Towards Genetically Informed Conservation of the Bardoka and Karakachan Sheep Breeds Autochthonous to Serbia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement and Animal Welfare
2.2. Characteristics of the Studied Pramenka Sheep
2.2.1. Bardoka
2.2.2. Karakachan Sheep
2.3. Sampling and DNA Extraction
2.4. Genotyping
2.5. Data Analyses
3. Results
3.1. Relatedness and Inbreeding Values of Individuals
3.2. Genetic Diversity
3.3. Genetic Structure
4. Discussion
4.1. Relatedness and Inbreeding Values in Bardoka and Karakachan Ewes
4.2. Genetic Diversity in Bardoka and Karakachan Sheep
4.3. Genetic Differentiation Between and Within Bardoka and Karakachan Sheep
4.4. Genetic Layout of Bardoka and Karakachan Ram Populations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryder, M.L. Sheep. In Evolution of Domesticated Animals; Mason, I.L., Ed.; Longman Group Limited: London, UK; New York, NY, USA, 1984; pp. 63–84. [Google Scholar]
- Zeder, M.A. Domestication and Early Agriculture in the Mediterranean Basin: Origins, Diffusion, and Impact. Proc. Natl. Acad. Sci. USA 2008, 105, 11597–11604. [Google Scholar] [CrossRef] [PubMed]
- Ciani, E.; Mastrangelo, S.; Da Silva, A.; Marroni, F.; Ferenčaković, M.; Ajmone-Marsan, P.; Baird, H.; Barbato, M.; Colli, L.; Delvento, C.; et al. On the Origin of European Sheep as Revealed by the Diversity of the Balkan Breeds and by Optimizing Population-Genetic Analysis Tools. Genet. Sel. Evol. 2020, 52, 25. [Google Scholar] [CrossRef] [PubMed]
- Antonijević, D. Cattlebreeders’ Migrations in the Balkans Throughout Centuries. In Migrations in Balkan History; Ninić, I., Ed.; Serbian Academy of Sciences and Arts: Belgrade, Serbia, 1989; Special Editions No. 39; pp. 147–156. [Google Scholar]
- Porcu, K.; Marković, B. Catalogue of West Balkan Pramenka Sheep Breed Type; Zemljodelski Fakultet: Skopje, Macedonia, 2006; p. 90. ISBN 9989-845-23-9. [Google Scholar]
- Peter, C.; Bruford, M.; Perez, T.; Dalamitra, S.; Hewitt, G.; Erhardt, G.; Econogene Consortium. Genetic Diversity and Subdivision of 57 European and Middle-Eastern Sheep Breeds. Anim. Genet. 2007, 38, 37–44. [Google Scholar] [CrossRef]
- Tapio, M.; Ozerov, M.; Tapio, I.; Toro, M.A.; Marzanov, N.; Ćinkulov, M.; Goncharenko, G.; Kiselyova, T.; Murawski, M.; Kantanen, J. Microsatellite-Based Genetic Diversity and Population Structure of Domestic Sheep in Northern Eurasia. BMC Genet. 2010, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, I. Adaptation to Climate Change—Exploring the Potential of Locally Adapted Breeds. Animal 2013, 7, 346–362. [Google Scholar] [CrossRef]
- Porter, V. Mason’s World Dictionary of Livestock Breeds, Types and Varieties; CABI: Wallingford, UK, 2020. [Google Scholar]
- FAO: Domestic Animal Diversity Information System (DAD-IS). Available online: https://www.fao.org/dad-is/data/en/ (accessed on 12 January 2025).
