Effects of Lactic Acid Bacteria on Fermentation and Nutritional Value of BRS Capiaçu Elephant Grass Silage at Two Regrowth Ages
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Silage Preparation
2.2. Fermentation Profile
2.3. Chemical Composition and In Vitro Digestibility
2.4. Statistical Analysis
3. Results
3.1. Forage Characterization
3.2. Fermentation Profile
3.3. Chemical Composition and In Vitro Digestibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliveira, C.A.; Millen, D.D. Survey of the nutritional recommendations and management practices adopted by feedlot cattle nutritionists in Brazil. Anim. Feed Sci. Technol. 2014, 197, 64–75. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Rinne, M. Highlights of progress in silage conservation and future perspectives. Grass Forage Sci. 2018, 73, 40–52. [Google Scholar] [CrossRef]
- Bernardes, T.F.; Do Rêgo, A.C. Study on the practices of silage production and utilization on Brazilian dairy farms. J. Dairy Sci. 2014, 97, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.V.; Ledo, F.J.D.S.; Machado, J.C. BRS Kurumi and BRS Capiaçu-New elephant grass cultivars for grazing and cut-and-carry system. Crop Breed. Appl. Biotechnol. 2017, 17, 59–62. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Xianjun, Y.; Zhihao, D.; Junfeng, L.; Sao, T. Microbiological and chemical profiles of elephant grass inoculated with and without Lactobacillus plantarum and Pediococcus acidilactici. Arch. Microbiol. 2018, 200, 311–328. [Google Scholar] [CrossRef]
- Bezerra, H.F.C.; Santos, E.M.; Oliveira, J.S.; Carvalho, G.G.P.; Pinho, R.M.A.; Silva, T.C.; Pereira, G.A.; Cassuce, M.R.; Zanine, A.M. Fermentation characteristics and chemical composition of elephant grass silage with ground maize and fermented juice of epiphytic lactic acid bacteria. S. Afr. J. Anim. Sci. 2019, 49, 522–533. [Google Scholar] [CrossRef]
- Ribas, W.F.G.; Monção, F.P.; Rocha, V.R.; Maranhão, C.M.D.A.; Ferreira, H.C.; Santos, A.S.D.; Gomes, V.M.; Rigueira, J.P.S. Effect of wilting time and enzymatic-bacterial inoculant on the fermentative profile, aerobic stability, and nutritional value of BRS Capiaçu grass silage. R. Bras. Zootec. 2021, 50, e20200207. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.O.; Spoelstra, S.F. Microbiologia da ensilagem. In Silage Science and Technology; American Society of Agronomy: Madison, WI, USA, 2003; Volume 42, pp. 31–93. [Google Scholar]
- Gouvêa, V.N.; Vendramini, J.M.B.; Sollenberger, L.E.; de Oliveira, F.L.; Dubeux, J.C.B., Jr.; Moriel, P.; Cecato, U.; Soares Filho, C.V.; Sanchez, J.M.D.; Yarborough, J.K.; et al. Inoculant effects on fermentation characteristics, nutritive value, and mycotoxin concentrations of bermudagrass silage. Crop Forage Turf. Man. 2020, 6, e20054. [Google Scholar] [CrossRef]
- Jesus, M.A.; Monção, F.P.; Rigueira, J.P.S.; Júnior, V.R.R.; Gomes, V.M.; Junior, N.D.A.D.; Pires, D.A.D.A.; Sales, E.C.J.D.S.; Carvalho, C.D.C.S.; dos Santos, A.S. Effects of microbial inoculant and fibrolytic enzymes on fermentation quality and nutritional value of BRS Capiaçu grass silage. Semin. Ciênc. Agrar. 2021, 42, 1837–1852. [Google Scholar] [CrossRef]
