Effects of Polymorphism of the Growth Hormone Receptor (GHR) Gene on the Longevity and Milk Performance of White-Backed Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Material and Selection Criteria
2.2. Biological Material and Molecular Analysis
2.3. Longevity and Productivity Data Collection
2.4. Calculation of Longevity and Productivity Parameters
- Herd life (days) HL = DCL − DB, where DCL—culling date, DB—date of birth
- Productive life (days) PL = DCL − DFC, where DCL—culling date, DFC—date of first calving
- Milking life (days) ML = PL − ∑DP1…n, where PL—productive life, DP—dry period (days), ∑DP1…n—sum of dry periods from all lactations
- PL to HL ratio (%), where PL—productive life, HL—herd life
- ML to PL ratio (%), where ML—milking life, PL—productive life
- Lifetime milk yield (kg) LMY = ∑MY1…n, where MY—milk yield, ∑MY1…n—total milk yield from all lactations
- Lifetime mean fat content (%) MFC = FC1…n, where FC—fat content, FC1…n—mean fat content from all lactations
- Lifetime mean protein content (%) MPC = PC1…n, where PC—protein content, PC1…n—mean protein content from all lactations
- Lifetime mean lactose content (%) MLC = LC1…n, where LC—lactose content, LC1…n—mean lactose content from all lactations
- Lifetime mean dry matter content (%) MDMC = DMC1…n, where DMC—dry matter content, DMC1…n—mean dry matter content from all lactations.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jairath, L.; Dekkers, J.C.M.; Schaeffer, L.R.; Liu, Z.; Burnside, E.B.; Kolstad, B. Genetic Evaluation for Herd Life in Canada. J. Dairy Sci. 1998, 81, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Sewalem, A.; Miglior, F.; Kistemaker, G.J.; Sullivan, P.; Van Doormaal, B.J. Relationship between Reproduction Traits and Functional Longevity in Canadian Dairy Cattle. J. Dairy Sci. 2008, 91, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Mu, T.; Ma, Y.; Wang, X.P.; Ma, Y. Analysis of Longevity Traits in Holstein Cattle: A Review. Front. Genet. 2021, 12, 695543. [Google Scholar] [CrossRef]
- Vukasinovic, N.; Moll, J.; Casanova, L. Implementation of a Routine Genetic Evaluation for Longevity Based on Survival Analysis Techniques in Dairy Cattle Populations in Switzerland. J. Dairy Sci. 2001, 84, 2073–2080. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, S.; Misztal, I.; Lawlor, T.J. Changing Definition of Productive Life in US Holsteins: Effect on Genetic Correlations. J. Dairy Sci. 2005, 88, 1156–1165. [Google Scholar] [CrossRef]
- Raguz, N.; Jovanovac, S.; Gantner, V.; Meszaros, G.; Solkner, J. Analysis of Factors Affecting the Length of Productive Life in Croatian Dairy Cows. Bulg. J. Agric. Sci. 2011, 17, 232–240. [Google Scholar]
- Strapáková, E.; Strapák, P.; Candrák, J. Genetic Trend of Length of Productive Life in Holstein and Slovak Simmental Cattle in Slovakia. Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67, 1227–1234. [Google Scholar] [CrossRef]
- Semenov, A.S.; Kavardakova, O.Y.; Pyankova, S.Y. Influence of Genetic Factors on the Productive Longevity of Cows. In Proceedings of the XVIII International Scientific and Practical Conference “Modern Trends in Agricultural Production in the World Economy”, Kemerovo, Russia, 3–4 December 2019; pp. 94–101. [Google Scholar] [CrossRef]
