SID Trp–Lys Ratio on Pig Performance and Immune Response After LPS Challenge
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals, and Diets
2.2. Performance Parameters
2.3. Serotonin Analysis
2.4. Cytokine Analysis
2.5. Statistical Analysis
3. Results
3.1. Performance
3.2. Serotonin
3.3. Cytokines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comai, S.; Bertazzo, A.; Brughera, M.; Crotti, S. Tryptophan in health and disease. Adv. Clin. Chem. 2020, 95, 165–218. [Google Scholar] [CrossRef] [PubMed]
- Henry, Y.; Sève, B.; Colleaux, Y.; Ganier, P.; Saligaut, C.; Jégo, P. Interactive effects of dietary levels of tryptophan and protein on voluntary feed intake and growth performance in pigs, in relation to plasma free amino acids and hypothalamic serotonin. J. Anim. Sci. 1992, 70, 1873–1887. [Google Scholar] [CrossRef]
- Li, Y.Z.; Kerr, B.J.; Kidd, M.T.; Gonyou, H.W. Use of supplementary tryptophan to modify the behavior of pigs. J. Anim. Sci. 2006, 84, 212–220. [Google Scholar] [CrossRef]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res. 2009, 2, IJTR-S2129. [Google Scholar] [CrossRef]
- Liu, G.; Lu, J.; Sun, W.; Jia, G.; Zhao, H.; Chen, X.; Kim, I.H.; Zhang, R.; Wang, J. Tryptophan supplementation enhances intestinal health by improving gut barrier function, alleviating inflammation, and modulating intestinal microbiome in lipopolysaccharide-challenged piglets. Front. Microbiol. 2022, 13, 919431. [Google Scholar] [CrossRef]
- Marsland, B.J. Regulating inflammation with microbial metabolites. Nat. Med. 2016, 22, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, T.J.; Gates, E.J.; Ranger, A.L.; Klegeris, A. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol. Cell. Neurosci. 2020, 105, 103493. [Google Scholar] [CrossRef] [PubMed]
- Guzik, A.C.; Shelton, J.L.; Southern, L.L.; Kerr, B.J.; Bidner, T.D. The tryptophan requirement of growing and finishing barrows. J. Anim. Sci. 2005, 83, 1303–1311. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.T.; Donzele, J.L.; Gomes, P.C.; Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.L.T.; Euclídes, R.F. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements, 3rd ed.; Federal University of Viçosa: Viçosa, Brazil, 2011; 252p. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; de Abreu, M.L.T.; Rodrigues, P.B.; de Oliveira, R.F.; et al. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements, 4th ed.; Federal University of Viçosa: Viçosa, Brazil, 2017; 482p. [Google Scholar]
- McGilvray, W.D.; Klein, D.; Wooten, H.; Dawson, J.A.; Hewitt, D.; Rakhshandeh, A.R.; de Lange, C.F.M.; Rakhshandeh, A. Immune system stimulation induced by Escherichia coli lipopolysaccharide alters plasma free amino acid flux and dietary nitrogen utilization in growing pigs. J. Anim. Sci. 2019, 97, 315–326. [Google Scholar] [CrossRef]
