Evaluation of Rumen-Protected Methionine Supplementation on Milk Production and Composition in Crossbred Dairy Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Site of Experimentation
2.2. Animals and Experimental Design
2.3. Management and Experimental Diets
2.4. Sample Collection and Analytical Procedures
2.5. Statistical Analysis
- Yijt is the value of the response variable of the i-th level of RPMet of the j-th sheep at t-th time.
- µ is the overall mean effect.
- Mei is the fixed effect of the i-th level of inclusion of m RPMet (i = 0, 3, or 6 g).
- Sj(i) is the random effect of the j-th sheep within the i-th level of inclusion of RPMet.
- Timet is the fixed t-th time effect when the measurement was taken (week of lactation trial).
- (Me × Time)it is the fixed effect of the interaction between i-th level of inclusion of RPMet and t-th time.
- eijt is the random error.
3. Results
3.1. Milk Yield Performance
3.2. Milk Composition
4. Discussion
4.1. Milk Yield Performance
4.2. Milk Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Na, S.W.; Guan, L.L. Understanding the role of rumen epithelial host-microbial interactions in cattle feed efficiency. Anim. Nutr. 2022, 10, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, T.; Abbasi, S.A. Reducing the global environmental impact of livestock production: The minilivestock option. J. Clean. Prod. 2016, 112, 1754–1766. [Google Scholar] [CrossRef]
- Machefert, C.; Robert-Granié, C.; Lagriffoul, G.; Parisot, S.; Allain, C.; Portes, D.; Larroque, H. Opportunities and limits of commercial farm data to study the genetic determinism of feed efficiency throughout lactation in dairy sheep. Animal 2023, 17, 100951. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Mitsiopoulou, C.; Christodoulou, C.; Kariampa, P.; Simoni, M.; Righi, F.; Tsiplakou, E. Effects of supplementing rumen-protected methionine and lysine on milk performance and oxidative status of dairy ewes. Antioxidants 2021, 10, 654. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A.; Kowalczyk, T.; Satter, L.D. Milk production response to supplementation with encapsulated methionine per os or casein per abomasum. J. Dairy Sci. 1970, 53, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- McFadden, J.W.; Girard, C.L.; Tao, S.; Zhou, Z.; Bernard, J.K.; Duplessis, M.; White, H.M. Symposium review: One-carbon metabolism and methyl donor nutrition in the dairy cow. J. Dairy Sci. 2020, 103, 5668–5683. [Google Scholar] [CrossRef] [PubMed]
- Zanton, G.I.; Bowman, G.R.; Vázquez-Añón, M.; Rode, L.M. Meta-analysis of lactation performance in dairy cows receiving supplemental dietary methionine sources or postruminal infusion of methionine. J. Dairy Sci. 2014, 97, 7085–7101. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Zhou, Z.; Batistel, F.; Martinez-Cortes, I.; Pate, R.T.; Luchini, D.L.; Loor, J.J. Methionine and choline supply alter transmethylation, transsulfuration, and cytidine 5′-diphosphocholine pathways to different extents in isolated primary liver cells from dairy cows. J. Dairy Sci. 2018, 101, 11384–11395. [Google Scholar] [CrossRef]
- Schwab, C.G.; Broderick, G.A. A 100-Year Review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 2017, 100, 10094–10112. [Google Scholar] [CrossRef] [PubMed]
- Lopreiato, V.; Mezzetti, M.; Cattaneo, L.; Ferronato, G.; Minuti, A.; Trevisi, E. Role of nutraceuticals during the transition period of dairy cows: A review. J. Anim. Sci. Biotechnol. 2020, 11, 96. [Google Scholar] [CrossRef]
- Lara, A.; Mendoza, G.D.; Landois, L.; Barcena, R.; Sánchez-Torres, M.T.; Rojo, R.; Ayala, J.; Vega, S. Milk production in Holstein cows supplemented with different levels of ruminally protected methionine. Livest. Sci. 2006, 105, 105–108. [Google Scholar] [CrossRef]