- Szyda, J.; Morek-Kopeć, M.; Komisarek, J.; Zarnecki, A. Evaluating Markers in Selected Genes for Association with Functional Longevity of Dairy Cattle. BMC Genet. 2011, 12, 30. [Google Scholar] [CrossRef]
- Ducrocq, V.; Quaas, R.L.; Pollak, E.J.; Casella, G. Length of Productive Life of Dairy Cows. 1. Justification of a Weibull Model. J. Dairy Sci. 1988, 71, 3061–3070. [Google Scholar] [CrossRef]
- Neerhof, H.J.; Madsen, P.; Ducrocq, V.P.; Vollema, A.R.; Jensen, J.; Korsgaard, I.R. Relationships between Mastitis and Functional Longevity in Danish Black and White Dairy Cattle Estimated Using Survival Analysis. J. Dairy Sci. 2000, 83, 1064–1071. [Google Scholar] [CrossRef]
- Samoré, A.B.; Schneider, M.d.P.; Canavesi, F.; Bagnato, A.; Groen, A.F. Relationship between Somatic Cell Count and Functional Longevity Assessed Using Survival Analysis in Italian Holstein–Friesian Cows. Livest. Prod. Sci. 2003, 80, 211–220. [Google Scholar] [CrossRef]
- Cole, J.B.; Wiggans, G.R.; Ma, L.; Sonstegard, T.S.; Lawlor, T.J., Jr.; Crooker, B.A.; Van Tassell, C.P.; Yang, J.; Wang, S.; Matukumalli, L.K.; et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics 2011, 12, 408. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, S.; Sargolzaei, M.; Abo-Ismail, M.K.; Miller, S.; Schenkel, F.; Moore, S.S.; Stothard, P. Genome-Wide Association Study for Lactation Persistency, Female Fertility, Longevity, and Lifetime Profit Index Traits in Holstein Dairy Cattle. J. Dairy Sci. 2017, 100, 1246–1258. [Google Scholar] [CrossRef]
- Clempson, A.M.; Pollott, G.E.; Brickell, J.S.; Bourne, N.E.; Munce, N.; Wathes, D.C. Polymorphisms in the Autosomal Genes for Mitochondrial Function TFAM and UCP2 Are Associated with Performance and Longevity in Dairy Cows. Animal 2011, 5, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Lukač, D.; Jovanovac, S.; Nemes, Z.; Vidović, V.; Popović-Vranješ, A.; Raguž, N.; Lopičić-Vasić, T. Association of Polymorphism κ-Casein Gene with Longevity and Lifetime Production of Holstein-Friesian Cows in Vojvodina. Mljekarstvo 2015, 65, 232–237. [Google Scholar] [CrossRef]
- Zhang, Q.; Guldbrandtsen, B.; Thomasen, J.R.; Lund, M.S.; Sahana, G. Genome-Wide Association Study for Longevity with Whole-Genome Sequencing in 3 Cattle Breeds. J. Dairy Sci. 2016, 99, 7289–7298. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Cheng, Z.; Pollott, G.E.; Wathes, D.C. Association between Single Nucleotide Polymorphism in RelA with Somatic Cell Count and Longevity Supports Importance of NF-ΚB Signalling in Cattle Health. Open J. Anim. Sci. 2019, 9, 51–64. [Google Scholar] [CrossRef]
- Georges, M.; Nielsen, D.; Mackinnon, M.; Mishra, A.; Okimoto, R.; Pasquino, A.T.; Sargeant, L.S.; Sorensen, A.; Steele, M.R.; Zhao, X. Mapping Quantitative Trait Loci Controlling Milk Production in Dairy Cattle by Exploiting Progeny Testing. Genetics 1995, 139, 907–920. [Google Scholar] [CrossRef]
- Falaki, M.; Gengler, N.; Sneyers, M.; Prandi, A.; Massart, S.; Formigoni, A.; Burny, A.; Portetelle, D.; Renaville, R. Relationships of Polymorphisms for Growth Hormone and Growth Hormone Receptor Genes with Milk ProductionTraits for Italian Holstein-Friesian Bulls. J. Dairy Sci. 1996, 79, 1446–1453. [Google Scholar] [CrossRef]
