The Influence of Region, Sex, and Age on the Prevalence of Gastrointestinal Parasites in Alpacas (Vicugna pacos) in Poland
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Research Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kapustka, J.; Garbiec, A. Alpacas in Poland: Health, welfare, and anti-parasitic prophylaxis. Med. Weter. 2022, 78, 68–73. [Google Scholar] [CrossRef]
- Dubey, J.P. A review of coccidiosis in South American camelids. Parasitol. Res. 2018, 117, 1999–2013. [Google Scholar] [CrossRef] [PubMed]
- Windsor, R.; Teran, M.; Windsor, R. Effects of parasitic infestation on the productivity of alpacas (Lama pacos). Trop. Anim. Health Prod. 1992, 24, 57–62. [Google Scholar] [CrossRef]
- Carmichael, I. Internal parasitism in Australian alpacas. In Proceedings of the Australian Alpaca Association National Conference Adelaide, Adelaide, Australia, 9–11 May 2014; pp. 13–28. [Google Scholar]
- Love, S. Alpaca Worms—An Overview; NSW Department of Primary Industries: Orange, NSW, Australia, 2017; Primefact 991; pp. 1–6. [Google Scholar]
- Szopieray, K.; Templin, J.; Osten-Sacken, N.; Jaśkowski, J.; Żbikowska, E. Gut parasites of alpacas (Vicugna pacos) raised in Poland. J. Helminthol. 2024, 98, e82. [Google Scholar] [CrossRef]
- Nosal, P.; Kowal, J.; Wyrobisz-Papiewska, A.; Murawski, M. Investigation of the subclinical parasitic infection of alpacas in Polish herds. Rocz. Nauk. Zootech. 2023, 50, 299–309. [Google Scholar]
- Gomez-Puerta, L.A.; Carrasco, J.; Robles, K.; Vargas-Calla, A.; Cribillero, N.G.; Arroyo, G.; Castillo, H.; Lopez-Urbina, M.T.; Gonzalez, A.E. Coccidiosis in clinically asymptomatic alpaca (Vicugna pacos) crias from the Peruvian Andes. Parasitol. Int. 2021, 85, 102438. [Google Scholar] [CrossRef] [PubMed]
- Arias-Pacheco, C.; Pezo, D.; Mathias, L.; Tebaldi, J.; Castelo-Oviedo, H.; LuxHoppe, E. Parasitological status of vicuñas (Vicugna vicugna) from southeastern Peru and its relationship with fiber quality. Trop. Anim. Health Prod. 2021, 53, 211. [Google Scholar] [CrossRef]
- Bouts, T.; Fox, M.; Scheres, G.; Chàvez, A. Identification of gastrointestinal nematodes and coccidia in wild vicunas (Lama vicugna) in Pampa Galeras, Peru. In Proceedings of the Erkrankungen der Zootiere: Verhandlungsbericht des 41 Internationalen Symposiums uber die Erkrankungen der Zoo- und Wildtiere, Rome, Italy, 28 May–1 June 2003; pp. 101–105. [Google Scholar]
- Quispe García, H. Estudio de Parasitos Externos y Gastrointestinales en Vicuñas (Vicugna vicugna mensalis) en el Anexo Mamuta de la Provincia de Tarata en la Región de Tacna. Master’s Thesis, Universidad Nacional Jorge Basadre Grohmann-Tacna, Tacna, Peru, 2011. [Google Scholar]
- Samamé, L.; Chávez, A.; Pinedo, R. Fasciolosis en vicuñas (Vicugna vicugna) de la sierra central del Perú. Rev. Investig. Vet. Peru 2016, 27, 137–144. [Google Scholar] [CrossRef]
- Cafrune, M.; Rebuffi, G.; Cabrera, R.; Aguirre, D. Fasciola hepatica en llamas (Lama glama) de la Puna Argentina. Vet. Arg. 1996, 13, 570–574. [Google Scholar]
- Cafrune, M.; Aguirre, D.; Rickard, L. Recovery of Trichuris tenuis Chandler, 1930, from camelids (Lama glama and Vicugna vicugna) in Argentina. J. Parasitol. 1999, 85, 961–962. [Google Scholar] [CrossRef]
- Cafrune, M.; Marín, R.; Rigalt, F.; Romero, S.; Aguirre, D. Prevalence of Eimeria macusaniensis and Eimeria ivitaensis in south American camelids of Northwest Argentina. Vet. Parasitol. 2009, 162, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Cafrune, M.; Romero, S.; Aguirre, D. Prevalence and abundance of Eimeria spp. infection in captive vicuñas (Vicugna vicugna) from the Argentinean Andean altiplano. Small Rumin. Res. 2014, 120, 150–154. [Google Scholar] [CrossRef]