- Mitić, N. Sheep Breeding; Institute for Textbooks and Teaching Aids: Belgrade, Serbia, 1987. [Google Scholar]
- Mekić, C.; Latinović, D.; Grubić, G. Breeding, Reproduction, Selection and Nutrition of Sheep; University of Belgrade, Faculty of Agriculture: Belgrade, Serbia, 2007. (In Serbian) [Google Scholar]
- Ćinkulov, M.; Popovski, Z.; Porcu, K.; Tanaskovska, B.; Hodžić, A.; Bytyqi, H.; Mehmeti, H.; Margeta, V.; Brka, M.; Marković, B.; et al. Genetic Diversity and Structure of the West Balkan Pramenka Sheep Types as Revealed by Microsatellite and Mitochondrial DNA Analysis. J. Anim. Breed. Genet. 2008, 125, 417–426. [Google Scholar] [CrossRef]
- Tanchev, S. Conservation of Genetic Resources of Autochthonous Domestic Livestock Breeds in Bulgaria: A Review. Bulgar. J. Agric. Sci. 2015, 21, 1262–1271. [Google Scholar]
- Stojanović, S. The State of Animal Genetic Resources in the Republic of Serbia: Protection of Agrobiodiversity and Preservation of Indigenous Breeds of Domestic Animals. In Proceedings of the Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia, Belgrade, Serbia, 27 December 2018; pp. 5–7. (In Serbian). [Google Scholar]
- Djedovic, R.; Radojkovic, D.; Stanojevic, D.; Savic, R.; Vukasinovic, N.; Popovac, M.; Mitrovic, I. Base Characteristics, Preservation Methods, and Assessment of the Genetic Diversity of Autochthonous Breeds of Cattle, Sheep, and Pigs in Serbia: A Review. Animals 2024, 14, 1894. [Google Scholar] [CrossRef]
- Marković, M.; Radonjić, D.; Zorc, M.; Đokić, M.; Marković, B. Genetic Diversity of Montenegrin Local Sheep Breeds Based on Microsatellite Markers. Animals 2022, 12, 3029. [Google Scholar] [CrossRef]
- Odjakova, T.; Todorov, P.; Kalaydzhiev, G.; Salkova, D.; Dundarova, H.; Radoslavov, G.; Hristov, P. A Study on the Genetic Diversity and Subpopulation Structure of Three Bulgarian Mountainous Sheep Breeds, Based on Genotyping of Microsatellite Markers. Small Rumin. Res. 2023, 226, 107034. [Google Scholar] [CrossRef]
- Mihailova, Y.; Rusanov, K.; Rusanova, M.; Vassileva, P.; Atanassov, I.; Nikolov, V.; Todorovska, E.G. Genetic Diversity and Population Structure of Bulgarian Autochthonous Sheep Breeds Revealed by Microsatellite Analysis. Animals 2023, 13, 1878. [Google Scholar] [CrossRef] [PubMed]
- Keller, L.F.; Waller, D.M. Inbreeding Effects in Wild Populations. Trends Ecol. Evol. 2002, 17, 230–241. [Google Scholar] [CrossRef]
- Charlesworth, D.; Willis, J.H. The Genetics of Inbreeding Depression. Nat. Rev. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef]
- Hedrick, P.W.; Garcia-Dorado, A. Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends Ecol. Evol. 2016, 31, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, V.B.; Santana, M.L.; Oliveira, P.S.; Eler, J.P.; Ferraz, J.B.S. Population Structure and Inbreeding Effects on Growth Traits of Santa Ines Sheep in Brazil. Small Rumin. Res. 2010, 93, 135–139. [Google Scholar] [CrossRef]
- Pemberton, J.M.; Ellis, P.E.; Pilkington, J.G.; Berenos, C. Inbreeding Depression by Environment Interactions in a Free-Living Mammal Population. Heredity 2017, 118, 64–77. [Google Scholar] [CrossRef]
- Cerna, M.; Milerski, M.; Muskova, M. The Effect of Inbreeding on the Growth Ability of Meat Sheep Breeds in the Czech Republic. Czech J. Anim. Sci. 2021, 66, 122–128. [Google Scholar] [CrossRef]
- Poirier, M.A.; Coltman, D.W.; Pelletier, F.; Jorgenson, J.; Festa-Bianchet, M. Genetic Decline, Restoration, and Rescue of an Isolated Ungulate Population. Evol. Appl. 2019, 12, 1318–1328. [Google Scholar] [CrossRef]
- Addo, S.; Klingel, S.; Thaller, G.; Hinrichs, D. Genetic diversity and the application of runs of homozygosity-based methods for inbreeding estimation in German whiteheaded mutton sheep. PLoS ONE 2021, 16, e0250608. [Google Scholar] [CrossRef]
- FAO. The Second Report on the State of World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture: Rome, Italy, 2015; Available online: https://openknowledge.fao.org/items/caad86d2-69d9-482c-afe6-560eef2bf00c (accessed on 12 December 2024).