- Curi, R.A.; De Oliveira, H.N.; Silveira, A.C.; Lopes, C.R. Effects of Polymorphic Microsatellites in the Regulatory Region of IGF1 and GHR on Growth and Carcass Traits in Beef Cattle. Anim. Genet. 2005, 36, 58–62. [Google Scholar] [CrossRef]
- Grochowska, R.; Gajewska, A.; Snochowski, M.; Zwierzchowski, L. Ligand-Binding Activity of Growth Hormone Receptor (GH-R) in Bulls of Different Breeds with Identified GH-R Genotypes. J. Anim. Feed Sci. 2002, 11, 223–236. [Google Scholar] [CrossRef]
- Maj, A.; Pareek, C.S.; Klauzińska, M.; Zwierzchowski, L. Polymorphism of 5′-Region of the Bovine Growth Hormone Receptor Gene. J. Anim. Breed. Genet. 2005, 122, 414–417. [Google Scholar] [CrossRef]
- Waters, S.M.; McCabe, M.S.; Howard, D.J.; Giblin, L.; Magee, D.A.; MacHugh, D.E.; Berry, D.P. Associations between Newly Discovered Polymorphisms in the Bos Taurusgrowth Hormone Receptor Gene and Performance Traits in Holstein-Friesian Dairy Cattle. Anim. Genet. 2011, 42, 39–49. [Google Scholar] [CrossRef]
- Cruz, G.S.; Correa, R.M.S.; Macedo, D.B.; Emerick, L.L.; Castilho, E.F.; Rodrigues, M.D.N. Association between Somatotropic Axis Gene Polymorphisms and Reproductive Efficiency of Bovine Females: A Review. Ciênc. Anim. Bras. 2022, 23, e72386. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, B.C.; Maheshwari, H.G.; Li, H.; Reed, M.; Lozykowski, M.; Okada, S.; Catalog, L.; Coschigamo, K.; Wagner, T.E.; et al. A Mammalian Model for Laron Syndrome Produced by Targeted Disruption of the Mouse Growth Hormone Receptor/Binding Protein Gene (the Laron Mouse). Proc. Natl. Acad. Sci. USA 1997, 94, 13215–13220. [Google Scholar] [CrossRef]
- Coschigano, K.T.; Holland, A.N.; Riders, M.E.; List, E.O.; Flyvbjerg, A.; Kopchick, J.J. Deletion, but Not Antagonism, of the Mouse Growth Hormone Receptor Results in Severely Decreased Body Weights, Insulin, and Insulin-like Growth Factor I Levels and Increased Life Span. Endocrinology 2003, 144, 3799–3810. [Google Scholar] [CrossRef] [PubMed]
- Varvio, S.L.; Iso-Touru, T.; Kantanen, J.; Viitala, S.; Tapio, I.; Mäki-Tanila, A.; Zerabruk, M.; Vilkki, J. Molecular Anatomy of the Cytoplasmic Domain of Bovine Growth Hormone Receptor, a Quantitative Trait Locus. Proc. R. Soc. B Biol. Sci. 2008, 275, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Bartke, A. Growth Hormone and Aging. Rev. Endocr. Metab. Disord. 2021, 22, 71–80. [Google Scholar] [CrossRef]
- Bartke, A.; Brown-Borg, H. Mutations Affecting Mammalian Aging: GH and GHR vs IGF-1 and Insulin. Front. Genet. 2021, 12, 667355. [Google Scholar] [CrossRef]
- Kasprzak-Filipek, K.; Sawicka-Zugaj, W.; Litwińczuk, Z.; Chabuz, W.; Šveistienė, R.; Bulla, J. Assessment of the Genetic Structure of Central European Cattle Breeds Based on Functional Gene Polymorphism. Glob. Ecol. Conserv. 2019, 17, e00525. [Google Scholar] [CrossRef]
- Lou, W.; Zhang, H.; Luo, H.; Chen, Z.; Shi, R.; Guo, X.; Zou, Y.; Liu, L.; Brito, L.F.; Guo, G.; et al. Genetic Analyses of Blood β-Hydroxybutyrate Predicted from Milk Infrared Spectra and Its Association with Longevity and Female Reproductive Traits in Holstein Cattle. J. Dairy Sci. 2022, 105, 3269–3281. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Pawar, M.M.; Ashwar, B.K.; Srivastava, A.K.; Patel, J.K.; Patel, J.B. Analysis of Factors That Affect the Longevity Trait in Kankrej Cattle At an Organised Farm. Pharma Innov. J. 2023, 12, 7. [Google Scholar] [CrossRef]
