Multi-Trait Genomic Prediction of Meat Yield in Pacific Whiteleg Shrimp (Penaeus vannamei)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Experimental Materials
2.1.2. Growth Traits Test and Measurement
2.2. Genotyping
2.3. Genetic Parameter Estimation
2.3.1. Single-Trait Genomic Model (STGM)
2.3.2. Multi-Trait Genomic Models (MTGMs)
2.3.3. Heritability and Genetic Correlations
2.4. Evaluation of Genomic Prediction Accuracy
3. Results
3.1. Descriptive Statistics of Growth Traits
3.2. Heritability and Genetic Correlation
3.3. Genomic Prediction
4. Discussion
4.1. Heritability Estimates and Influencing Factors
4.2. Genetic Correlations and Multi-Trait Genomic Predictions
4.3. Impact of Validation Strategies on Prediction Accuracy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. FishStat Database. 2024. Available online: https://www.fao.org/fishery/statistics-query/en/global_production/global_production_quantity (accessed on 26 March 2024).
- MOA (Ministry of Agriculture and Rural of the People’s Republic of China). China Fishery Statistical Yearbook; Department of fishery of the Ministry of Agriculture and Rural, China Agricultural Press: Beijing, China, 2024. [Google Scholar]
- Zenger, K.R.; Khatkar, M.S.; Jones, D.B.; Khalilisamani, N.; Jerry, D.R.; Raadsma, H.W. Genomic selection in aquaculture: Application, limitations and opportunities with special reference to marine shrimp and pearl oysters. Front. Genet. 2019, 9, 693. [Google Scholar] [CrossRef] [PubMed]
- Gökoğlu, N.; Gökoğlu, N. Crustacean shellfish. In Shellfish Processing and Preservation; Springer Nature: Cham, Switzerland, 2021; pp. 7–127. [Google Scholar]
- Yuan, Y.; Luo, J.; Zhu, T.; Jin, M.; Jiao, L.; Sun, P.; Ward, T.L.; Ji, F.; Xu, G.; Zhou, Q. Alteration of growth performance, meat quality, antioxidant and immune capacity of juvenile Litopenaeus vannamei in response to different dietary dosage forms of zinc: Comparative advantages of zinc amino acid complex. Aquaculture 2020, 522, 735120. [Google Scholar] [CrossRef]
- Henderson, C. Best linear unbiased prediction of nonadditive genetic merits in noninbred populations. J. Anim. Sci. 1985, 60, 111–117. [Google Scholar] [CrossRef]
- Allal, F.; Nguyen, N.H. Genomic selection in aquaculture species. Methods Mol. Biol. 2022, 2467, 469–491. [Google Scholar]
- Patry, C. Impacts of Genomic Selection on Classical Genetic Evaluations. Ph.D. Thesis, AgroParisTech, Palaiseau, France, 2011. [Google Scholar]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Phuthaworn, C.; Knibb, W. Genomic prediction for disease resistance to Hepatopancreatic parvovirus and growth, carcass and quality traits in Banana shrimp Fenneropenaeus merguiensis. Genomics 2020, 112, 2021–2027. [Google Scholar] [CrossRef]