- Stojiljković, M.; Stevanović, O.; Ivanov, S.; Drobnjak, D.; Urošević, M.; Trailović, R. Morphometrical characterisation of the Karakachan sheep from Stara planina, Serbia. Bulg. J. Agric. Sci. 2015, 21, 1278–1284. [Google Scholar]
- Stevanović, O.N.; Stojiljković, M.; Trailović, R.; Ivanov, S.; Nedić, D.N. Primary phenotypical characterization of the Pirot sheep from Stara Planina, Republic of Serbia: Can we save the forgotten zackel? Anim. Genet. Resour. 2016, 59, 63–72. [Google Scholar] [CrossRef]
- Pihler, I.; Ćirić, J.; Kučević, D.; Dragin, S.; Al-Hasant, M.; Šaran, M.; Tsakmakidis, I.A. The phenotype variability of the Racka sheep in the Republic of Serbia. J. Hell. Vet. Med. Soc. 2019, 70, 1789–1796. [Google Scholar] [CrossRef]
- Petrović, M.P.; Caro Petrović, V.; Ružić-Muslić, D.; Maksimović, N.; Vukašin, S.; Cekić, B.; Ćosić, I. Quantitative genetic analysis of variability and relationship of lambs body weight traits in population of indigenous Pirot sheep. Biotechnol. Anim. Husb. 2020, 36, 271–281. [Google Scholar] [CrossRef]
- Cekic, B.; Ruzic-Muslic, D.; Maksimovic, N.; Caro, P.V.; Zivkovic, V.; Marinkovic, M.; Cosic, I. Productivity of local sheep and goat breeds in small farm households and their role in sustainability in Central Serbia. Zooteh. Şi Biotehnol. Agric. 2018, 52, 10–15, IBN 636.321.38.03(497.11). [Google Scholar]
- Lečić, N.; Ružić-Muslić, D.; Maksimović, N.; Petričević, V.; Cekić, B.; Ćosić, I.; Caro Petrović, V. The influence of some factors on the production effects of Sjenica sheep. Biotechnol. Anim. Husb. 2023, 39, 173–181. [Google Scholar] [CrossRef]
- Kusza, S.; Nagy, I.; Sasvári, Z.; Stágel, A.; Németh, T.; Molnár, A.; Kukovics, S. Genetic diversity and population structure of Tsigai and Zackel type of sheep breeds in the Central-, Eastern- and Southern-European regions. Small Rumin. Res. 2008, 78, 13–23. [Google Scholar] [CrossRef]
- Kusza, S.; Ivanković, A.; Ramljak, J.; Nagy, I.; Javor, A.; Kukovics, S. Genetic structure of Tsigai, Ruda, Pramenka and other local sheep in Southern and Eastern Europe. Small Rumin. Res. 2011, 99, 130–134. [Google Scholar] [CrossRef]
- Hayes, B.J.; Goddard, M.E. Prediction of Breeding Values Using Marker-Derived Relationship Matrices. J. Anim. Sci. 2008, 86, 2089–2092. [Google Scholar] [CrossRef]
- Legarra, A.; Baloche, G.; Barillet, F.; Astruc, J.M.; Soulas, C.; Aguerre, X.; Arrese, F.; Berria, M.; Ugarte, E. Within- and Across-Breed Genomic Predictions and Genomic Relationships for Western Pyrenees Dairy Sheep Breeds Latxa, Manech, and Basco-Béarnaise. J. Dairy Sci. 2014, 97, 3200–3212. [Google Scholar] [CrossRef]
- Paiva, R.D.M.; de Sousa, J.E.R.; Ferreira, J.; Cunha, E.E.; de Paiva, M.P.S.L.M.; Gouveia, A.M.G.; Facó, O. Population Structure and Effect of Inbreeding on Milk Yield of Saanen Goats in Brazilian Production Systems. Small Rumin. Res. 2020, 192, 106194. [Google Scholar] [CrossRef]
- Ramljak, J.; Bunevski, G.; Bytyqi, H.; Marković, B.; Brka, M.; Ivanković, A.; Djedović, R.; Špehar, M.; Šubara, G.; Kasap, A.; et al. Conservation of a Domestic Metapopulation Structured into Related and Partly Admixed Strains. Mol. Ecol. 2018, 27, 1633–1650. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, S. Rare Breeds and Varieties of the Balkan, Atlas; Waltraud Kugler Monitoring Institute for Rare Breeds and Seeds in Europe: Stuttgart, Germany, 2009; pp. 1–128. (In Serbian) [Google Scholar]
- Cekić, B.; Ružić-Muslić, D.; Maksimović, N.; Caro Petrović, V.; Ćosić, I.; Lečić, N.; Becskei, Z. New aspects in risk status evaluation of small ruminant local breeds in Serbia. In Proceedings of the 14th International Symposium Modern Trends in Livestock Production, Belgrade, Serbia, 11–13 October 2023; pp. 519–530. [Google Scholar]
- Marković, B.; Dovč, P.; Marković, M.; Radonjić, D.; Adakalić, M.; Simčič, M. Differentiation of some Pramenka sheep breeds based on morphometric characteristics. Arch. Anim. Breed. 2019, 62, 393–402. [Google Scholar] [CrossRef]
- Drăgănescu, C. A note on Balkan sheep breeds origin and their taxonomy. Arch. Zootech. 2007, 10, 90–101. [Google Scholar]
- SEMPERVIVA BBPS. Conservation of Karakachan Sheep, Karakachan Horse and Karakachan Dog–One of the Oldest Breeds in Europe; SAVE: Pernik, Bulgaria, 2003. [Google Scholar]
