Effects of Different Protein Levels on the Nitrogen Balance, Performance and Slaughtering Traits of Cinta Senese Growing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. In Vivo Performance and Slaughtering Traits
3.2. Digestibility and Nitrogen Balance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Whittemore, C.T. Development of recommended energy and protein allowances for growing pigs. Agric. Syst. 1983, 11, 159–186. [Google Scholar] [CrossRef]
- Wecke, C.; Liebert, F. Lysine requirement studies in modern genotype barrows dependent on age, protein deposition and dietary lysine efficiency. J. Anim. Physiol. Anim. Nutr. 2009, 93, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Lebret, B. Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Animal 2008, 2, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, M.; Lebret, B. Production systems and influence on eating quality of pork. Meat Sci. 2010, 84, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Nieto, R.; Miranda, A.; García, M.A.; Aguilera, J.F. The effect of dietary protein content and feeding level on the rate of protein deposition and energy utilization in growing Iberian pigs from 15 to 50 kg body weight. Br. J. Nutr. 2002, 88, 39–49. [Google Scholar] [CrossRef]
- Barea, R.; Nieto, R.; Aguilera, J.F. Effects of the dietary protein content and the feeding level on protein and energy metabolism in Iberian pigs growing from 50 to 100 kg body weight. Animal 2007, 1, 357–365. [Google Scholar] [CrossRef]
- Nieto, R.; Lara, L.; Barea, R.; García-Valverde, R.; Conde-Aguilera, J.A.; Aguilera, J.F. An analysis of the composition of gain and growth of primal cuts of Iberian pigs of 10 to 150 kg body weight as affected by the level of feeding and dietary protein concentration. J. Anim. Sci. 2014, 91, 4197–4207. [Google Scholar] [CrossRef]
- Sirtori, F.; Acciaioli, A.; Pugliese, C.; Bozzi, R.; Campodoni, G.; Franci, O. Effect of dietary protein level (as substitution of maize with soybean meal) on growth rate and feed efficiency of the Cinta Senese pig in the growing-fattening period. Ital. J. Anim. Sci. 2010, 9, 157–162. [Google Scholar]
- Sirtori, F.; Crovetti, A.; Acciaioli, A.; Pugliese, C.; Bozzi, R.; Campodoni, G.; Franci, O. Effect of dietary protein level on carcass traits and meat properties of Cinta Senese pigs. Animal 2014, 8, 1987–1995. [Google Scholar] [CrossRef]
- Van Milgen, J.; Dourmad, J. Concept and application of ideal protein for pigs. J. Anim. Sci. Biotechnol. 2015, 6, 15. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Wang, G.; Cai, S.; Zeng, X.; Qiao, S. Advances in low-protein diets for swine. J. Anim. Sci. Biotechnol. 2018, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, J.; Hermansen, J.E.; Strudsholm, K.; Kristensen, K. Potential loss of nutrients from different rearing strategies for fattening pigs on pasture. Soil Use Manag. 2006, 22, 256–266. [Google Scholar] [CrossRef]
- Halberg, N.; Hermansen, J.E.; Kristensen, I.S.; Eriksen, J.; Tvedegaard, N.; Petersen, B.M. Impact of organic pig production systems on CO2 emission, C sequestration and nitrate pollution. Agron. Sustain. Dev. 2010, 30, 721–731. [Google Scholar] [CrossRef]
- Jørgensen, U.; Thuesen, J.; Eriksen, J.; Horsted, K.; Hermansen, J.E.; Kristensen, K.; Kongsted, A.G. Nitrogen distribution as affected by stocking density in a combined production system of energy crops and free-range pigs. Agrofor. Syst. 2018, 92, 987–999. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine; Eleventh, R., Ed.; National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-22423-9. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis (AOAC), 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Sardi, L.; Martelli, G.; Parigini, P.; Scipioni, R. Influenza del metodo di raccolta e di conservazione degli excreta sul bilancio azotato del suino. Zoot. Nutr. Anim. 1998, 24, 163–170. [Google Scholar]