- Marcoppido, G.; Schapiro, J.; Morici, G.; Arzamendia, Y.; Vilá, B. Coproparasitological evaluation of nematodes and coccidia in a wild vicuna (Vicugna vicugna) population in the Argentinean Andean Altiplano. J. Camelid Sci. 2016, 9, 23–34. [Google Scholar]
- Beltran-Saavedra, L.; Nallar-Gutiérrez, R.; Ayala, G.; Limachi, J.; Gonzales-Rojas, J. Estudio sanitario de vicuñas en silvestría del Área Natural de Manejo Integrado Nacional Apolobamba, Bolivia. Ecol. Boliv. 2011, 46, 14–27. [Google Scholar]
- Hyuga, A.; Matsumoto, J. A survey of gastrointestinal parasites of alpacas (Vicugna pacos) raised in Japan. J. Vet. Med. Sci. 2016, 78, 719–721. [Google Scholar] [CrossRef]
- Rodríguez, H.; Casas, A.; Luna, E.; Gavidia, C.; Zanabria, H.; Rosadio, A. Eimeriosis en crías de alpacas: Prevalencia y factores de riesgo. Rev. Inv. Vet. Perú 2012, 23, 289–298. [Google Scholar] [CrossRef]
- Rawdon, T.; McFadden, A.; King, C.; Mitchell, V.; Howell, M. Clinical findings and risk factors associated with the first report of Eimeria macusaniensis in New Zealand alpacas. Theatre Surv. 2006, 33, 11–15. [Google Scholar]
- Twomey, D.; Allen, K.; Bell, S.; Evans, C.; Thomas, S. Eimeria ivitaensis in British alpacas. Vet. Rec. 2010, 167, 797–798. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Hao, C.; Li, X.; Hussain, S.; Shen, D.; Peng, Z.; Zhai, Q.; Hou, Z. Epidemiology of gastrointestinal parasitism in blue wildebeest (Connochaetes taurinus), alpacas (Vicugna pacos), and goats (Capra aegagrus hircus) with same husbandry and fence site in Harbin Zoo, China. Pak. J. Zool. 2021, 53, 2511–2514. [Google Scholar] [CrossRef]
- Kultscher, L.; Joachim, A.; Wittek, T. Auftreten und Management von Endoparasiten bei Alpakas in Deutschland und Österreich [Occurrence and management of endoparasites in alpacas in Germany and Austria]. Tierärztliche Prax. Ausg. G Grosstiere/Nutztiere 2018, 46, 241–248. [Google Scholar]
- Dz. U. 2015 poz. 266. Ustawa z dnia 15 stycznia 2015 r. o Ochronie Zwierząt Wykorzystywanych do Celów Naukowych lub Edukacyjnych. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000266/U/D20150266Lj.pdf (accessed on 10 October 2024).
- Taylor, M.; Coop, R.; Wall, R. The laboratory diagnosis of parasitism. In Veterinary Parasitology, 3rd ed.; Taylor, M.A., Coop, R.L., Wall, R.L., Eds.; Blackwell Publishing: Oxford, UK, 2007; pp. 798–805. [Google Scholar]
- Bush, A.; Lafferty, K.; Lotz, J.; Shostak, A. Parasitology meets ecology on its own terms: Margolis et al. Revisited. J. Parasitol. 1997, 83, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Hirzmann, J.; Petzold, J.; Henrich, M.; Wagner, H.; Dyachenko, V.; Volker, I. First detection of autochthonous Lamanema chavezi infections in llamas (Lama glama) in Europe. Vet. Parasitol. Reg. Stud. Rep. 2024, 47, 100948. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.M.; Conboy, G.A. Veterinary Clinical Parasitology, 8th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012. [Google Scholar]
- Thienpont, D.; Rochette, F.; Vanparijs, O.F.J. Diagnosing Helminthiasis by Coprological Examination; Janssen Research Foundation: Beerse, Belgium, 2003. [Google Scholar]
- Bauer, C. Parasitoses of South American camelids in Europe and their possible control—A brief review. Tierärztliche Umsch. 2012, 67, 104–109. (In German) [Google Scholar]
- Agresti, A.; Coull, B.A. Approximate is better than “exact” for interval estimation of binomial proportions. Am Stat. 1998, 52, 119–126. [Google Scholar]