- Aleksić, J.M.; Zeljić Stojiljković, K.; Cekić, B.; Pihler, I.; Ružić-Muslić, D.; Delić, N.; Ćosić, I. Nuclear microsatellite data for 230 sheep, ewes and rams, from three breeds, Bardoka, Karakachan sheep and Ile-de-France from Serbia. Figshare 2025. [Google Scholar] [CrossRef]
- Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 2011, 11, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Kalinowski, S.T. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 2005, 5, 187–189. [Google Scholar] [CrossRef]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillett, B.J.; Ovenden, J.R. NEESTIMATOR v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 2014, 14, 209–214. [Google Scholar] [CrossRef]
- Wright, S. The genetical structure of populations. Ann. Eugen. 1951, 15, 323–354. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Liu, J.X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 2018, 18, 176–177. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Nistelberger, H.M.; Roycroft, E.; Macdonald, A.J.; McArthur, S.; White, L.C.; Grady, P.G.; Ottewell, K. Genetic Mixing in Conservation Translocations Increases Diversity of a Keystone Threatened Species, Bettongia lesueur. Mol. Ecol. 2023, 1–19. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, B.; Zhang, T.; Yan, X.; Yu, Y.; Li, J.; Mei, B.; Wang, Z.; Zhang, Y.; Wang, R.; et al. Assessing Genetic Diversity and Estimating the Inbreeding Effect on Economic Traits of Inner Mongolia White Cashmere Goats Through Pedigree Analysis. Front. Vet. Sci. 2021, 8, 665872. [Google Scholar] [CrossRef]
- Rafter, P.; McHugh, N.; Pabiou, T.; Berry, D.P. Inbreeding Trends and Genetic Diversity in Purebred Sheep Populations. Animal 2022, 16, 100604. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ramilo, S.; Elsen, J.; Legarra, A. Inbreeding and Effective Population Size in French Dairy Sheep: Comparison Between Genomic and Pedigree Estimates. J. Dairy Sci. 2019, 102, 4227–4237. [Google Scholar] [CrossRef]
- Villanueva, B.; Fernández, A.; Saura, M.; Caballero, A.; Fernández, J.; Morales-González, E.; Toro, M.A.; Pong-Wong, R. The Value of Genomic Relationship Matrices to Estimate Levels of Inbreeding. Genet. Sel. Evol. 2021, 53, 42. [Google Scholar] [CrossRef]
- Cortellari, M.; Negro, A.; Bionda, A.; Grande, S.; Cesarani, A.; Carta, A.; Crepaldi, P. Using Pedigree and Genomic Data Toward Better Management of Inbreeding in Italian Dairy Sheep and Goat Breeds. Animals 2022, 12, 2828. [Google Scholar] [CrossRef]
- Ramljak, J.; Špehar, M.; Držaić, V.; Šubara, G.; Šuran, E.; Kasap, A. Genomic Inbreeding Between Flocks in Istrian Sheep. In Proceedings of the 59th Croatian and 19th International Symposium on Agriculture, Dubrovnik, Croatia, 11–16 February 2024; pp. 351–355. [Google Scholar]
- Rochus, C.M.; Johansson, A.M. Estimation of Genetic Diversity in Gute Sheep: Pedigree and Microsatellite Analyses of an Ancient Swedish Breed. Hereditas 2017, 154, 4. [Google Scholar] [CrossRef]
- Stachowicz, K.; Brito, L.F.; Oliveira, R.; Miller, S.P.; Schenkel, F.S. Assessing Genetic Diversity of Various Canadian Sheep Breeds Through Pedigree Analyses. Can. J. Anim. Sci. 2018, 98, 741–749. [Google Scholar] [CrossRef]
- Ouchene-Khelifi, N.A.; Ouchene, N.; Lafri, M. Characterization and Typology of Goat Production Systems in Algeria Based on Producer Surveys. Bull. Natl. Res. Cent. 2021, 45, 22. [Google Scholar] [CrossRef]
- Farrell, L.J.; Kenyon, P.R.; Tozer, P.R.; Ramilan, T.; Cranston, L.M. Quantifying Sheep Enterprise Profitability with Varying Flock Replacement Rates, Lambing Rates, and Breeding Strategies in New Zealand. Agric. Syst. 2020, 184, 102888. [Google Scholar] [CrossRef]
- Brien, F.D.; Pitchford, R.L.; Vogt, S.P.; Koopman, D.J. An Investigation of Pathways for Rebuilding Australia’s Sheep Flock. Anim. Prod. Sci. 2023, 63, 1310–1323. [Google Scholar] [CrossRef]
- Hoda, A.; Marsan, P.A. Genetic Characterization of Albanian Sheep Breeds by Microsatellite Markers. In Analysis of Genetic Variation in Animals; Caliskan, M., Ed.; InTech: London, UK, 2012; pp. 3–27. ISBN 978-953-51-0093-5. Available online: http://www.intechopen.com/books/analysis-of-genetic-variation-inanimals/genetic-characterization-of-albanian-sheep-breeds-by-microsatellite-markers (accessed on 5 December 2024).