- Al-Tobasei, R.; Ali, A.; Garcia, A.L.; Lourenco, D.; Leeds, T.; Salem, M. Genomic predictions for fillet yield and firmness in rainbow trout using reduced-density SNP panels. BMC Genom. 2021, 22, 92. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.L.; Bosworth, B.; Waldbieser, G.; Misztal, I.; Tsuruta, S.; Lourenco, D.A. Development of genomic predictions for harvest and carcass weight in channel catfish. Genet. Sel. Evol. 2018, 50, 66. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Dai, P.; Kong, J.; Meng, X.; Sui, J.; Luo, K.; Chen, B.; Fu, Q.; Cao, B.; Cao, J. Assessing accuracy of genomic breeding values of selection candidates under biosecurity restrictions by progeny testing in Chinese shrimp Fenneropenaeus chinensis. Aquaculture 2023, 566, 739181. [Google Scholar] [CrossRef]
- Dagnachew, B.; Meuwissen, T. Accuracy of within-family multi-trait genomic selection models in a sib-based aquaculture breeding scheme. Aquaculture 2019, 505, 27–33. [Google Scholar] [CrossRef]
- Toomey, L.; Lecocq, T.; Bokor, Z.; Espinat, L.; Ferincz, Á.; Goulon, C.; Vesala, S.; Baratçabal, M.; Barry, M.-D.; Gouret, M. Comparison of single-and multi-trait approaches to identify best wild candidates for aquaculture shows that the simple way fails. Sci. Rep. 2020, 10, 11564. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Dong, T.; Yan, X.; Wang, W.; Tian, Z.; Sun, A.; Dong, Y.; Zhu, H.; Hu, H. Improving the accuracy of genomic predictions for disease resistance traits in fish using a multiple-trait linear-threshold model. Aquaculture 2022, 554, 738163. [Google Scholar] [CrossRef]
- Sukhavachana, S.; Senanan, W.; Pattarapanyawong, N.; Srithong, C.; Joerakate, W.; Tunkijjanukij, S.; Poompuang, S. Multiple-trait genomic prediction of harvest and fillet traits in Asian seabass (Lates calcarifer, Bloch 1790). Aquaculture 2021, 544, 737069. [Google Scholar] [CrossRef]
- Dai, P.; Li, D.; Sui, J.; Kong, J.; Meng, X.; Luan, S. Prediction of meat yield in the Pacific whiteleg shrimp Penaeus vannamei. Aquaculture 2023, 577, 739914. [Google Scholar] [CrossRef]
- Tan, J.; Luo, K.; Luan, S.; Cao, B.; Guo, Z.; Xu, S.; Kong, J. Preliminary application of the recirculating aquaculture system in Litopenaeus vannamei breeding. Period. Ocean Univ. China 2016, 46, 63–70. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D. Blupf90 and Related Programs (Bgf90). In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002. [Google Scholar]
- Lourenco, D.; Legarra, A.; Tsuruta, S.; Masuda, Y.; Aguilar, I.; Misztal, I. Single-step genomic evaluations from theory to practice: Using SNP chips and sequence data in BLUPF90. Genes 2020, 11, 790. [Google Scholar] [CrossRef]
- Butler, D.; Cullis, B.; Gilmour, A.; Gogel, B.; Thompson, R.a. ASReml-R Reference Manual; Version 4.; VSN Int. Ltd.: Hemel Hempstead, UK, 2017. [Google Scholar]
- Gilmour, A.; Gogel, B.; Cullis, B.; Welham, S.; Thompson, R.; Butler, D.; Cherry, M.; Collins, D.; Dutkowski, G.; Harding, S. ASReml User Guide Release 4.1 Structural Specification; VSN Int. Ltd.: Hemel Hempstead, UK, 2014; p. 5. [Google Scholar]
- Lu, X.; Luan, S.; Cao, B.; Meng, X.; Sui, J.; Dai, P.; Luo, K.; Shi, X.; Hao, D.; Han, G. Estimation of genetic parameters and genotype-by-environment interactions related to acute ammonia stress in Pacific white shrimp (Litopenaeus vannamei) juveniles at two different salinity levels. PLoS ONE 2017, 12, e0173835. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tian, Y.; Li, H.; Song, L.; Gao, J.; Duan, H.; Dai, H.; Chen, Z.; Chen, S.; Wang, X. Genetic effect analysis of growth traits in Paralichthys olivaceus families. Prog. Fish. Sci. 2017, 38, 39–50. [Google Scholar]