- Pyziel-Serafin, A.; Raboszuk, A.; Klich, D.; Orłowska, B.; Sierociuk, D.; Anusz, K. Two Centrifugal Flotation Techniques for Counting Gastrointestinal Parasite Eggs and Oocysts in Alpaca Faeces. J. Vet. Res. 2022, 66, 389–393. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rashid, M.H.; Beveridge, I.; Vaughan, J.L.; Jabbar, A. Worm burdens and associated histopathological changes caused by gastrointestinal nematodes in alpacas from Australia. Parasitol. Res. 2019, 118, 1031–1038. [Google Scholar] [CrossRef]
- Diaz, P.; Panadero, R.; López, R.; Cordero, A.; Pérez-Creo, A.; López, C.M.; Fernandez, G.; Díez-Baños, P.; Morrondo, P. Prevalence and risk factors associated to Eimeria spp. infection in unweaned alpacas (Vicugna pacos) from southern Peru. Acta Parasitol. 2016, 61, 74–78. [Google Scholar] [CrossRef]
- Williamson, L.H. Fecal fluency: A review of fecal tests and how to interpret the results. AABP Proc. 2013, 46, 102–106. [Google Scholar] [CrossRef]
- Horak, I.G.; Junker, K.; Gallivan, G.J. Helminth parasites of impalas, Aepyceros melampus (Lichtenstein) (Ruminantia: Bovidae), in the Kruger National Park, South Africa: Infection patterns from birth to adulthood. J. S. Afr. Vet. Assoc. 2023, 94, 87–98. [Google Scholar] [CrossRef]
- Guerrero, C.A.; Hernandez, J.; Bazalar, H.; Alva, J. Eimeria macusaniensis n. sp. (Protozoa: Eimeriidae) of the alpaca Lama pacos. J. Protozool. 1971, 18, 162–163. [Google Scholar] [CrossRef]
- Leguía, G. The epidemiology and economic impact of llama parasites. Parasitol. Today 1991, 7, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Bordes, F.; Morand, S. The impact of multiple infections on wild animal hosts: A review. Infect. Ecol. Epidemiol. 2011, 1. [Google Scholar] [CrossRef] [PubMed]
- Barger, I.A. Control of gastrointestinal nematodes in Australia in the 21st century. Vet. Parasitol. 1993, 46, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Zuk, M.; McKean, K.A. Sex differences in parasite infections: Patterns and processes. Int. J. Parasitol. 1996, 26, 1009–1024. [Google Scholar] [CrossRef]
- Schalk, G.; Forbes, M.R. Male biases in parasitism of mammals: Effects of study type, host age, and parasite taxon. Oikos 1997, 78, 67–74. [Google Scholar] [CrossRef]
- Cebra, C.K.; Valentine, B.A.; Schlipf, J.W.; Bildfell, R.J.; McKenzie, E.; Waitt, L.H.; Heidel, J.R.; Cooper, B.J.; Löhr, C.V.; Bird, K.E.; et al. Eimeria macusaniensis infection in 15 llamas and 34 alpacas. J. Am. Vet. Med. Assoc. 2007, 230, 94–100. [Google Scholar] [CrossRef]
- Carneiro, P.G.; Sasse, J.P.; Silva, A.C.D.S.; Seixas, M.; Paschoal, A.T.P.; Minutti, A.F.; Martins, T.A.; Cardim, S.T.; Rodrigues, F.S.; Barros, L.D.; et al. Prevalence and risk factors of Eimeria spp. natural infection in sheep from northern Paraná, Brazil. Rev. Bras. Parasitol. Vet. 2022, 31, e017421. [Google Scholar] [CrossRef]
- Jadidoleslami, A.; Siyadatpanah, A.; Borji, H.; Zarean, M.; Jarahi, L.; Moghaddas, E.; Budke, C.M. Prevalence and seasonality of adult and arrested larvae of gastrointestinal nematodes of sheep from Mashhad City, northeastern Iran. Iran. J. Parasitol. 2022, 17, 214–222. [Google Scholar] [CrossRef]
- Van Wyk, J.A.; Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, 539. [Google Scholar] [CrossRef]
- Gałązka, M.; Klich, D.; Anusz, K.; Pyziel-Serafin, A.M. Veterinary monitoring of gastrointestinal parasites in European bison, Bison bonasus designed for translocation: Comparison of two coprological methods. Int. J. Parasitol. Parasites Wildl. 2022, 17, 166–173. [Google Scholar] [CrossRef]