- Hristova, D.; Todorovska, E.; Vassilev, D.; Metodiev, S.; Popov, I.; Yablanski, T.; Zhelyazkov, E. Microsatellite-Based Genetic Diversity and Population Structure of Seven Bulgarian Indigenous Sheep Breeds. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 569–581. [Google Scholar]
- Hristova, D.; Metodiev, S.; Nikolov, V.; Vassilev, D.; Todorovska, E. Genetic Variation of Bulgarian Autochthonous Sheep Breeds Using Microsatellite Markers. Genetika 2017, 49, 247–258. [Google Scholar] [CrossRef]
- Salamon, D.; Gutierrez-Gil, B.; Arranz, J.J.; Barreta, J.; Batinic, V.; Dzidic, A. Genetic Diversity and Differentiation of 12 Eastern Adriatic and Western Dinaric Native Sheep Breeds Using Microsatellites. Animal 2014, 8, 200–207. [Google Scholar] [CrossRef]
- Ćurković, M.; Ramljak, J.; Ivanković, S.; Mioč, B.; Ivanković, A.; Pavić, V.; Medugorac, I. The Genetic Diversity and Structure of 18 Sheep Breeds Exposed to Isolation and Selection. J. Anim. Breed. Genet. 2016, 133, 71–80. [Google Scholar] [CrossRef]
- Skok, J.D.; Šalamon, D.; Džidić, A.; Bojkovski, D.; Simčič, M. Genetic Diversity of Bela Krajina Pramenka Compared to Three Croatian Sheep Breeds—A Preliminary Study. Poljoprivreda 2015, 21, 142–145. [Google Scholar] [CrossRef]
- Ligda, C.H.; Altarayrah, J.; Georgoudis, A.; Econogene Consortium. Genetic Analysis of Greek Sheep Breeds Using Microsatellite Markers for Setting Conservation Priorities. Small Rumin. Res. 2009, 83, 42–48. [Google Scholar] [CrossRef]
- Loukovitis, D.; Siasiou, A.; Mitsopoulos, I.; Lymberopoulos, A.G.; Laga, V.; Chatziplis, D. Genetic Diversity of Greek Sheep Breeds and Transhumant Populations Utilizing Microsatellite Markers. Small Rumin. Res. 2016, 136, 238–242. [Google Scholar] [CrossRef]
- Leroy, G.; Danchin-Burge, C.; Palhière, I.; SanCristobal, M.; Nédélec, Y.; Verrier, E.; Rognon, X. How Do Introgression Events Shape the Partitioning of Diversity Among Breeds: A Case Study in Sheep. Genet. Sel. Evol. 2015, 47, 48. [Google Scholar] [CrossRef]
- Leroy, G.; Mary-Huard, T.; Verrier, E.; Danvy, S.; Charvolin, E.; Danchin-Burge, C. Methods to Estimate Effective Population Size Using Pedigree Data: Examples in Dog, Sheep, Cattle, and Horse. Genet. Sel. Evol. 2013, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.J.G. Effective Population Sizes in Cattle, Sheep, Horses, Pigs, and Goats Estimated from Census and Herdbook Data. Animal 2016, 10, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Drzaic, I.; Curik, I.; Lukic, B.; Shihabi, M.; Li, M.H.; Kantanen, J.; Cubric-Curik, V. High-Density Genomic Characterization of Native Croatian Sheep Breeds. Front. Genet. 2022, 13, 940736. [Google Scholar] [CrossRef]
- Djokic, M.; Drzaic, I.; Shihabi, M.; Markovic, B.; Cubric-Curik, V. Genomic Diversity Analyses of Some Indigenous Montenegrin Sheep Populations. Diversity 2023, 15, 640. [Google Scholar] [CrossRef]
- Ramljak, J.; Špehar, M.; Ceranac, D.; Držaić, V.; Pocrnić, I.; Barać, D.; Kasap, A. Genomic Characterization of Local Croatian Sheep Breeds—Effective Population Size, Inbreeding, and Signatures of Selection. Animals 2024, 14, 1928. [Google Scholar] [CrossRef]
- Wright, S. Isolation by Distance. Genetics 1943, 28, 114–138. [Google Scholar] [CrossRef]