- Rostellato, R.; Lora, I.; Promp, J.; Cassandro, M.; Ducrocq, V.; Cozzi, G. Factors Affecting True and Functional Productive Lifespan in Italian Holstein-Friesian Cows. Ital. J. Anim. Sci. 2022, 21, 1268–1276. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, N.; Chen, H.; Lei, C.; Sun, T. Comparative Analyses of Copy Number Variations between Swamp and River Buffalo. Gene 2022, 830, 146509. [Google Scholar] [CrossRef] [PubMed]
- Aggrey, S.E.; Yao, J.; Sabour, M.P.; Lin, C.Y.; Zadworny, D.; Kuhnlein, U. Markers within the Regulatory Region of the Growth Hormone Receptor Gen and Their Association with Milk-Related Traits in Holsteins. J. Hered. 1999, 90, 148–151. [Google Scholar] [CrossRef]
- Schuster, J.C.; Barkema, H.W.; De Vries, A.; Kelton, D.F.; Orsel, K. Invited Review: Academic and Applied Approach to Evaluating Longevity in Dairy Cows. J. Dairy Sci. 2020, 103, 11008–11024. [Google Scholar] [CrossRef]
- Skinkytė, R.; Zwierzchowski, L.; Riaubaitė, L.; Baltrėnaitė, L.; Miceikienė, I. Distribution of Allele Frequencies Important To Milk Production Traits in Lithuanian Black & White and Lithuanian Red Cattle. Vet. Zootech. 2005, 31, 53. [Google Scholar]
- Rahbar, R.; Rahimi, G.; Ansari Pirsaraei, Z.; Gholizadeh, M. Identification of Polymorphism in Promoter Region of Growth Hormone Receptor (GHR) Gene and Its Association with Milk Related Traits in Holstein Cows. Afr. J. Biotechnol. 2010, 9, 5460–5464. [Google Scholar]
- Deepika, D.; Salar, R.K. Polymorphism Studies of Growth Hormone Receptor (GHR) Gene in Indigenous Grey Cattle Breeds of India. Int. J. Biomed. Life Sci. 2013, 4, 270–277. [Google Scholar]
- Olenski, K.; Kamiński, S.; Szyda, J.; Cieslinska, A. Polymorphism of the Beta-Casein Gene and Its Associations with Breeding Value for Production Traits of Holstein–Friesian Bulls. Livest. Sci. 2010, 131, 137–140. [Google Scholar] [CrossRef]
- Chirinos, Z.; Carabaño, M.J.; Hernández, D. Genetic Evaluation of Length of Productive Life in the Spanish Holstein-Friesian Population. Model Validation and Genetic Parameters Estimation. Livest. Sci. 2007, 106, 120–131. [Google Scholar] [CrossRef]
- Jenko, J.; Ducrocq, V.; Kovač, M. Comparison of Piecewise Weibull Baseline Survival Models for Estimation of True and Functional Longevity in Brown Cattle Raised in Small Herds. Animal 2013, 7, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Páchová, E.; Zavadilová, L.; Sölkner, J. Genetic Evaluation of the Length of Productive Life in Holstein Cattle in the Czech Republic. Czech J. Anim. Sci. 2005, 50, 493–498. [Google Scholar] [CrossRef]
- Morek-Kopeć, M.; Zarnecki, A. Genetic Evaluation for Functional Longevity in Polish Simmental Cattle. Czech J. Anim. Sci. 2017, 62, 276–286. [Google Scholar] [CrossRef]
- Morek-Kopeć, M.; Zarnecki, A. Relationship between Conformation Traits and Longevity in Polish Holstein Friesian Cattle. Livest. Sci. 2012, 149, 53–61. [Google Scholar] [CrossRef]
- Gnyp, J. Length of Life, Length of Productive Life, and Productivity of Dairy Cows in Herds in the Lublin Voivodeship. Sci. Ann. Pol. Soc. Anim. Prod. 2014, 10, 9–15. [Google Scholar]