Parasite | Number of Alpacas Infected | Prevalence (%) (95% CI) | Intensity of Infection (EPG/OPG) | ||
---|---|---|---|---|---|
Mean | Median | Range | |||
Capillarid-type | 42 | 8.2 (6.1–10.9) | 51 | 50 | 50–100 |
Trichuris sp. | 90 | 17.6 (14.5–21.1) | 73 | 50 | 50–200 |
Strongylida | 178 | 34.8 (30.8–39.0) | 342 | 150 | 50–2300 |
Strongyloides sp. | 164 | 32.0 (28.1–36.2) | 80 | 50 | 50–850 |
Nematodirus spp. | 197 | 38.5 (34.4–42.8) | 102 | 50 | 50–500 |
Total nematodes | 352 | 68.8 (64.6–72.6) | 292 | 150 | 50–2300 |
E. macusaniensis | 81 | 15.8 (12.9–19.2) | 71 | 50 | 50–250 |
E. lamae | 68 | 13.3 (10.6–16.5) | 117 | 50 | 50–400 |
E. alpacae | 83 | 16.2 (13.3–19.7) | 120 | 50 | 50–600 |
E. punoensis | 93 | 18.2 (15.1–21.8) | 365 | 150 | 50–6000 |
Total Eimeria | 178 | 34.8 (30.8–39.0) | 324 | 150 | 50–6250 |
Overall total (Nematodes + Eimeria) | 381 | 74.4 (70.5–78.0) | 422 | 250 | 50–6550 |
Parasite | Area of Poland | N/n | Prevalence (%) (95% CI) | χ2 Test Value | Intensity of Infection (EPG/OPG) | |||
---|---|---|---|---|---|---|---|---|
Mean | Median | Range | Kruskal–Wallis Test Value | |||||
Capillarid-type | north | 4/50 | 8.0 (2.6–19.4) | χ2 = 0.94; p = 0.92 | 50 | 50 | 50–50 | H = 3.2; p = 0.52 |
south | 10/154 | 6.5 (3.4–11.7) | 55 | 50 | 50–100 | |||
central | 9/100 | 9.0 (4.6–16.4) | 50 | 50 | 50–50 | |||
east | 16/177 | 9.0 (5.6–14.3) | 50 | 50 | 50–50 | |||
west | 3/31 | 9.7 (2.6–25.7) | 50 | 50 | 50–50 | |||
Trichuris sp. | north | 5/50 | 10.0 (3.9–21.8) | χ2 = 5.34; p = 0.25 | 60 | 50 | 50–100 | H = 2.2; p = 0.69 |
south | 22/154 | 14.3 (9.6–20.8) | 82 | 50 | 50–200 | |||
central | 21/100 | 21.0 (14.1–30.1) | 74 | 50 | 50–150 | |||
east | 37/177 | 20.9 (15.5–27.5) | 70 | 50 | 50–150 | |||
west | 5/31 | 16.1 (6.6–33.1) | 70 | 50 | 50–150 | |||
Strongylida | north | 8/50 | 16.0 (8.1–28.8) | χ2 = 23.6; p < 0.001 | 481 | 250 | 50–1950 | H = 5.3; p = 0.26 |
south | 52/154 | 33.8 (26.8–41.6) | 328 | 100 | 50–2100 | |||
central | 25/100 | 25.0 (17.5–34.7) | 398 | 150 | 50–1450 | |||
east | 83/177 | 46.9 (39.7–54.2) | 300 | 100 | 50–2300 | |||
west | 10/31 | 32.3 (18.5–50.0) | 520 | 550 | 50–1500 | |||
Strongyloides sp. | north | 2/50 | 4.0 (0.03–14.2) | χ2 = 25.8; p < 0.001 | 50 | 50 | 50–50 | H = 9.7; p = 0.05 |
south | 63/154 | 40.9 (33.4–48.8) | 106 ab | 50 | 50–850 | |||
central | 28/100 | 28.0 (20.1–37.5) | 68 ab | 50 | 50–150 | |||
east | 58/177 | 32.8 (26.3–40.0) | 60 a | 50 | 50–200 | |||
west | 13/31 | 41.9 (26.4–59.3) | 77 b | 100 | 50–100 | |||
Nematodirus spp. | north | 20/50 | 40.0 (27.6–53.8) | χ2 = 2.59; p = 0.63 | 108 | 75 | 50–250 | H = 8.3; p = 0.08 |
south | 61/154 | 39.6 (32.2–14.5) | 109 | 50 | 50–500 | |||
central | 32/100 | 32.0 (23.7–41.7) | 116 | 50 | 50–300 | |||
east | 73/177 | 41.2 (34.3–68.6) | 82 | 50 | 50–350 | |||
west | 11/31 | 35.5 (21.1–53.1) | 145 | 50 | 50–400 | |||
Combined nematodes | north | 29/50 | 58.0 (44.2–70.6) | χ2 = 8.66; p = 0.07 | 228 | 100 | 50–2000 | H = 3.4; p = 0.50 |
south | 103/154 | 66.9 (59.1–73.8) | 317 | 150 | 50–2200 | |||
central | 64/100 | 64.0 (54.2–72.7) | 274 | 150 | 50–1600 | |||
east | 135/177 | 76.3 (69.5–82.0) | 279 | 150 | 50–2300 | |||
west | 21/31 | 67.7 (50.0–81.5) | 395 | 200 | 50–1650 | |||
E. macusaniensis | north | 8/50 | 16.0 (8.1–28.8) | χ2 = 1.89; p = 0.76 | 56 | 50 | 50–100 | H = 2.5; p = 0.64 |
south | 23/154 | 14.9 (10.1–21.5) | 61 | 50 | 50–100 | |||
central | 18/100 | 18.0 (11.6–26.8) | 86 | 50 | 50–250 | |||
east | 25/177 | 14.1 (9.7–20.1) | 75 | 50 | 50–200 | |||
west | 7/31 | 22.6 (11.1–40.1) | 64 | 50 | 50–100 | |||