- Yu, H.; Gu, C.; Kong, D.; Wen, T.; Cui, J.; Wang, X.; Jiang, Z.; Qiu, X.; Liu, S.; Li, R.; et al. Heritability estimating and correlativity of growth traitsin redfin puffer Takifugu rubripes. J. Dalian Ocean Univ. 2016, 31, 357–361. [Google Scholar]
- Gao, B.; Liu, P.; Li, J.; Liu, L.; Dai, F.; Wang, X. Heritability of body weight in Portunus trituberculatus. Trans. Oceanol. Limnol. 2010, 41, 322–326. [Google Scholar]
- Li, J.; Li, J.; Liu, P.; Chen, P.; He, Y.; Gao, B. Heritability of body length and weight for the ridgetail white prawn Exopalaemon carinicauda. Oceanol. Limnol. Sin. 2013, 44, 968–972. [Google Scholar]
- Nguyen, N.H.; Vu, N.T.; Patil, S.S.; Sandhu, K.S. Multivariate genomic prediction for commercial traits of economic importance in Banana shrimp Fenneropenaeus merguiensis. Aquaculture 2022, 555, 738229. [Google Scholar] [CrossRef]
- Joshi, R.; Skaarud, A.; de Vera, M.; Alvarez, A.T.; Ødegård, J. Genomic prediction for commercial traits using univariate and multivariate approaches in Nile tilapia (Oreochromis niloticus). Aquaculture 2020, 516, 734641. [Google Scholar] [CrossRef]
- Yoshida, G.M.; Lhorente, J.P.; Correa, K.; Soto, J.; Salas, D.; Yáñez, J.M. Genome-wide association study and cost-efficient genomic predictions for growth and fillet yield in Nile tilapia (Oreochromis niloticus). G3 Genes Genomes Genet. 2019, 9, 2597–2607. [Google Scholar] [CrossRef]
- Li, D. Genetic Parameter Estimation for Growth and Meat Rate Traits of Pacific White Shrimp (Litopenaeus vannamei) In Low Temperature Condition By Microsatellite Markers. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2016. [Google Scholar]
- Rutten, M.J.; Bovenhuis, H.; Komen, H. Genetic parameters for fillet traits and body measurements in Nile tilapia (Oreochromis niloticus L.). Aquaculture 2005, 246, 125–132. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Ponzoni, R.W.; Abu-Bakar, K.R.; Hamzah, A.; Khaw, H.L.; Yee, H.Y. Correlated response in fillet weight and yield to selection for increased harvest weight in genetically improved farmed tilapia (GIFT strain), Oreochromis niloticus. Aquaculture 2010, 305, 1–5. [Google Scholar] [CrossRef]
- Calus, M.P.; Veerkamp, R.F. Accuracy of multi-trait genomic selection using different methods. Genet. Sel. Evol. 2011, 43, 26. [Google Scholar] [CrossRef]
- Kristensen, P.S.; Jahoor, A.; Andersen, J.R.; Jihad, O.; Janss, L.; Jensen, J. Multi-trait and trait-assisted genomic prediction of winter wheat quality traits using advanced lines from four breeding cycles. Crop Breed Genet Genom. 2019, 1, e190010. [Google Scholar]
Group | Concrete Tanks | Number of Families | Number of Stocking Individuals | Number of Harvested Individuals | Survival Rate (%) |
---|---|---|---|---|---|
A | A1 | 10 | 200 | 167 | 83.50 a |
A2 | 11 | 220 | 183 | 83.18 a | |
A3 | 11 | 220 | 183 | 83.18 a | |
