019, 18, 3484–3492. [Google Scholar] [CrossRef]
- López-Mondéjar, R.; Tláskal, V.; da Rocha, U.N.; Baldrian, P. Global Distribution of Carbohydrate Utilization Potential in the Prokaryotic Tree of Life. mSystems 2022, 7, e0082922. [Google Scholar] [CrossRef]
- Idowu, M.; Taiwo, G.; Sidney, T.; Morenikeji, O.B.; Pech Cervantes, A.; Estrada-Reyes, Z.M.; Wilson, M.; Ogunade, I.M. The differential plasma and ruminal metabolic pathways and ruminal bacterial taxa associated with divergent residual body weight gain phenotype in crossbred beef steers. Transl. Anim. Sci. 2023, 7, txad054. [Google Scholar] [CrossRef]
- Pinnell, L.J.; Reyes, A.A.; Wolfe, C.A.; Weinroth, M.D.; Metcalf, J.L.; Delmore, R.J.; Belk, K.E.; Morley, P.S.; Engle, T.E. Bacteroidetes and Firmicutes Drive Differing Microbial Diversity and Community Composition Among Micro-Environments in the Bovine Rumen. Front. Vet. 2022, 9, 897996. [Google Scholar] [CrossRef]
- Li, J.; Zheng, C.; Mai, Q.; Huang, X.; Pan, W.; Lu, J.; Chen, Z.; Zhang, S.; Zhang, C.; Huang, H.; et al. Tyrosine catabolism enhances genotoxic chemotherapy by suppressing translesion DNA synthesis in epithelial ovarian cancer. Cell Metab. 2023, 35, 2044–2059.e2048. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Saigusa, D.; Kanemitsu, Y.; Matsumoto, Y.; Thanai, P.; Suzuki, N.; Mise, K.; Yamaguchi, H.; Nakamura, T.; Asaji, K.; et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat. Commun. 2019, 10, 1835. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Sakurai, T.; Chen, Z.; Inoue, N.; Chiba, H.; Hui, S.-P. Lysophosphatidylethanolamine Affects Lipid Accumulation and Metabolism in a Human Liver-Derived Cell Line. Nutrients 2022, 14, 579. [Google Scholar] [CrossRef]
- Nishina, A.; Kimura, H.; Sekiguchi, A.; Fukumoto, R.H.; Nakajima, S.; Furukawa, S. Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK. J. Lipid Res. 2006, 47, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Im, D.S. 2-Arachidonyl-lysophosphatidylethanolamine Induces Anti-Inflammatory Effects on Macrophages and in Carrageenan-Induced Paw Edema. Int. J. Mol. Sci. 2021, 22, 4865. [Google Scholar] [CrossRef]
- Hisano, K.; Yoshida, H.; Kawase, S.; Mimura, T.; Haniu, H.; Tsukahara, T.; Kurihara, T.; Matsuda, Y.; Saito, N.; Uemura, T. Abundant oleoyl-lysophosphatidylethanolamine in brain stimulates neurite outgrowth and protects against glutamate toxicity in cultured cortical neurons. J. Biochem. 2021, 170, 327–336. [Google Scholar] [CrossRef]
- Monteiro, H.F.; Faciola, A.P. Ruminal acidosis, bacterial changes, and lipopolysaccharides. J. Anim. Sci. 2020, 98, skaa248. [Google Scholar] [CrossRef]
- Dong, J.; Zheng, H.; Zeng, Q.; Zhang, X.; Du, L.; Bais, S. Protective effect of D-(-)-quinic acid as food supplement in modulating AMP-activated protein kinase signalling pathway activation in HFD induced obesity. Hum. Exp. Toxicol. 2022, 41, 9603271221119804. [Google Scholar] [CrossRef]
- Mizuno, M.; Nishitani, Y. Immunomodulating compounds in Basidiomycetes. J. Clin. Biochem. Nutr. 2013, 52, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A. Review: Optimizing ruminant conversion of feed protein to human food protein. Animal 2018, 12, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- Kordowska-Wiater, M. Production of arabitol by yeasts: Current status and future prospects. J. Appl. Microbiol. 2015, 119, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Mackay, P.; Ynddal, L.; Andersen, J.V.; McCormack, J.G. Pharmacokinetics and anti-hyperglycaemic efficacy of a novel inhibitor of glycogen phosphorylase, 1,4-dideoxy-1,4-imino-d- arabinitol, in glucagon-challenged rats and dogs and in diabetic ob/ob mice. Diabetes Obes. Metab. 2003, 5, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, J.; Yun, J.; Zhang, G.; Zhang, Y.; Zhao, M.; Zabed, H.M.; Ravikumar, Y.; Qi, X. d-Arabitol Ameliorates Obesity and Metabolic Disorders via the Gut Microbiota–SCFAs–WAT Browning Axis. J. Agric. Food Chem. 2023, 71, 522–534. [Google Scholar] [CrossRef]
- Elgamoudi, B.A.; Taha, T.; Korolik, V. Inhibition of Campylobacter jejuni Biofilm Formation by D-Amino Acids. Antibiotics 2020, 9, 836. [Google Scholar] [CrossRef] [PubMed]