E. lamae | north | 9/50 | 18.0 (9.5–31.0) | χ2 = 3.71; p = 0.45 | 100 | 50 | 50–250 | H = 0.41; p = 0.98 |
south | 18/154 | 11.7 (7.4–17.8) | 106 | 50 | 50–250 | |||
central | 9/100 | 9.0 (4.6–16.4) | 117 | 100 | 50–250 | |||
east | 27/177 | 15.3 (10.7–21.3) | 133 | 50 | 50–400 | |||
west | 5/31 | 16.1 (6.6–33.1) | 100 | 50 | 50–200 | |||
E. alpacae | north | 8/50 | 16.0 (8.1–28.8) | χ2 = 6.39; p = 0.17 | 94 | 50 | 50–350 | H = 4.1; p = 0.39 |
south | 23/154 | 14.9 (10.1–21.5) | 141 | 100 | 50–350 | |||
central | 11/100 | 11.0 (6.1–18.8) | 127 | 50 | 50–450 | |||
east | 32/177 | 18.1 (13.1–24.5) | 105 | 50 | 50–550 | |||
west | 9/31 | 29.0 (15.9–46.8) | 133 | 50 | 50–600 | |||
E. punoensis | north | 4/50 | 8.0 (2.6–19.4) | χ2 = 9.44; p = 0.05 | 488 | 475 | 50–950 | H = 3.4; p = 0.49 |
south | 26/154 | 16.9 (11.7–23.6) | 298 | 150 | 50–1100 | |||
central | 14/100 | 14.0 (8.4–22.3) | 732 | 275 | 50–6000 | |||
east | 42/177 | 23.7 (18.0–30.5) | 258 | 100 | 50–1200 | |||
west | 7/31 | 22.6 (11.1–40.1) | 450 | 450 | 50–1250 | |||
Combined Eimeria | north | 19/50 | 38.0 (25.8–51.9) | χ2 = 9.34; p = 0.05 | 213 | 100 | 50–1100 | H = 8.6; p = 0.07 |
south | 52/154 | 33.8 (26.8–41.6) | 275 | 150 | 50–1400 | |||
central | 26/100 | 26.0 (18.4–35.4) | 548 | 250 | 50–6250 | |||
east | 64/177 | 36.2 (29.4–43.5) | 309 | 175 | 50–1350 | |||
west | 17/31 | 54.8 (37.8–70.9) | 312 | 50 | 50–1500 | |||
Combined total | north | 32/50 | 64.0 (50.1–75.9) | χ2 = 12.04; p = 0.02 | 333 | 175 | 50–2050 | H = 3.0; p = 0.56 |
south | 110/154 | 71.4 (63.8–78.0) | 426 | 250 | 50–2200 | |||
central | 69/100 | 69.0 (59.4–77.3) | 461 | 250 | 50–6550 | |||
east | 147/177 | 83.1 (76.8–87.9) | 390 | 250 | 50–2300 | |||
west | 23/31 | 74.2 (56.5–86.5) | 591 | 300 | 50–1950 |
Parasite | Season | N/n | Prevalence (%) (95% CI) | χ2 Test Value | Intensity of Infection (EPG/OPG) | |||
---|---|---|---|---|---|---|---|---|
Mean | Median | Range | Mann–Whitney U-TEST Value | |||||
Capillarid-type | spring | 23/309 | 7.4 (5.0–11.0) | χ2 = 0.60; p = 0.44 | 50 | 50 | 50–50 | Z = 1.05 p = 0.29 |
autumn | 19/203 | 9.4 (6.0–14.2) | 53 | 50 | 50–100 | |||
Trichuris sp. | spring | 60/309 | 19.4 (15.4–24.2) | χ2 = 1.82; p = 0.18 | 67 a | 50 | 50–150 | Z = 2.28 p = 0.02 |
autumn | 30/203 | 14.8 (10.5–20.4) | 87 b | 50 | 50–200 | |||
Strongylida | spring | 100/309 | 32.4 (27.4–37.8) | χ2 = 1.98; p = 0.16 | 302 | 100 | 50–2300 | Z = 1.08 p = 0.28 |
autumn | 78/203 | 38.4 (32.0–45.3) | 395 | 225 | 50–2100 | |||
Strongyloides sp. | spring | 97/309 | 31.4 (26.5–36.8) | χ2 = 0.15; p = 0.70 | 63 | 50 | 50–200 | Z = 1.45 p = 0.15 |
autumn | 67/203 | 33.0 (26.9–39.7) | 105 | 50 | 50–850 | |||
Nematodirus spp. | spring | 111/309 | 35.9 (30.8–41.4) | χ2 = 2.15; p = 0.14 | 101 | 50 | 50–500 | Z = −0.10 p = 0.92 |
autumn | 86/203 | 42.4 (35.8–49.2) | 103 | 50 | 50–400 | |||
Combined nematodes | spring | 212/309 | 68.6 (63.2–73.5) | χ2 = 0.01; p = 0.93 | 247 a | 150 | 50–2300 | Z = 2.11 p = 0.03 |
autumn | 140/203 | 69.0 (62.3–74.2) | 359 b | 200 | 50–2200 | |||
E. macusaniensis | spring | 40/309 | 12.9 (9.6–17.2) | χ2 = 4.84; p = 0.03 | 80 a | 50 | 50–250 | Z = −2.06 p = 0.04 |
autumn | 41/203 | 20.2 (15.2–26.3) | 61 b | 50 | 50–150 | |||
E. lamae | spring | 40/309 | 12.9 (9.6–17.2) | χ2 = 0.08; p = 0.78 | 121 | 50 | 50–400 | Z = −0.03 p = 0.98 |
autumn | 28/203 | 13.8 (9.7–19.3) | 111 | 50 | 50–300 | |||
E. alpacae | spring | 44/309 | 14.2 (10.8–18.6) | χ2 = 2.23; p = 0.14 | 139 | 50 | 50–600 | Z = −1.42 p = 0.15 |
autumn | 39/203 | 19.2 (14.4–25.2) | 99 | 50 | 50–350 | |||