- Wiltbank, M.C.; Shaver, R.D.; Toledo, M.Z.; Carvalho, P.D.; Baez, G.M.; Follendorf, T.H.; Souza, A.H. Potential benefits of feeding methionine on reproductive efficiency of lactating dairy cows. Four State Dairy Nutr. Manag. 2014, 4, 19–26. [Google Scholar]
- Baldwin, J.A.; Horton, G.M.J.; Wohlt, J.E.; Palatini, D.D.; Emanuele, S.M. Rumen-protected methionine for lactation, wool and growth in sheep. Small Rumin. Res. 1993, 12, 125–132. [Google Scholar] [CrossRef]
- Suárez, V.H.; Busetti, M.R. Health management practices and disease prevalence in dairy sheep systems in Argentina. Pesq. Vet. Bras. 2009, 29, 931–937. [Google Scholar] [CrossRef]
- Velarde-Guillén, J.; López-Villalobos, N.; Sainz-Ramírez, A.; González-Sánchez, M.; Arriaga-Jordán, C.M.; Albarrán-Portillo, B. Factors affecting the lactation curve parameters of crossbred dairy ewes in a flock of the highlands of Mexico. Trop. Anim. Health Prod. 2022, 54, 373. [Google Scholar] [CrossRef] [PubMed]
- Ángeles-Hernández, J.C.; Guerrero-Loredo, A.; Solís-Guzmán, D.A.; Ramírez-Pérez, A.H.; Ángeles-Campos, S.; González-Ronquillo, M. Efecto del grupo genético sobre características de la curva de lactación ovina. Ecosis. Recur. Agropec. 2018, 5, 327–333. [Google Scholar] [CrossRef]
- Lynch, G.P.; Jackson, C., Jr.; Elsasser, T.H.; Rumsey, T.S.; Camp, M.J. Nitrogen metabolism of lactating ewes fed rumen-protected methionine and lysine. J. Dairy Sci. 1991, 74, 2268–2276. [Google Scholar] [CrossRef] [PubMed]
- Cottle, D.J. Effects of defaunation of the rumen and supplementation with amino acids on the wool production of housed Saxon Merinos. 2. Methionine and protected methionine. Aust. J. Exp. Agric. 1988, 28, 179–186. [Google Scholar] [CrossRef]
- Goulas, C.; Zervas, G.; Papadopoulos, G. Effect of dietary animal fat and methionine on dairy ewes milk yield and milk composition. Anim. Feed Sci. Technol. 2003, 105, 43–54. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Mavrommatis, A.; Kalogeropoulos, T.; Chatzikonstantinou, M.; Koutsouli, P.; Sotirakoglou, K.; Zervas, G. The effect of dietary supplementation with rumen-protected methionine alone or in combination with rumen-protected choline and betaine on sheep milk and antioxidant capacity. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1004–1013. [Google Scholar] [CrossRef]
- Robinson, P.H. Impacts of manipulating ration metabolizable lysine and methionine levels on the performance of lactating dairy cows: A systematic review of the literature. Livest. Sci. 2010, 127, 115–126. [Google Scholar] [CrossRef]
- Wei, C.; He, T.; Wan, X.; Liu, S.; Dong, Y.; Qu, Y. Meta-analysis of rumen-protected methionine in milk production and composition of dairy cows. Animals 2022, 12, 1505. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants; National Academic Press: Washington, DC, USA, 2007.
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Wine, R.H. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J. Assoc. Off. Anal. Chem. 1968, 51, 780–785. [Google Scholar] [CrossRef]
- Littell, R.C.; Pendergast, J.; Natarajan, R. Tutorial in biostatistics: Modelling covariance structure in the analysis of repeated measures data. Stat. Med. 2000, 19, 1819. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing (4.2.2); R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 6 April 2023).
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Package “Emmeans” (4.0-3); R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://cran.r-project.org/package=emmeans (accessed on 8 May 2023).