- McGovern, E.; Waters, S.M.; Blackshields, G.; McCabe, M.S. Evaluating Established Methods for Rumen 16S rRNA Amplicon Sequencing With Mock Microbial Populations. Front. Microbiol. 2018, 9, 1365. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.-J.; Chen, M.-H.; Lee, C.-F.; Yu, B.; Lee, T.-T. Effects of rice straw fermented with spent Pleurotus sajor-caju mushroom substrates on milking performance in Alpine dairy goats. Anim Biosci 2022, 35, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhao, F.; Hou, F.; Jin, Y.; Zhang, X.; Ma, Y.; Zhang, Y.; Fan, Y.; Yang, Z.; Wang, H. Influences of naringin supplementation on ruminal fermentation, inflammatory response, antioxidant capacity and bacterial community in high-concentrate diet of fattening goats. Ital. J. Anim. Sci. 2022, 21, 1498–1507. [Google Scholar] [CrossRef]
- Mariz, L.D.S.; Amaral, P.d.M.; Valadares Filho, S.d.C.; Santos, S.A.; Detmann, E.; Marcondes, M.I.; Pereira, J.M.V.; Silva Junior, J.M.; Prados, L.F.; Faciola, A.P.J.J.o.a.s. Dietary protein reduction on microbial protein, amino acid digestibility, and body retention in beef cattle: 2. Amino acid intestinal absorption and their efficiency for whole-body deposition. J. Anim. Sci. 2018, 96, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.A.; Brash, A.R.; Murphy, R.C. The discovery and early structural studies of arachidonic acid. J. Lipid Res. 2016, 57, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
Items | Content |
---|---|
Ingredient, % | |
Yellow corn | 30.00 |
Soybean meal | 5.00 |
Rapeseed meal | 4.50 |
Bran | 7.00 |
Corn silage | 20.00 |
Oat grass | 10.00 |
Dried alfalfa | 7.50 |
Peanut seedlings | 12.50 |
Salt | 0.75 |
Dicalcium phosphate | 0.75 |
Vitamin-mineral premix 1 | 2.00 |
Total | 100.00 |
Nutrient levels | |
Crude protein | 12.64 |
Neutral detergent fiber | 33.66 |
Acid detergent fiber | 22.63 |
Ethyl extract | 1.64 |
Crude ash | 12.00 |
Calcium | 1.05 |
Phosphorous | 0.49 |
Items | CON | LE | SEM | p-Value |
---|---|---|---|---|
Ammoniacal nitrogen (mg/dL) | 8.72 | 6.52 | 1.104 | 0.056 |
Total VFA (mmol/L) | 89.14 | 77.70 | 10.318 | 0.293 |
Individual VFA (mmol/L) | ||||
Acetate | 66.20 | 58.30 | 7.971 | 0.345 |
Propionate | 13.20 | 10.86 | 1.542 | 0.159 |
Isobutyrate | 0.88 | 0.77 | 0.110 | 0.373 |
Butyrate | 7.20 | 6.25 | 0.919 | 0.325 |
Isovalerate | 1.17 | 1.09 | 0.147 | 0.594 |
Valerate | 0.49 | 0.43 | 0.050 | 0.282 |
Acetate/Propionate | 5.06 | 5.38 | 0.286 | 0.283 |
Item | CON | LE | SEM | p-Value |
---|---|---|---|---|
ALT, U/L | 17.17 | 18.22 | 1.936 | 0.600 |
AST, U/L | 122.77 | 124.58 | 9.202 | 0.847 |
ALP, U/L | 119.67 | 86.50 | 20.937 | 0.144 |
ALB, g/L | 39.35 | 38.13 | 2.817 | 0.675 |
CHO, mmol/L | 3.64 | 3.07 | 0.345 | 0.132 |
D3H, mmol/L | 0.23 | 0.28 | 0.035 | 0.173 |
TG, mmol/L | 0.31 | 0.37 | 0.054 | 0.296 |
TP, g/L | 99.68 | 95.48 | 5.490 | 0.462 |
α-HBDH, mmol/L | 299.83 | 329.00 | 27.026 | 0.316 |
NEFA, mmol/L | 0.68 | 0.83 | 0.151 | 0.343 |
β-HB, mmol/L | 0.28 | 0.26 | 0.060 | 0.752 |
Item | CON | LE | SEM | p-Value |
---|---|---|---|---|
Milk yield (kg/(head·day)] | 1.17 | 1.13 | 0.264 | 0.115 |
Somatic cell count (×1000/mL) | 540.07 | 429.53 | 40.923 | 0.179 |
Composition (%) | ||||
Fat | 2.72 | 2.92 | 0.390 | 0.008 |
Protein | 2.79 | 2.89 | 0.190 | 0.010 |
Lactose | 4.60 | 4.54 | 0.022 | 0.232 |
Total solids content | 10.39 | 10.65 | 0.451 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Wang, M.; Ning, Y.; Zhao, Y.; Danzeng, B.; Li, K.; Shi, H.; Li, W. Effect of Dietary Addition of Lentinus edodes on Rumen Flora, Lactation, and Health of Dairy Goats. Animals 2025, 15, 676. https://doi.org/10.3390/ani15050676
Shen H, Wang M, Ning Y, Zhao Y, Danzeng B, Li K, Shi H, Li W. Effect of Dietary Addition of Lentinus edodes on Rumen Flora, Lactation, and Health of Dairy Goats. Animals. 2025; 15(5):676. https://doi.org/10.3390/ani15050676
Chicago/Turabian StyleShen, Huijun, Mengyu Wang, Yong Ning, Yiqi Zhao, Baiji Danzeng, Kaixin Li, Huaiping Shi, and Weijuan Li. 2025. "Effect of Dietary Addition of Lentinus edodes on Rumen Flora, Lactation, and Health of Dairy Goats" Animals 15, no. 5: 676. https://doi.org/10.3390/ani15050676
APA StyleShen, H., Wang, M., Ning, Y., Zhao, Y., Danzeng, B., Li, K., Shi, H., & Li, W. (2025). Effect of Dietary Addition of Lentinus edodes on Rumen Flora, Lactation, and Health of Dairy Goats. Animals, 15(5), 676. https://doi.org/10.3390/ani15050676