E. punoensis | spring | 58/309 | 18.8 (14.8–23.5) | χ2 = 0.19; p = 0.66 | 390 | 175 | 50–6000 | Z = 0.23 p = 0.82 |
autumn | 35/203 | 17.2 (12.6–23.1) | 324 | 100 | 50–1200 | |||
Combined Eimeria | spring | 92/309 | 29.8 (24.9–35.1) | χ2 = 8.56; p = 0.003 | 401 a | 200 | 50–6250 | Z = −3.55 p < 0.001 |
autumn | 86/203 | 42.4 (35.8–49.2) | 242 b | 100 | 50–1400 | |||
Combined total | spring | 229/309 | 74.1 (68.9–78.7) | χ2 = 0.04; p = 0.85 | 390 | 250 | 50–6550 | Z = 1.60 p = 0.11 |
autumn | 152/203 | 74.9 (68.5–80.4) | 467 | 276 | 50–2200 |
Parasite | Sex | N/n | Prevalence (%) (95% CI) | χ2 Test Value | Intensity of Infection (EPG/OPG) | |||
---|---|---|---|---|---|---|---|---|
Mean | Median | Range | Mann–Whitney U-Test Value | |||||
Capillarid-type | female | 26/298 | 8.7 (6.0–15.5) | χ2 = 0.26; p = 0.61 | 50 | 50 | 50–50 | Z = 1.23 p = 0.22 |
male | 16/214 | 7.5 (4.6–11.9) | 53 | 50 | 50–100 | |||
Trichuris sp. | female | 52/298 | 17.5 (13.5–22.2) | χ2 = 0.01; p = 0.93 | 70 | 50 | 50–200 | Z = 1.31 p = 0.19 |
male | 38/214 | 17.8 (13.2–23.5) | 78 | 50 | 50–150 | |||
Strongylida | female | 101/298 | 33.9 (28.8–39.5) | χ2 = 0.24; p = 0.62 | 351 | 150 | 50–2100 | Z = −0.62 p = 0.54 |
male | 77/214 | 36.0 (29.9–42.6) | 331 | 150 | 50–2300 | |||
Strongyloides sp. | female | 100/298 | 33.6 (28.4–39.1) | χ2 = 0.76; p = 0.38 | 79 | 50 | 50–850 | Z = 1.56 p = 0.12 |
male | 64/214 | 29.9 (24.2–36.4) | 83 | 50 | 50–500 | |||
Nematodirus spp. | female | 108/298 | 36.2 (31.0–41.9) | χ2 = 1.50; p = 0.22 | 100 | 50 | 50–500 | Z = 0.81 p = 0.42 |
male | 89/214 | 41.6 (35.2–48.3) | 104 | 50 | 50–400 | |||
Combined nematodes | female | 202/298 | 67.8 (62.3–72.8) | χ2 = 0.31; p = 0.58 | 292 | 150 | 50–2150 | Z = 0.70 p = 0.48 |
male | 150/214 | 70.1 (63.6–75.8) | 291 | 150 | 50–2300 | |||
E. macusaniensis | female | 39/298 | 13.1 (9.7–17.4) | χ2 = 4.00; p = 0.04 | 69 | 50 | 50–200 | Z = −0.31 p = 0.76 |
male | 42/214 | 19.6 (4.6–11.9) | 73 | 50 | 50–250 | |||
E. lamae | female | 29/298 | 9.7 (6.8–13.7) | χ2 = 7.80; p = 0.005 | 124 | 50 | 50–400 | Z = −0.27 p = 0.79 |
male | 39/214 | 18.2 (13.6–24.0) | 112 | 50 | 50–300 | |||
E. alpacae | female | 49/298 | 16.4 (12.7–21.1) | χ2 = 0.03; p = 0.87 | 115 | 50 | 50–600 | Z = 0.16 p = 0.88 |
male | 34/214 | 15.9 (11.6–21.4) | 126 | 50 | 50–450 | |||
E. punoensis | female | 48/298 | 16.1 (12.1–20.8) | χ2 = 2.03; p = 0.15 | 257 | 125 | 50–1200 | Z = 1.80 p = 0.07 |
male | 45/214 | 21.0 (16.1–27.0) | 480 | 200 | 50–6000 | |||
Combined Eimeria | female | 92/298 | 30.9 (25.9–36.3) | χ2 = 4.76; p = 0.03 | 265 | 125 | 50–1350 | Z = 0.95 p = 0.34 |
male | 86/214 | 40.2 (33.8–46.9) | 387 | 175 | 50–6250 | |||
Combined total | female | 219/298 | 73.5 (68.2–78.2) | χ2 = 0.32; p = 0.57 | 381 | 200 | 50–2150 | Z = 1.50 p = 0.13 |
male | 162/214 | 75.7 (69.5–81.0) | 475 | 300 | 50–6550 |
Parasite | Age (Years) | N/n | Prevalence (%) (95% CI) | χ2 Test Value | Intensity of Infection (EPG/OPG) | |||
---|---|---|---|---|---|---|---|---|
Mean | Median | Range | Kruskal–Wallis Test Value | |||||
Capillarid-type | ≤1 | 10/119 | 8.4 (4.5–14.9) | χ2 = 9.00; p = 0.06 | 55 | 50 | 50–100 | H = 3.20; p = 0.52 |
1.5–3 | 21/180 | 11.7 (7.7–17.2) | 50 | 50 | 50–50 | |||
4–6 | 9/103 | 8.7 (4.5–16.0) | 50 | 50 | 50–50 | |||
7–10 | 1/78 | 1.3 (<0.01–7.6) | 50 | 50 | 50–50 | |||
>10 | 1/32 | 3.1 (<0.01–17.1) | 50 | 50 | 50–50 | |||
Trichuris sp. | ≤1 | 28/119 | 23.5 (16.8–32.0) | χ2 = 6.30; p = 0.18 | 113 a | 125 | 50–200 | H = 40.03; p < 0.001 |
1.5–3 | 34/180 | 18.9 (13.8–25.3) | 56 b | 50 | 50–150 | |||
4–6 | 14/103 | 13.6 (8.2–21.7) | 61 b | 50 | 50–150 | |||