- Al-Qaisi, M.A.; Titi, H.H. Effect of rumen-protected methionine on production and composition of early lactating Shami goats milk and growth performance of their kids. Arch. Anim. Breed. 2014, 57, 1–11. [Google Scholar] [CrossRef]
- Madsen, T.G.; Nielsen, L.; Nielsen, M.O. Mammary nutrient uptake in response to dietary supplementation of rumen protected lysine and methionine in late and early lactating dairy goats. Small Rumin. Res. 2005, 56, 151–164. [Google Scholar] [CrossRef]
- Sevi, A.; Taibi, L.; Muscio, A.; Dell’Aquila, S. Effects of graded levels of dietary rumen-protected lysine on comisana ewes’ milk yield and composition. Sci. E Tec. Latt. Casearia 1996, 47, 182–194. [Google Scholar]
- Sevi, A.; Rotunno, T.; Di Caterina, R.; Muscio, A. Rumen-protected methionine or lysine supplementation of Comisana ewes’ diets: Effects on milk fatty acid composition. J. Dairy Res. 1998, 65, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Baldi, A.; Dell’Orto, V. Comparative mammalian choline metabolism with emphasis on the high-yielding dairy cow. Nutr. Res. Rev. 2002, 15, 315–332. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, R.D.; Porter, G.A.; Griel, L.C. Bovine ketosis and depressed fat test in milk: A problem of methionine metabolism and serum lipoprotein aberration. J. Dairy Sci. 1968, 51, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Donkin, S.S.; Varga, G.A.; Sweeney, T.F.; Muller, L.D. Rumen-protected methionine and lysine: Effects on animal performance, milk protein yield, and physiological measures. J. Dairy Sci. 1989, 72, 1484–1491. [Google Scholar] [CrossRef]
- Loerch, S.C.; Oke, B.O. Rumen protected amino acids in ruminant nutrition. In Absorption and Utilization of Amino Acids. Vol. III; CRC Press: Boca Raton, FL, USA, 1989; pp. 187–200. [Google Scholar]
- Gao, H.N.; Zhao, S.G.; Zheng, N.; Zhang, Y.D.; Wang, S.S.; Zhou, X.Q.; Wang, J.Q. Combination of histidine, lysine, methionine, and leucine promotes β-casein synthesis via the mechanistic target of rapamycin signaling pathway in bovine mammary epithelial cells. J. Dairy Sci. 2017, 100, 7696–7709. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.I.L. Lactational responses to postruminal administration of proteins and amino acids. J. Dairy Sci. 1975, 58, 1178. [Google Scholar] [CrossRef] [PubMed]
- Vik-Mo, L.; Emery, R.S.; Huber, J.T. Milk protein production in cows abomasally infused with casein or glucose. J. Dairy Sci. 1974, 57, 869. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J.; Bruckmaier, R.M. Metabolic challenges in lactating dairy cows and their assessment via established and novel indicators in milk. Animal 2019, 13, 75–81. [Google Scholar] [CrossRef]
- Davis, S.R.; Collier, R.J. Mammary blood flow and regulation of substrate supply for milk synthesis. J. Dairy Sci. 1985, 68, 1041–1058. [Google Scholar] [CrossRef] [PubMed]
- Angeles-Hernandez, J.C.; Aranda-Aguirre, E.; Muñoz-Benítez, A.L.; Chay-Canul, A.J.; Albarran-Portillo, B.; Pollott, G.E.; Gonzalez-Ronquillo, M. Physiology of milk production and modelling of the lactation curve. CABI Rev. 2021, 60, 1–22. [Google Scholar] [CrossRef]
Item | Alfalfa Pellet | Corn Silage | Oat Hay | Commercial Concentrate | Mineral Premix 1 | Basal Diet |
---|---|---|---|---|---|---|
% Inclusion | 23.0 | 15.0 | 35.0 | 25.0 | 2.0 | 100.0 |
Dry matter (g/kg) | 960.0 | 232.0 | 924.0 | 930.0 | 100.0 | 81.31 |
Crude protein (g/kg) | 188.41 | 67.45 | 49.83 | 194.0 | 0 | 105.15 |
Ether extract (g/kg) | 9.81 | 3.22 | 11.44 | 37.31 | 0 | 146.34 |
NDF (g/kg) | 420.0 | 648.23 | 642.0 | 387.53 | 0 | 413.01 |
ADF (g/kg) | 300.0 | 405.21 | 433.39 | 251.87 | 0 | 279.04 |