- De Vries, A.; Marcondes, M.I. Review: Overview of Factors Affecting Productive Lifespan of Dairy Cows. Animal 2020, 14, S155–S164. [Google Scholar] [CrossRef] [PubMed]
- Miciñski, J.; Klupczyñski, J. Correlations between Polymorphic Variants of Milk Proteins, and Milk Yield and Chemical Composition in Black-and-White and Jersey Cows. Pol. J. Food Nutr. Sci. 2006, 15, 137–143. [Google Scholar]
- Sawa, A. Cechy Funkcjonalne i Ich Rola We Współczesnej Hodowli Bydła. Przegląd Hod. 2011, 2, 8–13. [Google Scholar]
- Sobek, Z.; Dymarski, I.; Piekarska, O. Analiza Długowiecznosci i Przyczyny Brakowania Krów Mlecznych w Stadzie ZZD IZ Pawłowice. Acta Sci. Pol. Zootech. 2005, 4, 97–112. [Google Scholar]
- Stanojević, D.; Dedović, R.; Bogdanović, V.; Raguž, N.; Popovac, M.; Janković, D.; Štrbac, L. Procjena Koeficijenata Heritabiliteta Svojstava Dugovječnosti u Populaciji Crno-Bijelih Krava u Srbiji. Mljekarstvo 2016, 66, 322–329. [Google Scholar] [CrossRef]
- Imbayarwo-Chikosi, V.E.; Ducrocq, V.; Banga, C.B.; Halimani, T.E.; van Wyk, J.B.; Maiwashe, A.; Dzama, K. Estimation of Genetic Parameters for Functional Longevity in the South African Holstein Cattle Using a Piecewise Weibull Proportional Hazards Model. J. Anim. Breed. Genet. 2017, 134, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Bieber, A.; Wallenbeck, A.; Leiber, F.; Fuerst-Waltl, B.; Winckler, C.; Gullstrand, P.; Walczak, J.; Wójcik, P.; Neff, A.S. Production Level, Fertility, Health Traits, and Longevity in Local and Commercial Dairy Breeds under Organic Production Conditions in Austria, Switzerland, Poland, and Sweden. J. Dairy Sci. 2019, 102, 5330–5341. [Google Scholar] [CrossRef]
- Neja, W.; Sawa, A.; Jankowska, M.; Bogucki, M.; Kręzel-Czopek, S. Effect of the Temperament of Dairy Cows on Lifetime Production Efficiency. Arch. Tierzucht 2015, 58, 193–197. [Google Scholar] [CrossRef]
- Sawa, A.; Siatka, K.; Krezel-Czopek, S. Effect of Age at First Calving on First Lactation Milk Yield, Lifetime Milk Production and Longevity of Cows. Ann. Anim. Sci. 2019, 19, 189–200. [Google Scholar] [CrossRef]
- Lambertz, C.; Sanker, C.; Gauly, M. Climatic Effects on Milk Production Traits and Somatic Cell Score in Lactating Holstein-Friesian Cows in Different Housing Systems. J. Dairy Sci. 2014, 97, 319–329. [Google Scholar] [CrossRef]
- Feroze, S.M.; Singh, R.; Sirohi, S. Economics of Milk Production and Factors Affecting Milk Yield in Meghalaya: Estimating the Seasonal Effect. Indian J. Dairy Sci. 2019, 72, 328–335. [Google Scholar] [CrossRef]
- Tančin, V.; Ipema, B.; Hogewerf, P.; Mačuhová, J. Sources of Variation in Milk Flow Characteristics at Udder and Quarter Levels. J. Dairy Sci. 2006, 89, 978–988. [Google Scholar] [CrossRef]
- Penev, T.; Radev, V.; Slavov, T.; Kirov, V.; Dimov, D. Effect of Lighting on the Growth, Development, Behaviour, Production and Reproduction Traits in Dairy Cows. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 798–810. [Google Scholar]
- Cobanoglu, O.; Kul, E.; Gurcan, E.K.; Abaci, S.H.; Cankaya, S. Determination of the Association of GHR/AluI Gene Polymorphisms with Milk Yield Traits in Holstein and Jersey Cattle Raised in Turkey. Arch. Anim. Breed. 2021, 64, 417–424. [Google Scholar] [CrossRef]
GHR AluI | Genotype | Alleles | |||