- Oliveira, G.M.; Ferreira, A.S.; Campos, P.F.; Rodrigues, V.V.; Silva, F.C.O.; Santos, W.G.; Lima, A.L.; Rodrigues, P.G.; Lopes, C.C. Digestible tryptophan to lysine ratios for weaned piglets at 26 days of age. Anim. Prod. Sci. 2016, 57, 2027–2032. [Google Scholar] [CrossRef]
- Le Floc’h, N.; Lebellego, L.; Matte, J.J.; Melchior, D.; Sève, B. The effect of sanitary status degradation and dietary tryptophan content on growth rate and tryptophan metabolism in weaning pigs. J. Anim. Sci. 2009, 87, 1686–1694. [Google Scholar] [CrossRef]
- Pasquetti, T.; Pozza, P.; Moreira, I.; Santos, T.; Diaz-Huepa, L.; Castilha, L.; Perondi, D.; Carvalho, P.; Kim, S. Simultaneous determination of standardized ileal digestible tryptophan and lysine for barrows from 15 to 30 kg live weight. Livest. Sci. 2015, 181, 114–120. [Google Scholar] [CrossRef]
- Liu, J.B.; Yan, H.L.; Cao, S.C.; Liu, J.; Li, Z.X.; Zhang, H.F. The response of performance in grower and finisher pigs to diets formulated to different tryptophan to lysine ratios. Livest. Sci. 2019, 222, 25–30. [Google Scholar] [CrossRef]
- Capozzalo, M.; Kim, J.; Htoo, J.; de Lange, C.; Mullan, B.; Resink, J.; Hansen, C.; Stumbles, P.; Hampson, D.; Ferguson, N.; et al. Estimating the standardised ileal digestible tryptophan requirement of pigs kept under commercial conditions in the immediate post-weaning period. Anim. Feed. Sci. Technol. 2020, 259, 114342. [Google Scholar] [CrossRef]
- Simongiovanni, A.; Corrent, E.; Le Floc’H, N.; Van Milgen, J. Estimation of the tryptophan requirement in piglets by meta-analysis. Animal 2012, 6, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Guzik, A.C.; Southern, L.L.; Bidner, T.D.; Kerr, B.J. The tryptophan requirement of nursery pigs. J. Anim. Sci. 2002, 80, 2646–2655. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, J.; Li, D.; Zhou, X.; Li, X. Tryptophan enhances ghrelin expression and secretion associated with increased food intake and weight gain in weanling pigs. Domest. Anim. Endocrinol. 2007, 33, 47–61. [Google Scholar] [CrossRef]
- Kwon, W.B.; Soto, J.A.; Stein, H.H. Effects of dietary leucine and tryptophan on serotonin metabolism and growth performance of growing pigs. J. Anim. Sci. 2022, 100, skab356. [Google Scholar] [CrossRef]
- Liu, H.W.; Shi, B.M.; Liu, D.S.; Shan, A.S. Supplemental dietary tryptophan modifies behavior, concentrations of salivary cortisol, plasma epinephrine, norepinephrine and hypothalamic 5-hydroxytryptamine in weaning piglets. Livest. Sci. 2013, 151, 213–218. [Google Scholar] [CrossRef]
- Quant, A.D.; Lindemann, M.D.; Kerr, B.J.; Payne, R.L.; Cromwell, G.L. Standardized ileal digestible tryptophan-to-lysine ratios in growing pigs fed corn-based and non-corn-based diets. J. Anim. Sci. 2012, 90, 1270–1279. [Google Scholar] [CrossRef]