- Muck, R.E. Silage microbiology and its control through additives. R. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Lynch, J.P.; O’Kiely, P.; Waters, S.M.; Doyle, E.M. Conservation characteristics of corn ears and stover ensiled with the addition of Lactobacillus plantarum MTD-1, Lactobacillus plantarum 30114, or Lactobacillus buchneri 11A44. J. Dairy Sci. 2012, 95, 2070–2080. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cao, Y.; Cai, Y.; Terada, F. Natural populations of lactic acid bacteria isolated from vegetable residues and silage fermentation. J. Dairy Sci. 2010, 93, 3136–3145. [Google Scholar] [CrossRef] [PubMed]
- Amaral, R.C.; Carvalho, B.F.; Costa, D.M.; Morenz, M.J.F.; Schwan, R.F.; da Silva Ávila, C.L. Novel lactic acid bacteria strains enhance the conservation of elephant grass silage cv. BRS Capiaçu. Anim. Feed Sci. Technol. 2020, 264, 114472. [Google Scholar] [CrossRef]
- Silveira, T.C.; Ribeiro, K.G.; Roseira, J.P.S.; Alves, W.S.; dos Anjos, A.J.; Coutinho, D.N.; Freitas, C.A.S.; Pereira, O.G. Cutting time and regrowth age affect the quality of elephant grass silage. J. Agric. Stud. 2021, 9, 64–83. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, X.; Dong, Z.; Li, J.; Guo, G.; Bai, Y.; Zhang, J.; Shao, T. Characteristics of isolated lactic acid bacteria and their effects on the silage quality. Asian-Australas. J. Anim. Sci. 2016, 30, 819–827. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Wang, C.; Yang, F.; Chen, X.; Zhang, Q. Effect of cellulase and Lactobacillus casei on ensiling characteristics, chemical composition, antioxidant activity, and digestibility of mulberry leaf silage. J. Dairy Sci. 2019, 102, 9919–9931. [Google Scholar] [CrossRef]
- Spanhaak, S.; Havenaar, R.; Schaafsma, G. The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur. J. Clin. Nutr. 1988, 52, 899–907. [Google Scholar] [CrossRef]
- Carvalho, B.F.; Sales, G.F.C.; Schwan, R.F.; Ávila, C.L.S. Criteria for lactic acid bacteria screening to enhance silage quality. J. Appl. Microbiol. 2021, 130, 341–355. [Google Scholar] [CrossRef]
- Sriagtula, R.; Martaguri, I.; Mardhiyetti, Z. Effects of lactat acid bacteria inoculan and additive on quality and characteristics of brown midrib sorghum mutant line silage (Sorghum bicolor L. Moench). Adv. Anim. Vet. Sci. 2020, 8, 25–31. [Google Scholar] [CrossRef]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar]
- Okuda, H.; Fugi, S.; Kawashima, Y. A direct colorimetric method for blood ammonia. Tokushima J. Exp. Med. 1965, 12, 11–23. [Google Scholar]
- Siegfried, V.R.; Ruckemann, H.; Stumpf, G. Method for the determination of organic acids in silage by high performance liquid chromatography. Landwirtsch Forsch. 1984, 37, 298–304. [Google Scholar]
- Detmann, E.; Rodrigues, J.P.P.; da Silva, T.E.; Brito Neto, A.S.; Franco, M.O. Methods for Feed Analysis, 3rd ed.; Suprema: Visconde do Rio Branco, Brazil, 2025; p. 323. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage method for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Holden, L.A. Comparison of methods of in vitro dry matter digestibility for ten feeds. J. Dairy Sci. 1999, 82, 1791–1794. [Google Scholar] [CrossRef]