- Holsinger, K.E.; Weir, B.S. Genetics in Geographically Structured Populations: Defining, Estimating, and Interpreting FST. Nat. Rev. Genet. 2009, 10, 639–650. [Google Scholar] [CrossRef]
- Wright, S. Evolution in Mendelian Populations. Genetics 1931, 16, 97–159. [Google Scholar] [CrossRef]
- Price, T. Speciation in Birds, 1st ed.; Roberts and Company: Greenwood Village, CO, USA, 2008. [Google Scholar]
- Seehausen, O.; Butlin, R.K.; Keller, I.; Wagner, C.E.; Boughman, J.W.; Hohenlohe, P.A.; Widmer, A. Genomics and the Origin of Species. Nat. Rev. Genet. 2014, 15, 176–192. [Google Scholar] [CrossRef] [PubMed]
- Gaouar, S.B.S.; Kdidi, S.; Ouragh, L. Estimating Population Structure and Genetic Diversity of Five Moroccan Sheep Breeds by Microsatellite Markers. Small Rumin. Res. 2016, 144, 23–27. [Google Scholar] [CrossRef]
- Gaouar, S.B.S.; Da Silva, A.; Ciani, E.; Kdidi, S.; Aouissat, M.; Dhimi, L.; Mehtar, N. Admixture and Local Breed Marginalization Threaten Algerian Sheep Diversity. PLoS ONE 2015, 10, e0122667. [Google Scholar] [CrossRef]
- Abdelkader, A.A.; Ata, N.; Benyoucef, M.T.; Djaout, A.; Azzi, N.; Yilmaz, O.; Gaouar, S.B.S. New Genetic Identification and Characterization of 12 Algerian Sheep Breeds by Microsatellite Markers. Ital. J. Anim. Sci. 2018, 17, 38–48. [Google Scholar] [CrossRef]
- Sassi-Zaidy, Y.B.; Maretto, F.; Charfi-Cheikrouha, F.; Cassandro, M. Genetic Diversity, Structure, and Breed Relationships in Tunisian Sheep. Small Rumin. Res. 2014, 119, 52–56. [Google Scholar] [CrossRef]
- Baumung, R.; Cubric-Curik, V.; Schwend, K.; Achmann, R.; Sölkner, J. Genetic Characterisation and Breed Assignment in Austrian Sheep Breeds Using Microsatellite Marker Information. J. Anim. Breed. Genet. 2006, 123, 265–271. [Google Scholar] [CrossRef]
- Dudu, A.; Popa, G.O.; Ghiță, E.; Pelmuș, R.; Lazăr, C.; Costache, M.; Georgescu, S.E. Assessment of Genetic Diversity in Main Local Sheep Breeds from Romania Using Microsatellite Markers. Arch. Anim. Breed. 2020, 63, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Arranz, J.J.; Bayón, Y.; San Primitivo, F. Differentiation Among Spanish Sheep Breeds Using Microsatellites. Genet. Sel. Evol. 2001, 33, 529–542. [Google Scholar] [CrossRef]
- Álvarez, I.; Royo, L.J.; Fernández, I.; Gutiérrez, J.P.; Gómez, E.; Goyache, F. Genetic Relationships and Admixture Among Sheep Breeds from Northern Spain Assessed Using Microsatellites. J. Anim. Sci. 2004, 82, 2246–2252. [Google Scholar] [CrossRef]
- Calvo, J.H.; Bouzada, J.A.; Jurado, J.J.; Serrano, M. Genetic Substructure of the Spanish Manchega Sheep Breed. Small Rumin. Res. 2006, 64, 116–125. [Google Scholar] [CrossRef]
- Calvo, J.H.; Alvarez-Rodriguez, J.; Marcos-Carcavilla, A.; Serrano, M.; Sanz, A. Genetic Diversity in the Churra Tensina and Churra Lebrijana Endangered Spanish Sheep Breeds and Relationship with Other Churra Group Breeds and Spanish Mouflon. Small Rumin. Res. 2011, 95, 34–39. [Google Scholar] [CrossRef]
- Santos-Silva, F.; Ivo, R.S.; Sousa, M.C.O.; Carolino, M.I.; Ginja, C.; Gama, L.T. Assessing Genetic Diversity and Differentiation in Portuguese Coarse-Wool Sheep Breeds with Microsatellite Markers. Small Rumin. Res. 2008, 78, 32–40. [Google Scholar] [CrossRef]