B | B1 | 10 | 200 | 157 | 78.50 b |
B2 | 11 | 220 | 169 | 76.82 b | |
B3 | 10 | 200 | 151 | 75.50 b | |
Summary | - | 63 | 1260 | 1010 | 80.16 |
Trait | Mean | Max | Min | SD | CV (%) |
---|---|---|---|---|---|
MY (%) | 50.56 | 61.11 | 40.97 | 2.48 | 4.91 |
MW (g) | 13.81 | 23.36 | 5.58 | 2.41 | 17.44 |
BW (g) | 27.29 | 44.20 | 12.00 | 4.45 | 16.31 |
BL (cm) | 13.04 | 15.26 | 10.00 | 0.75 | 5.73 |
AL (cm) | 7.50 | 8.81 | 4.91 | 0.47 | 6.22 |
Trait | MY | MW | BW | BL | AL |
---|---|---|---|---|---|
MY | 0.160 ± 0.048 a | 0.197 ± 0.049 a | 0.152 ± 0.045 b | 0.130 ± 0.043 b | 0.101 ± 0.039 a |
MW | 0.145 ± 0.046 b | 0.197 ± 0.050 a | 0.152 ± 0.045 b | 0.126 ± 0.042 b | 0.099 ± 0.038 b |
BW | 0.145 ± 0.046 b | 0.197 ± 0.049 a | 0.158 ± 0.046 a | 0.130 ± 0.043 b | 0.099 ± 0.038 b |
BL | 0.148 ± 0.047 b | 0.195 ± 0.048 a | 0.158 ± 0.046 a | 0.133 ± 0.044 a | 0.101 ± 0.038 a |
AL | 0.156 ± 0.048 a | 0.204 ± 0.049 b | 0.167 ± 0.047 b | 0.140 ± 0.045 b | 0.101 ± 0.039 a |
Trait | MY | MW | BW | BL | AL |
---|---|---|---|---|---|
MY | 1 | - | - | - | - |
MW | 0.783 (0.133) | 1 | - | - | - |
BW | 0.636 (0.200) | 0.978 (0.013) | 1 | - | - |
BL | 0.605 (0.213) | 0.915 (0.040) b | 0.935 (0.029) b | 1 | - |
AL | 0.286 (0.248) | 0.735 (0.106) b | 0.811 (0.089) b | 0.924 (0.047) | 1 |
Model | Validation Strategies | Trait | Accuracy | Bias |
---|---|---|---|---|
STGM | CV2 | MY | 0.187 | 0.972 |
MTGM | CV1 | MY–MW | 0.297 | 1.326 |
MY–BW | 0.204 | 1.018 | ||
MY–BL | 0.197 | 0.973 | ||
MY–AL | 0.196 | 1.031 | ||
CV2 | MY–MW | 0.203 | 1.012 | |
MY–BW | 0.199 | 1.002 | ||
MY–BL | 0.195 | 0.985 | ||
MY–AL | 0.189 | 1.046 |
Model | Validation Strategies | Trait | Accuracy | Bias |
---|---|---|---|---|
STGM | CV2 | MW | 0.254 | 1.021 |
MTGM | CV1 | MW–MY | 0.347 | 1.268 |
MW–BW | 0.605 | 2.093 | ||
MW–BL | 0.557 | 1.983 | ||
MW–AL | 0.466 | 1.710 | ||
CV2 | MW–MY | 0.256 | 1.006 | |
MW–BW | 0.261 | 1.032 | ||
MW–BL | 0.265 | 1.046 | ||
MW–AL | 0.252 | 0.984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Kong, J.; Tan, J.; Meng, X.; Dai, P.; Cao, J.; Luo, K.; Liu, M.; Xing, Q.; Tian, Y.; et al. Multi-Trait Genomic Prediction of Meat Yield in Pacific Whiteleg Shrimp (Penaeus vannamei). Animals 2025, 15, 1165. https://doi.org/10.3390/ani15081165
Zhang S, Kong J, Tan J, Meng X, Dai P, Cao J, Luo K, Liu M, Xing Q, Tian Y, et al. Multi-Trait Genomic Prediction of Meat Yield in Pacific Whiteleg Shrimp (Penaeus vannamei). Animals. 2025; 15(8):1165. https://doi.org/10.3390/ani15081165
Chicago/Turabian StyleZhang, Shiwei, Jie Kong, Jian Tan, Xianhong Meng, Ping Dai, Jiawang Cao, Kun Luo, Mianyu Liu, Qun Xing, Yi Tian, and et al. 2025. "Multi-Trait Genomic Prediction of Meat Yield in Pacific Whiteleg Shrimp (Penaeus vannamei)" Animals 15, no. 8: 1165. https://doi.org/10.3390/ani15081165
APA StyleZhang, S., Kong, J., Tan, J., Meng, X., Dai, P., Cao, J., Luo, K., Liu, M., Xing, Q., Tian, Y., Sui, J., & Luan, S. (2025). Multi-Trait Genomic Prediction of Meat Yield in Pacific Whiteleg Shrimp (Penaeus vannamei). Animals, 15(8), 1165. https://doi.org/10.3390/ani15081165