- SAS Institute Inc. Procedures Guide, Versão 9.4; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Geren, H.; Kavut, Y.; Unlu, H. Effect of different cutting intervals on the forage yield and some silage quality characteristics of giant king grass (Pennisetum hybridum) under Mediterranean climatic conditions. Turk. J. Field Crops 2020, 25, 1–8. [Google Scholar] [CrossRef]
- Rueda, J.A.; Guerrero-Rodríguez, J.D.D.; Ramírez-Ordoñes, S.; Aguilar-Martínez, C.U.; Hernández-Montiel, W.; Ortega-Jiménez, E. Morphological composition and fiber partitioning along regrowth in elephant grass CT115 intended for ethanol production. Sci. Rep. 2020, 10, 15118. [Google Scholar] [CrossRef]
- Botero-Londoño, J.M.; Celis-Celis, E.M.; Botero-Londoño, M.A. Nutritional quality, nutrient uptake and biomass production of Pennisetum purpureum cv. King grass. Sci. Rep. 2021, 11, 13799. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publication: Marlow, UK, 1991; p. 340. [Google Scholar]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Arriola, K.G.; Kim, S.C.; Adesogan, A.T. Effect of applying inoculants with heterolactic or homolactic and heterolactic bacteria on the fermentation and quality of corn silage. J. Dairy Sci. 2011, 94, 1511–1516. [Google Scholar] [CrossRef]
- Tanizawa, Y.; Kobayashi, H.; Nomura, M.; Sakamoto, M.; Arita, M.; Nakamura, Y.; Ohkuma, M.; Tohno, M. Lactobacillus buchneri subsp. silagei subsp. nov., isolated from rice grain silage. Int. J. Syst. Evol. Microbiol. 2020, 70, 3111–3116. [Google Scholar] [CrossRef]
- Gandra, J.R.; de Oliveira, E.R.; de Goes, R.H.T.B.; de Oliveira, K.M.P.; Takiya, C.S.; Del Valle, T.A.; Araki, H.M.C.; Silveira, K.; Silva, D.; Pause, A.D.S. Microbial inoculant and an extract of Trichoderma longibrachiatum with xylanase activity effect on chemical composition, fermentative profile and aerobic stability of guinea grass (Pancium maximum Jacq.) silage. J. Anim. Feed Sci. 2017, 26, 339–347. [Google Scholar] [CrossRef]
- Arriola, K.G.; Vyas, D.; Kim, D.; Agarussi, M.C.N.; Silva, V.P.; Flores, M.; Jiang, Y.; Yanlin, X.; Pech-Cervantes, A.A.; Ferraretto, L.F.; et al. Effect of Lactobacillus hilgardii, Lactobacillus buchneri, or their combination on the fermentation and nutritive value of sorghum silage and corn silage. J. Dairy Sci. 2021, 104, 9664–9675. [Google Scholar] [CrossRef]
- Chen, C.; Xin, Y.; Li, X.; Ni, H.; Zeng, T.; Du, Z.; Guan, H.; Wu, Y.; Yang, W.; Cai, Y.; et al. Effects of Acremonium cellulase and heat-resistant lactic acid bacteria on lignocellulose degradation, fermentation quality, and microbial community structure of hybrid elephant grass silage in humid and hot areas. Front. Microbiol. 2022, 13, 1066753. [Google Scholar] [CrossRef]
- Sifeeldein, A.; Yuan, X.; Dong, Z.; Li, J.; Youns, H.; Shao, T. Characterization and identification of lactic acid bacteria by 16S rRNA gene sequence and their effect on the fermentation quality of Elephant Grass (Pennisetum purpureum) Silage. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 123–130. [Google Scholar] [CrossRef]