Ca (g/kg) | 1.41 | 0.31 | 0.32 | 1.81 | 140.0 | 1.12 |
P (g/kg) | 0.22 | 0.27 | 0.25 | 0.62 | 65.0 | 0.41 |
Item | Mean | SD | Min | Max | Skewness | Kurtosis | p Value (Shapiro-Wilk) |
---|---|---|---|---|---|---|---|
Milk yield (L/day) | 0.78 | 0.34 | 0.2 | 1.55 | 0.1 | −0.79 | 0.29 |
Fat content (g/100 g) | 5.34 | 2.19 | 2.8 | 12.5 | 0.03 | 0.28 | 0.06 |
Fat yield (g/day) | 43.4 | 24.96 | 10.17 | 111.14 | 0.14 | −0.70 | 0.14 |
Protein content (g/100 g) | 5.48 | 0.63 | 4.22 | 7.97 | 0.23 | 0.55 | 0.07 |
Protein yield (g/day) | 43.86 | 19.74 | 10.22 | 94.22 | 0.24 | −0.48 | 0.05 |
Lactose content (g/100 g) | 4.79 | 0.35 | 3.39 | 5.94 | 0.69 | 2.5 | 0.004 |
Lactose yield (g/day) | 38.45 | 16.84 | 20.71 | 80.44 | 0.04 | −0.79 | 0.08 |
Total solid content (g/100 g) | 15.36 | 2.37 | 10.02 | 23.67 | 0.35 | 0.85 | 0.02 |
Total solid yield (g/day) | 124.08 | 57.60 | 27.90 | 268.92 | 0.08 | −0.81 | 0.06 |
Non-fat solids content (g/100 g) | 11.29 | 0.51 | 95.70 | 125.7 | 0.08 | 0.35 | 0.66 |
Non-fat solids yield (g/day) | 90.31 | 39.45 | 20.51 | 183.11 | 0.10 | −0.76 | 0.07 |
Item | Level of Methionine | p Value | Effect | ||||||
---|---|---|---|---|---|---|---|---|---|
C | 3 g | 6 g | SEM | Met | Time | Met × Time | L | Q | |
Lamb birth weight (kg) | 4.11 | 4.33 | 4.19 | 0.16 | 0.87 | ns | ns | ||
Milk yield (L/day) | 0.65 b | 0.72 b | 0.98 a | 0.08 | 0.04 | 0.0001 | 0.97 | ** | ns |
Fat content (g/100 g) | 5.53 | 5.52 | 4.93 | 0.43 | 0.43 | 0.0001 | 0.17 | ns | ns |
Fat yield (g/day) | 38.21 | 42.12 | 51.93 | 6.39 | 0.41 | 0.0001 | 0.25 | ns | ns |
Protein content (g/100 g) | 5.22 | 5.69 | 5.25 | 0.20 | 0.33 | 0.0001 | 0.26 | ns | *** |
Protein yield (g/day) | 35.23 b | 42.29 b | 55.51 a | 5.31 | 0.04 | 0.0001 | 0.42 | *** | ns |
Lactose content (g/100 g) | 4.74 | 4.65 | 5.04 | 0.09 | 0.54 | 0.0001 | 0.30 | ns | *** |
Lactose yield (g/day) | 31.34 b | 35.02 ab | 50.88 a | 6.38 | 0.02 | 0.0002 | 0.57 | *** | ns |
Total solid content (g/100 g) | 15.04 | 15.878 | 15.32 | 0.46 | 0.71 | 0.03 | 0.53 | ns | ns |
Total solid yield (g/day) | 10.21 | 11.86 | 15.73 | 1.51 | 0.07 | 0.0001 | 0.33 | *** | ns |
Non-fat solids content (g/100 g) | 11.03 | 11.41 | 11.53 | 0.23 | 0.18 | 0.04 | 0.56 | ns | ns |
Non-fat solids yield (g/day) | 73.02 b | 85.04 ab | 116.04 a | 1.49 | 0.03 | 0.0001 | 0.51 | ** | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angeles-Hernandez, J.C.; Cervantes-Bazán, J.V.; Vieyra-Alberto, R.; Lorenzana-Moreno, A.V.; Garduño-García, Á.; Lizarazo-Chaparro, A.C. Evaluation of Rumen-Protected Methionine Supplementation on Milk Production and Composition in Crossbred Dairy Sheep. Animals 2025, 15, 960. https://doi.org/10.3390/ani15070960
Angeles-Hernandez JC, Cervantes-Bazán JV, Vieyra-Alberto R, Lorenzana-Moreno AV, Garduño-García Á, Lizarazo-Chaparro AC. Evaluation of Rumen-Protected Methionine Supplementation on Milk Production and Composition in Crossbred Dairy Sheep. Animals. 2025; 15(7):960. https://doi.org/10.3390/ani15070960
Chicago/Turabian StyleAngeles-Hernandez, Juan Carlos, Josué Vicente Cervantes-Bazán, Rodolfo Vieyra-Alberto, Angelica Valeria Lorenzana-Moreno, Ángel Garduño-García, and Augusto César Lizarazo-Chaparro. 2025. "Evaluation of Rumen-Protected Methionine Supplementation on Milk Production and Composition in Crossbred Dairy Sheep" Animals 15, no. 7: 960. https://doi.org/10.3390/ani15070960
APA StyleAngeles-Hernandez, J. C., Cervantes-Bazán, J. V., Vieyra-Alberto, R., Lorenzana-Moreno, A. V., Garduño-García, Á., & Lizarazo-Chaparro, A. C. (2025). Evaluation of Rumen-Protected Methionine Supplementation on Milk Production and Composition in Crossbred Dairy Sheep. Animals, 15(7), 960. https://doi.org/10.3390/ani15070960