- Agaviezor, B.O.; Peters, S.O.; Adefenwa, M.A.; Yakubu, A.; Adebambo, O.A.; Ozoje, M.O.; Imumorin, I.G. Morphological and Microsatellite DNA Diversity of Nigerian Indigenous Sheep. J. Anim. Sci. Biotechnol. 2012, 3, 38. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, O.; Cemal, I.; Karaca, O. Genetic Diversity in Nine Native Turkish Sheep Breeds Based on Microsatellite Analysis. Anim. Genet. 2014, 45, 604–608. [Google Scholar] [CrossRef]
- Tapio, I.; Tapio, M.; Grislis, Z.; Holm, L.E.; Jeppsson, S.; Kantanen, J.; Eythorsdottir, E. Unfolding of Population Structure in Baltic Sheep Breeds Using Microsatellite Analysis. Heredity 2005, 94, 448–456. [Google Scholar] [CrossRef]
- Kdidi, S.; Calvo, J.H.; González-Calvo, L.; Sassi, M.B.; Khorchani, T.; Yahyaoui, M.H. Genetic Relationship and Admixture in Four Tunisian Sheep Breeds Revealed by Microsatellite Markers. Small Rumin. Res. 2015, 131, 64–69. [Google Scholar] [CrossRef]
- Lynch, M. Random Drift, Uniform Selection, and the Degree of Population Differentiation. Evolution 1986, 40, 640–643. [Google Scholar] [CrossRef]
- Hoda, A.; Hyka, G.; Econogene Consortium. Genetic Diversity and Population Structure in Albanian Local Sheep Breeds Analyzed by Microsatellite Markers. Rev. Shqipt. Shkenc. Bujq. 2010, 9, 203. [Google Scholar]
- Newton, J.E.; Brown, D.J.; Dominik, S.; van der Werf, J.H.J. Impact of Young Ewe Fertility Rate on Risk and Genetic Gain in Sheep-Breeding Programs Using Genomic Selection. Anim. Prod. Sci. 2016, 57, 1653–1664. [Google Scholar] [CrossRef]
- Kasap, A.; Ramljak, J.; Špehar, M. Estimation of Population-Specific Genetic Parameters Important for Long-Term Optimum Contribution Selection—Case Study on a Dairy Istrian Sheep Breed. Animals 2021, 11, 2356. [Google Scholar] [CrossRef]
- Wilson, C.S.; Petersen, J.L.; Blackburn, H.D.; Lewis, R.M. Assessing Population Structure and Genetic Diversity in US Suffolk Sheep to Define a Framework for Genomic Selection. J. Hered. 2022, 113, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Rowson, L.E.A.; Moor, R. Occurrence and Development of Identical Twins in Sheep. Nature 1964, 201, 521–522. [Google Scholar] [CrossRef] [PubMed]
- Skjervold, H. Causes of Variation in Sex Ratio and Sex Combination in Multiple Births in Sheep. Livest. Prod. Sci. 1979, 6, 387–396. [Google Scholar] [CrossRef]
- Slavova, S.; Staykova, G. Economic aspect of breeding Karakachan sheep in the lowlands. Zhivotnovadni Nauk. 2021, 58, 24–31. [Google Scholar]
Locus | Primer Sequence 5′-3′ | Product Size (bp) | Panel No. | |
---|---|---|---|---|
1 | CSRD247 | F: GGACTTGCCAGAACTCTGCAAT R: CACTGTGGTTTGTATTAGTCAGG | 209–255 | P1 |
2 | ETH225 | F: GATCACCTTGCCACTATTTCCT R: ACATGACAGCCAGCTGCTACT | 131–157 | P3 |
3 | ILST87 | F: AGCAGACATGATGACTCAGC R: CTGCCTCTTTTCTTGAGAGC | 137–173 | P2 |
4 | INRA006 | F: AGGAATATCTGTATCAACCGCAGTC R: CTGAGCTGGGGTGGGAGCTATAAATA | 110–132 | P3 |
5 | INRA063 | F: ATTTGCACAAGCTAAATCTAACC R: AAACCACAGAAATGCTTGGAAG | 169–201 | P3 |
6 | MAF65 | F: AAAGGCCAGAGTATGCAATTAGGAG R: CCACTCCTCCTGAGAATATAACATG | 123–137 | P2 |
7 | MAF70 | F: CACGGAGTCACAAAGAGTCAGACC R: GCAGGACTCTACGGGGCCTTTGC | 124–166 | P2 |
8 | McM042 | F: CATCTTTCAAAAGAACTCCGAAAGTG R: CTTGGAATCCTTCCTAACTTTCGG | 87–107 | P2 |
9 | OarFCB20 | F: AAATGTGTTTAAGATTCCATACAGTG R: GGAAAACCCCCATATATACCTATAC | 95–120 | P1 |