---|---|---|---|---|---|
AA | AB | BB | A | B | |
Frequency | 0.6 | 0.32 | 0.08 | 0.76 | 0.24 |
Number of animals | 60 | 32 | 8 |
Farm | Number of Animals in Each Genotype | Allele Frequency | |||
---|---|---|---|---|---|
AA | AB | BB | A | B | |
1 | 6 | 2 | - | 0.87 | 0.13 |
2 | 6 | 3 | 2 | 0.68 | 0.32 |
3 | 9 | 2 | 2 | 0.77 | 0.23 |
4 | 5 | 4 | 1 | 0.70 | 0.30 |
5 | 7 | - | - | 1.00 | - |
6 | 8 | - | - | 1.00 | - |
7 | 6 | 2 | - | 0.87 | 0.13 |
8 | 6 | 5 | 2 | 0.65 | 0.35 |
9 | 5 | 3 | - | 0.81 | 0.19 |
10 | 2 | 11 | 1 | 0.54 | 0.46 |
GHR AluI Genotype | AA | AB | BB | ||
---|---|---|---|---|---|
Herd Life—HL (days) | 4091.5 A | 3836.4 A | 2084.0 B | 3849.3 | |
SD | 1089.1 | 926.2 | 368.5 | 1128.1 | |
Productive life—PL (days) | 3258.4 A | 2961.0 A | 1079.0 B | 2988.9 | |
SD | 1090.0 | 931.8 | 523.8 | 1156.9 | |
Milking life—ML (days) | 2614.7 A | 2395.7 A | 912.0 B | 2408.4 | |
SD | 803.4 | 650.3 | 490.9 | 860.8 | |
Number of lactations—NL | 7.3 A | 7.2 A | 2.3 B | 7.0 | |
SD | 2.6 | 2.3 | 0.6 | 2.7 | |
PL/HL | 78.03 A | 75.70 A | 49.47 B | 75.00 | |
SD | 7.75 | 7.67 | 18.79 | 11.73 | |
ML/PL | 81.49 | 82.30 | 82.38 | 81.82 | |
SD | 7.26 | 6.43 | 10.41 | 7.22 |
GHR AluI Genotype | AA | AB | BB | ||
---|---|---|---|---|---|
Lifetime milk yield (kg) | 39,430.5 A | 41,202.8 A | 12,072.0 B | 37,809.0 | |
SD | 13,540.8 | 15,562.3 | 3680.2 | 15,649.5 | |
Yield/day of herd life | 9.7 A | 10.6 A | 5.7 B | 9.7 | |
SD | 2.3 | 2.5 | 1.2 | 2.6 | |
Yield/day of productive life | 12.6 | 13.9 | 13.2 | 13.1 | |
SD | 3.3 | 3.0 | 5.5 | 3.4 | |
Yield/day of milking life | 15.3 a | 17.0 b | 16.8 b | 16.0 | |
SD | 3.4 | 3.7 | 8.9 | 4.2 |
GHR AluI Genotype | AA | AB | BB | ||
---|---|---|---|---|---|
Average lifetime fat content (%) | 3.84 | 4.00 | 4.05 | 3.91 | |
SD | 0.42 | 0.47 | 0.17 | 0.43 | |
Average lifetime protein content (%) | 3.26 | 3.21 | 3.31 | 3.25 | |
SD | 0.28 | 0.20 | 0.11 | 0.25 | |
Average lifetime lactose content (%) | 4.63 B | 4.68 | 4.77 A | 4.66 | |
SD | 0.16 | 0.12 | 0.06 | 0.15 | |
Average lifetime dry matter content (%) | 12.42 | 12.60 | 12.80 | 12.51 | |
SD | 0.56 | 0.65 | 0.19 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasprzak-Filipek, K.; Żółkiewski, P.; Chabuz, W.; Sawicka-Zugaj, W. Effects of Polymorphism of the Growth Hormone Receptor (GHR) Gene on the Longevity and Milk Performance of White-Backed Cattle. Animals 2025, 15, 1151. https://doi.org/10.3390/ani15081151
Kasprzak-Filipek K, Żółkiewski P, Chabuz W, Sawicka-Zugaj W. Effects of Polymorphism of the Growth Hormone Receptor (GHR) Gene on the Longevity and Milk Performance of White-Backed Cattle. Animals. 2025; 15(8):1151. https://doi.org/10.3390/ani15081151
Chicago/Turabian StyleKasprzak-Filipek, Karolina, Paweł Żółkiewski, Witold Chabuz, and Wioletta Sawicka-Zugaj. 2025. "Effects of Polymorphism of the Growth Hormone Receptor (GHR) Gene on the Longevity and Milk Performance of White-Backed Cattle" Animals 15, no. 8: 1151. https://doi.org/10.3390/ani15081151
APA StyleKasprzak-Filipek, K., Żółkiewski, P., Chabuz, W., & Sawicka-Zugaj, W. (2025). Effects of Polymorphism of the Growth Hormone Receptor (GHR) Gene on the Longevity and Milk Performance of White-Backed Cattle. Animals, 15(8), 1151. https://doi.org/10.3390/ani15081151