7–10 | 9/78 | 11.5 (6.0–21.0) | 50 b | 50 | 50–50 | |||
>10 | 5/32 | 15.6 (6.4–32.2) | 50 b | 50 | 50–50 | |||
Strongylida | ≤1 | 53/119 | 44.5 (35.9–53.5) | χ2 = 10.18; p = 0.04 | 124 a | 50 | 50–800 | H = 40.37; p < 0.001 |
1.5–3 | 61/180 | 33.9 (27.4–41.1) | 426 b | 250 | 50–2300 | |||
4–6 | 25/103 | 24.3 (17.0–33.4) | 358 b | 250 | 50–1300 | |||
7–10 | 27/78 | 34.6 (25.0–45.7) | 411 b | 200 | 50–1550 | |||
>10 | 12/32 | 37.5 (22.9–54.8) | 696 b | 700 | 50–1950 | |||
Strongyloides sp. | ≤1 | 43/119 | 36.1 (28.1–45.1) | χ2 = 9.53; p = 0.05 | 60 | 50 | 50–200 | H = 5.65; p = 0.23 |
1.5–3 | 60/180 | 33.3 (26.9–40.5) | 72 | 50 | 50–200 | |||
4–6 | 36/103 | 35.0 (26.4–44.6) | 96 | 50 | 50–500 | |||
7–10 | 22/78 | 28.2 (19.4–39.1) | 118 | 50 | 50–850 | |||
>10 | 3/32 | 9.4 (2.5–25.0) | 67 | 50 | 50–100 | |||
Nematodirus spp. | ≤1 | 59/119 | 49.6 (40.8–58.4) | χ2 = 19.29; p = 0.001 | 196 a | 200 | 50–500 | H = 107.05; p < 0.001 |
1.5–3 | 77/180 | 42.8 (35.8–50.1) | 68 b | 50 | 50–250 | |||
4–6 | 24/103 | 23.3 (16.1–32.4) | 60 b | 50 | 50–250 | |||
7–10 | 28/78 | 35.9 (26.1–47.0) | 50 b | 50 | 50–50 | |||
>10 | 9/32 | 28.1 (15.4–45.5) | 50 b | 50 | 50–50 | |||
Combined nematodes | ≤1 | 95/119 | 79.8 (71.7–86.1) | χ2 = 19.58; p < 0.001 | 257 a | 200 | 50–1100 | H = 13.78; p = 0.008 |
1.5–3 | 132/180 | 73.3 (66.4–79.3) | 292 b | 150 | 50–2300 | |||
4–6 | 58/103 | 56.3 (46.7–65.5) | 261 b | 100 | 50–1450 | |||
7–10 | 49/78 | 62.8 (51.7–72.7) | 318 b | 100 | 50–1650 | |||
>10 | 18/32 | 56.3 (39.3–71.9) | 517 ab | 175 | 50–2000 | |||
E. macusaniensis | ≤1 | 45/119 | 37.8 (29.6–46.8) | χ2 = 57.31; p < 0.001 | 86 a | 50 | 50–250 | H = 16.30; p = 0.003 |
1.5–3 | 20/180 | 11.1 (7.2–16.6) | 53 b | 50 | 50–100 | |||
4–6 | 8/103 | 7.8 (3.8–14.8) | 50 b | 50 | 50–50 | |||
7–10 | 6/78 | 7.7 (3.3–16.1) | 57 b | 50 | 50–100 | |||
>10 | 2/32 | 6.3 (0.7–21.2) | 50 b | 50 | 50–50 | |||
E. lamae | ≤1 | 36/119 | 30.3 (22.7–39.0) | χ2 = 43.08; p < 0.001 | 169 a | 150 | 50–400 | H = 27.47; p < 0.001 |
1.5–3 | 21/180 | 11.7 (7.9–17.2) | 62 b | 50 | 50–150 | |||
4–6 | 7/103 | 6.8 (3.1–13.6) | 50 b | 50 | 50–50 | |||
7–10 | 2/78 | 2.6 (0.2–9.4) | 50 | 50 | 50–50 | |||
>10 | 2/32 | 6.3 (0.7–21.2) | 50 | 50 | 50–50 | |||
E. alpacae | ≤1 | 40/119 | 33.6 (25.7–42.5) | χ2 = 38.66; p < 0.001 | 178 a | 100 | 50–600 | H = 18.50; p = 0.001 |
1.5–3 | 25/180 | 13.9 (9.5–19.8) | 56 b | 50 | 50–100 | |||
4–6 | 7/103 | 6.8 (3.1–13.6) | 71 b | 50 | 50–150 | |||
7–10 | 10/78 | 12.8 (6.9–22.2) | 90 b | 50 | 50–400 | |||
>10 | 1/32 | 3.1 (<0.01–17.1) | 50 | 50 | 50–50 | |||
E. punoensis | ≤1 | 50/119 | 42.0 (33.5–51.0) | χ2 = 67.12; p < 0.001 | 585 a | 400 | 50–6000 | H = 38.87; p < 0.001 |
1.5–3 | 30/180 | 16.7 (11.9–22.8) | 110 b | 50 | 50–650 | |||
4–6 | 8/103 | 7.8 (3.8–14.8) | 100 b | 50 | 50–350 | |||
7–10 | 3/78 | 3.9 (0.9–11.2) | 83 | 50 | 50–150 | |||
>10 | 2/32 | 6.3 (0.7–21.2) | 175 | 175 | 50–300 | |||
Combined Eimeria | ≤1 | 85/119 | 71.4 (62.7–78.8) | χ2 = 97.77; p < 0.001 | 545 a | 350 | 50–6250 | H = 60.33; p < 0.001 |
1.5–3 | 54/180 | 30.0 (23.8–37.1) | 131 b | 100 | 50–700 | |||
4–6 | 19/103 | 18.5 (12.1–27.1) | 108 b | 50 | 50–400 | |||
7–10 | 14/78 | 18.0 (10.9–28.0) | 118 b | 100 | 50–450 | |||
>10 | 6/32 | 18.8 (8.5–35.7) | 100 b | 50 | 50–300 | |||
Combined total | ≤1 | 110/119 | 92.4 (86.1–96.1) | χ2 = 39.26; p < 0.001 | 643 a | 450 | 50–6550 | H = 59.00; p < 0.001 |
1.5–3 | 139/180 | 77.2 (70.5–82.8) | 328 b | 200 | 50–2300 | |||
4–6 | 61/103 | 59.2 (49.6–68.2) | 282 b | 150 | 50–1450 | |||
7–10 | 51/78 | 65.4 (54.3–7.0) | 338 b | 100 | 50–1700 | |||