10 | OarFCB48 | F: GAGTTAGTACAAGGATGACAAGAGGCAC R: GACTCTAGAGGATCGCAAAGAACCAG | 125–177 | P1 |
11 | SPS113 | F: AAAGTGACACAACAGCTTCTCCAG R: AACGAGTGTCCTAGTTTGGCTGTG | 126–154 | P1 |
12 | SRCRSP8 | F: TGCGGTCTGGTTCTGATTTCAC R: CCTGCATGAGAAAGTCGATGCTTAG | 183–249 | P3 |
13 | TCRVB6 | F: GAGTCCTCAGCAAGCAGGTC R: CCAGGAATTGGATCACACCT | 217–255 | P3 |
14 | TGLA53 | F: GCTTTCAGAAATAGTTTGCATTCA R: ATCTTCACATGATATTACAGCAGA | 140–163 | P3 |
Breed * Flock | N | Na | Ae | Ar48 Ar8 | Ne (CI95%) | PA | HO | HE | FIS |
---|---|---|---|---|---|---|---|---|---|
Bardoka | 84 | 152 | 4.87 (±0.49) | 8.39 | 50.1 (44.3, 57.0) | 31 | 0.770 (±0.029) | 0.761 (±0.028) | −0.013 (±0.010) |
BA | 25 | 118 | 4.29 (±0.36) | 4.22 | 53.4 (38.5, 82.6) | 7 | 0.731 (±0.030) | 0.742 (±0.024) | 0.016 (±0.017) |
BC | 35 | 123 | 4.76 (±0.47) | 4.33 | 38.6 (31.4, 48.8) | 7 | 0.794 (±0.026) | 0.759 (±0.026) | −0.048 (±0.015) |
BP | 24 | 110 | 4.51 (±0.46) | 4.22 | 30.4 (23.7, 41.0) | 2 | 0.777 (±0.044) | 0.736 (±0.038) | −0.056 (±0.023) |
Karakachan sheep | 62 | 149 | 4.61 (±0.40) | 8.66 | 56.0 (48.0, 66.2) | 29 | 0.767 (±0.022) | 0.761 (±0.021) | −0.010 (±0.014) |
KA | 31 | 128 | 4.39 (±0.33) | 4.27 | 66.8 (47.4, 106.7) | 11 | 0.772 (±0.024) | 0.754 (±0.019) | −0.027 (±0.030) |
KC | 18 | 95 | 3.84 (±0.27) | 3.97 | 31.7 (21.6, 53.7) | 3 | 0.825 (±0.035) | 0.720 (±0.022) | −0.146 (±0.038) |
KD | 9 | 81 | 3.74 (±0.45) | 3.99 | 14.8 (18.2, 35.9) | 1 | 0.714 (±0.049) | 0.672 (±0.046) | −0.071 (±0.035) |
KE | 4 | 39 | 2.28 (±0.21) | 2.79 | - ** | 3 | 0.589 (±0.089) | 0.498 (±0.057) | −0.180 (±0.093) |
Ile-de-France | 25 | 95 | 3.90 (±0.44) | 6.79 | 90.4 (50.5, 311.7) | 10 | 0.763 (±0.031) | 0.707 (±0.026) | −0.080 (±0.026) |
Bardoka | Karakachan Sheep | Ile-de-France | |
---|---|---|---|
0.000 | Bardoka | ||
0.031 | 0.000 | Karakachan | |
0.052 | 0.051 | 0.000 | Ile-de-France |
BA | BC | BP | |
---|---|---|---|
0.000 | BA | ||
0.016 | 0.000 | BC | |
0.019 | 0.009 | 0.000 | BP |
KA | KC | KD | KE | |
---|---|---|---|---|
0.000 | KA | |||
0.024 | 0.000 | KC | ||
0.032 | 0.048 | 0.000 | KD | |
0.122 | 0.146 | 0.139 | 0.000 | KE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćosić, I.; Stojiljković, K.Z.; Pihler, I.; Cekić, B.; Ružić-Muslić, D.; Delić, N.; Aleksić, J.M. Towards Genetically Informed Conservation of the Bardoka and Karakachan Sheep Breeds Autochthonous to Serbia. Animals 2025, 15, 1193. https://doi.org/10.3390/ani15091193
Ćosić I, Stojiljković KZ, Pihler I, Cekić B, Ružić-Muslić D, Delić N, Aleksić JM. Towards Genetically Informed Conservation of the Bardoka and Karakachan Sheep Breeds Autochthonous to Serbia. Animals. 2025; 15(9):1193. https://doi.org/10.3390/ani15091193
Chicago/Turabian StyleĆosić, Ivan, Krstina Zeljić Stojiljković, Ivan Pihler, Bogdan Cekić, Dragana Ružić-Muslić, Nikola Delić, and Jelena M. Aleksić. 2025. "Towards Genetically Informed Conservation of the Bardoka and Karakachan Sheep Breeds Autochthonous to Serbia" Animals 15, no. 9: 1193. https://doi.org/10.3390/ani15091193
APA StyleĆosić, I., Stojiljković, K. Z., Pihler, I., Cekić, B., Ružić-Muslić, D., Delić, N., & Aleksić, J. M. (2025). Towards Genetically Informed Conservation of the Bardoka and Karakachan Sheep Breeds Autochthonous to Serbia. Animals, 15(9), 1193. https://doi.org/10.3390/ani15091193