- Monção, F.P.; Costa, M.A.M.S.; Rigueria, J.P.S.; Moura, M.M.A.; Júnior, V.R.R.; Gomes, V.M.; Leal, D.B.; Maranhão, C.M.A.; Albuquerque, C.J.B.; Chamone, J.M.A. Yield and nutritional value of BRS Capiaçu grass at different regrowth ages. Semin. Cienc. Agrar. 2019, 40, 2045–2056. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Mason, V.C. The influence of Maillard reaction upon the nutritive value of fibrous feeds. Anim. Feed Sci. Technol. 1991, 32, 45–53. [Google Scholar] [CrossRef]
- Dang, H.L.; Lv, R.; Obitsu, T.; Sugino, T. Effect of replacing alfalfa hay with a mixture of cassava foliage silage and sweet potato vine silage on ruminal and intestinal digestion in sheep. Anim. Sci. J. 2018, 89, 386–396. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutricional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994; p. 476. [Google Scholar]
- Cai, Y.; Fujita, Y.; Murai, M.; Ogawa, M.; Yoshida, N.; Kitamura, R.; Miura, T. Application of lactic acid bacteria (Lactobacillus plantarum Chikuso-1) for silage preparation of forage paddy rice. J. Grassl. Sci. 2003, 49, 477–485. [Google Scholar]
- Pereira, O.G.; Rocha, K.D.; Ferreira, C.L.D.L.F. Composição química, caracterização e quantificação da população de microrganismos em capim-elefante cv. Cameroon (Pennisetum purpureum, Schum.) e suas silagens. R. Bras. Zootec. 2007, 36, 1742–1750. [Google Scholar] [CrossRef]
Item 1 | Regrowth Age (Days) | |
---|---|---|
90 | 105 | |
Green mass of forage (ton/ha) | 36.41 | 51.37 |
Dry mass of forage (ton/ha DM) | 6.77 | 10.79 |
Leaf blade-to-stem ratio | 0.66 ± 0.13 | 0.38 ± 0.06 |
DM (g/kg NM) | 186.11 ± 2.69 | 210.40 ± 1.47 |
Ash (g/kg DM) | 121.40 ± 1.83 | 96.90 ± 1.48 |
CP (g/kg DM) | 69.43 ± 1.24 | 53.95 ± 1.91 |
NDFap (g/kg DM) | 663.40 ± 1.55 | 697.80 ± 0.96 |
Lignin (g/kg DM) | 52.59 ± 1.73 | 72.56 ± 1.45 |
ADIN (g/kg of TN) | 47.67 ± 1.55 | 64.46 ± 0.86 |
IVDMD (g/kg DM) | 614.82 ± 3.66 | 586.81 ± 1.85 |
IVNDFD (g/kg DM) | 418.60 ± 5.52 | 413.02 ± 2.62 |
WSC (g/kg DM) | 71.77 ± 1.45 | 78.84 ± 1.56 |
pH | 6.03 ± 0.01 | 6.05 ± 0.01 |
Regrowth Age (Days) | Inoculant | Item 1 | ||||||
---|---|---|---|---|---|---|---|---|
WSC | pH | LA | AA | LA:AA | PA | NH3-N | ||
90 | Control | 3.65 Ab | 3.98 Aa | 28.73 | 8.16 Aa | 3.50 Ab | 4.87 | 9.25 |
Kera-Sil | 6.24 Ba | 3.70 Ab | 25.87 | 3.18 Ab | 8.32 Aa | 3.57 | 4.88 | |
Sil-All | 3.51 Ab | 3.91 Aa | 32.81 | 8.82 Aa | 3.71 Bb | 5.21 | 8.81 | |
Silo-Max | 2.80 Ab | 3.85 Aab | 21.69 | 5.03 Aab | 4.24 Ab | 3.02 | 7.33 | |
Yakult | 3.69 Ab | 3.97 Aa | 27.66 | 7.98 Aa | 3.54 Ab | 4.45 | 11.41 | |
105 | Control | 3.02 Ab | 4.16 Aa | 25.15 | 11.09 Aa | 2.26 Bc | 3.31 | 8.68 |
Kera-Sil | 9.34 Aa | 3.81 Ab | 32.69 | 4.29 Ab | 7.59 Aa | 3.22 | 6.67 | |
Sil-All | 3.95 Ab | 3.80 Ab | 36.08 | 7.47 Aab | 4.79 Ab | 4.43 | 8.03 | |
Silo-Max | 2.79 Ab | 4.07 Aa | 24.76 | 8.23 Aa | 3.06 Bc | 2.93 | 8.67 | |
Yakult | 2.96 Ab | 3.99 Aab | 28.46 | 9.02 Aa | 3.16 Ac | 4.20 | 10.96 | |
SEM 2 | 0.2896 | 0.043 | 3.3582 | 0.7476 | 0.2103 | 0.4349 | 0.6075 | |
Overall average for inoculant | ||||||||
Control | 3.34 | 4.07 | 26.94 ab | 9.63 | 2.88 | 4.09 ab | 8.96 b | |
Kera-Sil | 7.79 | 3.75 | 29.28 ab | 3.74 | 7.95 | 3.39 ab | 5.77 c | |
Sil-All | 3.73 | 3.86 | 34.44 a | 8.15 | 4.25 | 4.43 a | 8.42 b | |
Silo-Max | 2.79 | 3.96 | 23.22 b | 6.63 | 3.65 | 2.93 b | 7.99 b | |
Yakult | 3.33 | 3.98 | 28.06 ab | 8.50 | 3.35 | 4.20 ab | 11.18 a | |
Overall average for regrowth age | ||||||||