>10 | 20/32 | 62.5 (45.2–77.1) | 495 b | 225 | 50–2050 |
Parasite | Number of Infected Animals | Type of Infection Number of Infected Animals (Prevalence, %) | ||||||
---|---|---|---|---|---|---|---|---|
1-Species | 2-Species | 3-Species | 4-Species | 5-Species | 6-Species | 7-Species | ||
Capillarid-type | 42 | 2 (4.76%) | 20 (47.62%) | 16 (38.10%) | 3 (7.14%) | 1 (2.38%) | - | - |
Trichuris sp. | 90 | 11 (12.22%) | 35 (38.89%) | 34 (37.78%) | 9 (10.00%) | 1 (1.11%) | - | - |
Strongylida | 178 | 22 (12.36%) | 86 (48.31%) | 60 (33.71%) | 9 (5.06%) | 1 (0.56%) | - | - |
Strongyloides sp. | 164 | 33 (20.12%) | 70 (42.68%) | 51 (31.10%) | 9 (5.49%) | 1 (0.61%) | - | - |
Nematodirus spp. | 197 | 55 (27.92%) | 89 (45.18%) | 46 (23.35%) | 6 (3.05%) | 1 (0.51%) | - | - |
E. macusaniensis | 81 | 15 (18.52%) | 42 (51.85%) | 23 (28.40%) | 1 (1.23%) | - | - | - |
E. lamae | 68 | 17 (25.00%) | 40 (58.82%) | 10 (14.71%) | 1 (1.47%) | - | - | - |
E. alpacae | 83 | 15 (18.07%) | 47 (56.63%) | 20 (24.10%) | 1 (1.20%) | - | - | - |
E. punoensis | 93 | 12 (12.90%) | 55 (59.14%) | 25 (26.88%) | 1 (1.08%) | - | - | - |
Capillarid-type | 42 | 2 (4.76%) | 12 (28.57%) | 13 (30.95%) | 6 (14.29%) | 6 (14.29%) | 3 (7.14%) | 0 (0.00%) |
Trichuris sp. | 90 | 6 (6.67%) | 21 (23.33%) | 21 (23.33%) | 17 (18.89%) | 17 (18.89%) | 7 (7.78%) | 1 (1.11%) |
Strongylida | 178 | 14 (7.87%) | 53 (29.78%) | 38 (21.35%) | 36 (20.22%) | 29 (16.29%) | 7 (3.93%) | 1 (0.56%) |
Strongyloides sp. | 164 | 27 (16.46%) | 44 (26.83%) | 33 (20.12%) | 28 (17.07%) | 23 (14.02%) | 9 (5.49%) | 0 (0.00%) |
Nematodirus spp. | 197 | 34 (17.26%) | 54 (27.41%) | 43 (21.83%) | 40 (20.30%) | 19 (9.64%) | 6 (3.05%) | 1 (0.51%) |
E. macusaniensis | 81 | 5 (6.17%) | 4 (4.94%) | 17 (20.99%) | 26 (32.10%) | 21 (25.93%) | 7 (8.64%) | 1 (1.23%) |
E. lamae | 68 | 5 (7.35%) | 15 (22.06%) | 15 (22.06%) | 15 (22.06%) | 14 (20.59%) | 3 (4.41%) | 1 (1.47%) |
E. alpacae | 83 | 1 (1.20%) | 6 (7.23%) | 21 (25.30%) | 28 (33.73%) | 22 (26.51%) | 4 (4.82%) | 1 (1.20%) |
E. punoensis | 93 | 2 (2.15%) | 15 (16.13%) | 15 (16.13%) | 28 (30.11%) | 24 (25.81%) | 8 (8.60%) | 1 (1.08%) |
Total | 381 | 96 (25.20) | 112 (29.40) | 72 (18.90) | 56 (14.70) | 35 (9.19) | 9 (2.36) | 1 (0.26) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilarczyk, B.; Pilarczyk, R.; Juszczak-Czasnojć, M.; Bąkowska, M.; Tomza-Marciniak, A.; Seremak, B.; Matusevičius, P.; Mišeikienė, R. The Influence of Region, Sex, and Age on the Prevalence of Gastrointestinal Parasites in Alpacas (Vicugna pacos) in Poland. Animals 2025, 15, 841. https://doi.org/10.3390/ani15060841
Pilarczyk B, Pilarczyk R, Juszczak-Czasnojć M, Bąkowska M, Tomza-Marciniak A, Seremak B, Matusevičius P, Mišeikienė R. The Influence of Region, Sex, and Age on the Prevalence of Gastrointestinal Parasites in Alpacas (Vicugna pacos) in Poland. Animals. 2025; 15(6):841. https://doi.org/10.3390/ani15060841
Chicago/Turabian StylePilarczyk, Bogumiła, Renata Pilarczyk, Marta Juszczak-Czasnojć, Małgorzata Bąkowska, Agnieszka Tomza-Marciniak, Beata Seremak, Paulius Matusevičius, and Ramutė Mišeikienė. 2025. "The Influence of Region, Sex, and Age on the Prevalence of Gastrointestinal Parasites in Alpacas (Vicugna pacos) in Poland" Animals 15, no. 6: 841. https://doi.org/10.3390/ani15060841
APA StylePilarczyk, B., Pilarczyk, R., Juszczak-Czasnojć, M., Bąkowska, M., Tomza-Marciniak, A., Seremak, B., Matusevičius, P., & Mišeikienė, R. (2025). The Influence of Region, Sex, and Age on the Prevalence of Gastrointestinal Parasites in Alpacas (Vicugna pacos) in Poland. Animals, 15(6), 841. https://doi.org/10.3390/ani15060841