- Nørgaard, J.V.; Pedersen, T.F.; Soumeh, E.A.; Blaabjerg, K.; Canibe, N.; Jensen, B.B.; Poulsen, H.D. Optimum standardized ileal digestible tryptophan to lysine ratio for pigs weighing 7–14 kg. Livest. Sci. 2015, 175, 90–95. [Google Scholar] [CrossRef]
- Gonçalves, M.A.D.; Nitikanchana, S.; Tokach, M.D.; Dritz, S.S.; Bello, N.M.; Goodband, R.D.; Touchette, K.J.; Usry, J.L.; DeRouchey, J.M.; Woodworth, J.C. Effects of standardized ileal digestible tryptophan: Lysine ratio on growth performance of nursery pigs. J. Anim. Sci. 2015, 93, 3909–3918. [Google Scholar] [CrossRef] [PubMed]
- Le Floc’h, N.; Melchior, D.; Obled, C. Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livest. Prod. Sci. 2004, 87, 37–45. [Google Scholar] [CrossRef]
- Melchior, D.; Sève, B.; Le Floc’H, N. Chronic lung inflammation affects plasma amino acid concentrations in pigs. J. Anim. Sci. 2004, 82, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Kruse, R.; Essén-Gustavsson, B.; Fossum, C.; Jensen-Waern, M. Blood concentrations of the cytokines IL-1beta, IL-6, IL-10, TNF-alpha and IFN-gamma during experimentally induced swine dysentery. Acta Vet. Scand. 2008, 50, 32. [Google Scholar] [CrossRef]
- Li, Z.; Trakooljul, N.; Hadlich, F.; Ponsuksili, S.; Wimmers, K.; Muráni, E. Análise do transcriptoma de PBMCs porcinos revela respostas imunomoduladoras induzidas por lipopolissacarídeos e interação cruzada da sinalização do receptor imune e glicocorticoide. Virulence 2021, 12, 1808–1824. [Google Scholar] [CrossRef]
- Degré, M. Interferons and other cytokines in bacterial infections. J. Interferon Cytokine Res. 1996, 16, 417–426. [Google Scholar] [CrossRef]
- Gu, K.; Wang, F.; Sun, W.; Liu, G.; Jia, G.; Zhao, H.; Chen, X.; Wu, C.; Tian, G.; Cai, J.; et al. Tryptophan alleviates lipopolysaccharide-induced liver injury and inflammation by modulating necroptosis and pyroptosis signaling pathways in piglets. Anim. Biotechnol. 2023, 34, 4069–4080. [Google Scholar] [CrossRef]
- Liu, G.; Tao, J.; Lu, J.; Jia, G.; Zhao, H.; Chen, X.; Tian, G.; Cai, J.; Zhang, R.; Wang, J. Dietary tryptophan supplementation improves antioxidant status and alleviates inflammation, endoplasmic reticulum stress, apoptosis, and pyroptosis in the intestine of piglets after lipopolysaccharide challenge. Antioxidants 2022, 11, 872. [Google Scholar] [CrossRef]
- Webel, D.M.; Finck, B.N.; Baker, D.H.; Johnson, R.W. Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. J. Anim. Sci. 1997, 75, 1514–1520. [Google Scholar] [CrossRef]
- Chen, D.W.; Zhang, K.Y.; Wu, C.Y. Influences of lipopolysaccharide-induced immune challenge on performance and whole-body protein turnover in weanling pigs. Livest. Sci. 2008, 113, 291–295. [Google Scholar] [CrossRef]
SID Trp–Lys Ratio | ||||
---|---|---|---|---|
Ingredients | 16% | 18% | 21% | 24% |
Corn 7.88% | 65.54 | 65.54 | 65.54 | 65.54 |
Soybean Meal 45% | 28.28 | 28.28 | 28.28 | 28.28 |
Soybean Oil | 1.05 | 1.05 | 1.05 | 1.05 |