90 | 3.98 | 3.89 | 27.35 | 6.64 | 4.67 | 4.22 A | 8.34 | |
105 | 4.42 | 3.97 | 29.43 | 8.02 | 4.18 | 3.40 B | 8.60 | |
p-value 3 | ||||||||
I | <0.001 | <0.001 | 0.053 | <0.001 | <0.001 | 0.017 | <0.001 | |
A | 0.076 | 0.051 | 0.383 | 0.042 | 0.021 | 0.040 | 0.639 | |
I × A | <0.001 | 0.008 | 0.635 | 0.050 | 0.003 | 0.344 | 0.090 |
Item 1 | Regrowth Age (Days) | SEM 2 | p-Value 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
90 | 105 | I | A | I × A | ||||||||||
Control | Kera-Sil | Sil-All | Silo-Max | Yakult | Control | Kera-Sil | Sil-All | Silo-Max | Yakult | |||||
DM | 163.77 Bb | 208.16 Aa | 153.21 Bb | 199.72 Aa | 153.02 Bb | 208.32 Aa | 205.58 Aa | 212.86 Aa | 213.36 Aa | 204.15 Aa | 5.046 | <0.001 | 0.005 | <0.001 |
CP | 66.48 | 67.40 | 65.15 | 69.10 | 67.06 | 50.80 | 49.39 | 50.96 | 50.81 | 48.74 | 0.990 | 0.123 | <0.001 | 0.065 |
NDFap | 667.09 Bab | 652.19 Bb | 664.92 Bab | 660.00 Bab | 669.82 Ba | 695.54 Aab | 685.61 Ab | 697.39 Aab | 707.31 Aa | 700.51 Aab | 3.510 | 0.005 | 0.004 | 0.045 |
ADIN * | 63.25 | 59.87 | 62.23 | 56.53 | 62.32 | 54.88 | 48.21 | 54.02 | 52.25 | 55.69 | 3.328 | 0.302 | 0.001 | 0.308 |
Lignin | 55.19 | 46.19 | 59.02 | 47.15 | 47.21 | 69.99 | 67.79 | 73.78 | 60.73 | 68.40 | 3.206 | 0.010 | 0.001 | 0.583 |
IVDMD | 677.64 Ac | 697.47 Aab | 685.03 Abc | 701.87 Aa | 671.91 Ac | 604.72 Bb | 626.28 Ba | 68.85 Bb | 603.86 Bb | 610.42 Bab | 3.171 | <0.001 | <0.001 | 0.005 |
IVNDFD | 516.76 Abc | 535.96 Aab | 526.31 Abc | 548.34 Aa | 510.11 Ac | 431.68 Ba | 495.43 Ba | 439.11 Ba | 439.93 Ba | 443.78 Ba | 5.175 | 0.001 | <0.001 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lelis, D.L.; Morenz, M.J.F.; Paciullo, D.S.C.; Roseira, J.P.S.; Gomide, C.A.d.M.; Pereira, O.G.; Oliveira, J.S.e.; Lopes, F.C.F.; da Silva, V.P.; da Silveira, T.C.; et al. Effects of Lactic Acid Bacteria on Fermentation and Nutritional Value of BRS Capiaçu Elephant Grass Silage at Two Regrowth Ages. Animals 2025, 15, 1150. https://doi.org/10.3390/ani15081150
Lelis DL, Morenz MJF, Paciullo DSC, Roseira JPS, Gomide CAdM, Pereira OG, Oliveira JSe, Lopes FCF, da Silva VP, da Silveira TC, et al. Effects of Lactic Acid Bacteria on Fermentation and Nutritional Value of BRS Capiaçu Elephant Grass Silage at Two Regrowth Ages. Animals. 2025; 15(8):1150. https://doi.org/10.3390/ani15081150
Chicago/Turabian StyleLelis, Daiana Lopes, Mirton José Frota Morenz, Domingos Sávio Campos Paciullo, João Paulo Santos Roseira, Carlos Augusto de Miranda Gomide, Odilon Gomes Pereira, Jackson Silva e Oliveira, Fernando Cesar Ferraz Lopes, Vanessa Paula da Silva, Tâmara Chagas da Silveira, and et al. 2025. "Effects of Lactic Acid Bacteria on Fermentation and Nutritional Value of BRS Capiaçu Elephant Grass Silage at Two Regrowth Ages" Animals 15, no. 8: 1150. https://doi.org/10.3390/ani15081150
APA StyleLelis, D. L., Morenz, M. J. F., Paciullo, D. S. C., Roseira, J. P. S., Gomide, C. A. d. M., Pereira, O. G., Oliveira, J. S. e., Lopes, F. C. F., da Silva, V. P., da Silveira, T. C., & Chizzotti, F. H. M. (2025). Effects of Lactic Acid Bacteria on Fermentation and Nutritional Value of BRS Capiaçu Elephant Grass Silage at Two Regrowth Ages. Animals, 15(8), 1150. https://doi.org/10.3390/ani15081150