Dicalcium Phosphate | 1.92 | 1.92 | 1.92 | 1.92 |
Calcitic Limestone | 0.87 | 0.87 | 0.87 | 0.87 |
Salt | 0.48 | 0.48 | 0.48 | 0.48 |
Vitamin Premix 1 | 0.30 | 0.30 | 0.30 | 0.30 |
Mineral Premix 2 | 0.25 | 0.25 | 0.25 | 0.25 |
L-Lysine HCL | 0.49 | 0.49 | 0.49 | 0.49 |
L-Threonine | 0.25 | 0.25 | 0.25 | 0.25 |
L-Methionine | 0.21 | 0.21 | 0.21 | 0.21 |
L-Valine | 0.11 | 0.11 | 0.11 | 0.11 |
Antioxidant Banox | 0.01 | 0.01 | 0.01 | 0.01 |
Kaolin | 0.20 | 0.17 | 0.13 | 0.09 |
L-Tryptophan 3 | 0.00 | 0.02 | 0.06 | 0.10 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Expected Nutritional Values | ||||
Metabolizable Energy (kcal/kg) | 3239.20 | 3239.20 | 3239.20 | 3239.20 |
Net Energy (kcal/kg) | 2470.00 | 2470.00 | 2470.00 | 2470.00 |
Ether Extract % | 4.09 | 4.09 | 4.09 | 4.09 |
Crude Fiber % | 2.50 | 2.50 | 2.50 | 2.50 |
Neutral Detergent Fiber % | 12.89 | 12.89 | 12.89 | 12.89 |
Acid Detergent Fiber % | 4.26 | 4.26 | 4.26 | 4.26 |
Calcium % | 0.91 | 0.91 | 0.91 | 0.91 |
Phosphorus % | 0.67 | 0.67 | 0.67 | 0.67 |
Available Phosphorus % | 0.45 | 0.45 | 0.45 | 0.45 |
Potassium % | 0.72 | 0.72 | 0.72 | 0.72 |
Sodium % | 0.20 | 0.20 | 0.20 | 0.20 |
Chlorine % | 0.36 | 0.36 | 0.36 | 0.36 |
Crude Protein % | 18.82 | 18.82 | 18.82 | 18.82 |
Crude Protein Dig. % | 16.21 | 16.21 | 16.21 | 16.21 |
Lysine Dig. % | 1.21 | 1.21 | 1.21 | 1.21 |
Methionine Dig. % | 0.46 | 0.46 | 0.46 | 0.46 |
Methionine + Cystine Dig. % | 0.73 | 0.73 | 0.73 | 0.73 |
Threonine Dig. % | 0.83 | 0.83 | 0.83 | 0.83 |
Tryptophan Dig. % | 0.19 | 0.21 | 0.25 | 0.29 |
Arginine Dig. % | 1.10 | 1.10 | 1.10 | 1.10 |
Valine Dig. % | 0.88 | 0.88 | 0.88 | 0.88 |
Isoleucine Dig. % | 0.68 | 0.68 | 0.68 | 0.68 |
Leucine Dig. % | 1.44 | 1.44 | 1.44 | 1.44 |
Histidine Dig. % | 0.44 | 0.44 | 0.44 | 0.44 |
Phenylalanine Dig. % | 0.81 | 0.81 | 0.81 | 0.81 |
Parameters | SID Trp–Lys Ratios | Polynomial Contrasts 1 | ||||||
---|---|---|---|---|---|---|---|---|
LPR | QPR | |||||||
16% | 18% | 21% | 24% | ANOVA p-Values | SEM | p-Value | ||
Initial BW, kg | 16.310 | 16.690 | 16.630 | 16.560 | 0.241 | 0.085 | 0.276 | 0.154 |
Final BW, kg | 30.731 | 32.685 | 32.203 | 32.709 | <0.001 | 0.172 | <0.001 | 0.019 |
ADG, kg/day | 0.691 | 0.769 | 0.742 | 0.770 | <0.001 | 0.007 | <0.001 | 0.142 |
ADFI, kg/day | 1.121 | 1.179 | 1.147 | 1.184 | 0.031 | 0.009 | 0.056 | 0.639 |
FCR | 1.585 | 1.533 | 1.509 | 1.529 | 0.032 | 0.010 | 0.044 | 0.029 |
SID Trp–Lys Ratios | ANOVA | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Parameters | 16% | 18% | 21% | 24% | p-Value | SEM | LPR | QPR |
Serotonin ng/mL | 237.73 | 300.67 | 208.49 | 268.41 | 0.193 | 15.912 | 0.903 | 0.778 |
SID Trp–Lys Ratios | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LPS 1 | CON | |||||||||||
Parameters ng/mL | 16% | 18% | 21% | 24% | 16% | 18% | 21% | 24% | SEM | Level | Challenge | L*C 2 |
GM-CSF | 0.045 | 0.042 | 0.045 | 0.051 | 0.027 | 0.021 | 0.023 | 0.025 | 0.003 | 0.879 | <0.001 | 0.962 |
IFN γ | 0.209 | 0.383 | 0.264 | 0.215 | 0.153 | 0.100 | 0.185 | 0.047 | 0.024 | 0.207 | <0.001 | 0.157 |
IL-1α | 0.043 | 0.047 | 0.043 | 0.059 | 0.008 | 0.005 | 0.015 | 0.006 | 0.005 | 0.597 | <0.001 | 0.137 |
IL-1β | 1.041 | 0.788 | 1.144 | 1.347 | 0.049 | 0.034 | 0.049 | 0.039 | 0.098 | 0.425 | <0.001 | 0.443 |
IL-1ra | 77.931 | 70.033 | 68.587 | 70.020 | 0.325 | 0.241 | 0.313 | 0.255 | 5.410 | 0.349 | <0.001 | 0.358 |
IL-2 | 0.160 | 0.197 | 0.153 | 0.182 | 0.096 | 0.119 | 0.225 | 0.065 | 0.014 | 0.225 | 0.065 | 0.050 |
IL-4 | 0.101 | 0.139 | 0.137 | 0.199 | 0.079 | 0.064 | 0.156 | 0.069 | 0.013 | 0.323 | 0.037 | 0.158 |
IL-6 | 9.323 | 8.369 | 10.105 | 11.410 | 0.129 | 0.088 | 0.186 | 0.109 | 0.841 | 0.654 | <0.001 | 0.668 |
IL-8 | 2.793 | 3.973 | 3.442 | 4.029 | 0.154 | 0.087 | 0.131 | 0.232 | 0.320 | 0.644 | <0.001 | 0.674 |
IL-10 | 1.643 | 2.113 | 2.058 | 2.287 | 0.121 | 0.099 | 0.421 | 0.079 | 0.145 | 0.310 | <0.001 | 0.107 |
IL-12 | 3.710 | 3.340 | 4.630 | 3.700 | 2.150 | 2.250 | 2.230 | 2.420 | 0.169 | 0.204 | <0.001 | 0.169 |
IL-18 | 0.859 | 1.027 | 0.913 | 1.417 | 0.312 | 0.346 | 0.638 | 0.311 | 0.075 | 0.337 | <0.001 | 0.064 |
TNFα | 0.546 | 0.587 | 1.049 | 0.935 | 0.023 | 0.025 | 0.032 | 0.032 | 0.077 | 0.171 | <0.001 | 0.176 |
Challenge | SID Trp–Lys Ratios | p-Value | |||
---|---|---|---|---|---|
16% | 18% | 21% | 24% | ||
IL-2 ng/mL Response | |||||
CON | 0.099 b | 0.119 ab | 0.225 a | 0.065 b | 0.009 |
LPS | 0.160 | 0.197 | 0.153 | 0.182 | 0.789 |
p-value | 0.201 | 0.109 | 0.138 | 0.033 | |
IL-18 ng/mL Response | |||||
CON | 0.312 | 0.346 | 0.638 | 0.312 | 0.427 |
LPS | 0.859 b | 1.027 ab | 0.913 ab | 1.417 a | 0.076 |
p-value | 0.024 | 0.003 | 0.203 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Motta, S.A.B.; Furlani, N.R.; Lourenço, A.C.; Junior, S.X.S.; Rezende, J.C.R.; Hannas, M.I. SID Trp–Lys Ratio on Pig Performance and Immune Response After LPS Challenge. Animals 2025, 15, 1194. https://doi.org/10.3390/ani15091194
Da Motta SAB, Furlani NR, Lourenço AC, Junior SXS, Rezende JCR, Hannas MI. SID Trp–Lys Ratio on Pig Performance and Immune Response After LPS Challenge. Animals. 2025; 15(9):1194. https://doi.org/10.3390/ani15091194
Chicago/Turabian StyleDa Motta, Stephane Alverina Briguente, Nathana Rudio Furlani, Antonio Carlos Lourenço, Sergio Xavier Silva Junior, Juliana Cristina Ramos Rezende, and Melissa Izabel Hannas. 2025. "SID Trp–Lys Ratio on Pig Performance and Immune Response After LPS Challenge" Animals 15, no. 9: 1194. https://doi.org/10.3390/ani15091194
APA StyleDa Motta, S. A. B., Furlani, N. R., Lourenço, A. C., Junior, S. X. S., Rezende, J. C. R., & Hannas, M. I. (2025). SID Trp–Lys Ratio on Pig Performance and Immune Response After LPS Challenge. Animals, 15(9), 1194. https://doi.org/10.3390/ani15091194