- Zhang, F.; Adeola, O. Techniques for evaluating digestibility of energy, amino acids, phosphorus, and calcium in feed ingredients for pigs. Anim. Nutr. 2017, 3, 344–352. [Google Scholar] [CrossRef]
- Acciaioli, A.; Sirtori, F.; Pianaccioli, L.; Campodoni, G.; Pugliese, C.; Bozzi, R.; Franci, O. Comparison of total tract digestibility and nitrogen balance between Cinta Senese and Large White pigs fed on different levels of dietary crude protein. Anim. Feed Sci. Technol. 2011, 169, 134–139. [Google Scholar] [CrossRef]
- Wang, H.; Ma, X.; Xu, X.; Shi, M.; Piao, X. Apparent and standardized ileal digestibility of amino acids in diverse barley cultivars fed to growing pigs. Anim. Sci. J. 2017, 88, 1994–2000. [Google Scholar] [CrossRef]
- Goering, H.K. Forage Fiber Analyses. In Agriculture Handbook; Agricultural Research Service, United States Department of Agriculture: Washington, DC, USA, 1970; Volume 379, pp. 1–20. [Google Scholar]
- Van Keulen, J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT® 9.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2007. [Google Scholar]
- Liu, Y.; Kong, X.; Jiang, G.; Tan, B.; Deng, J.; Yang, X.; Li, F.; Xiong, X.; Yin, Y. Effects of dietary protein/energy ratio on growth performance, carcass trait, meat quality, and plasma metabolites in pigs of different genotypes. J. Anim. Sci. Biotechnol. 2015, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Nieto, R.; Lara, L.; Barea, R.; García-Valverde, R.; Aguinaga, M.A.; Conde-Aguilera, J.A.; Aguilera, J.F. Response analysis of the iberian pig growing from birth to 150 kg body weight to changes in protein and energy supply. J. Anim. Sci. 2012, 90, 3809–3820. [Google Scholar] [CrossRef] [PubMed]
- Conde-Aguilera, J.A.; Aguinaga, M.A.; Aguilera, J.F.; Nieto, R. Nutrient and energy retention in weaned iberian piglets fed diets with different protein concentrations. J. Anim. Sci. 2011, 89, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Acciaioli, A.; Pianaccioli, L.; Campodoni, G.; Bozzi, R.; Pugliese, C.; Franci, O. Total apparent digestibility and nitrogen balance in Cinta Senese pigs: Utilization of field bean (Vicia faba L.). Ital. J. Anim. Sci. 2003, 2, 107–114. [Google Scholar] [CrossRef]
- Van-Milgen, J.; Noblet, J. Partitioning of energy intake to heat, protein, and fat in growing pigs. J. Anim. Sci. 2003, 81, E86–E93. [Google Scholar]
- Psichas, A.; Reimann, F.; Gribble, F.M.; Psichas, A.; Reimann, F.; Gribble, F.M. Gut chemosensing mechanisms Find the latest version: Gut chemosensing mechanisms. J. Clin. Investig. 2015, 125, 908–917. [Google Scholar] [CrossRef]
- Roura, E.; Fu, M. Taste, nutrient sensing and feed intake in pigs (130 years of research: Then, now and future). Anim. Feed Sci. Technol. 2017, 233, 3–12. [Google Scholar] [CrossRef]
- Wang, C. Sensing of L-Arginine by Gut-Expressed Calcium Sensing Receptor Stimulates Gut Satiety Hormones Cholecystokinin and Glucose-Dependent Insulinotropic Peptide Secretion in Pig Model. J. Food Sci. 2018, 83, 2394–2401. [Google Scholar] [CrossRef]
- Tauson, A.H. Feed intake and energy supply—Growing pigs. Nutr. Physiol. Pigs 2003, 1–25. [Google Scholar]
- Nieto, R.; Barea, R.; Lara, L.; Palma-Granados, P.; Aguilera, J.F. Lysine requirement relative to total dietary protein for optimum performance and carcass protein deposition of Iberian piglets. Anim. Feed Sci. Technol. 2015, 206, 48–56. [Google Scholar] [CrossRef]
Diet | |||||
---|---|---|---|---|---|
CP12 | CP14 | CP16 | CP18 | ||
Ingredients | % | ||||
Maize | 73.5 | 68.0 | 62.9 | 57.4 | |
Soybean meal (46%) | 9.0 | 14.5 | 19.5 | 25.0 | |
Wheat bran | 10.0 | 10.0 | 10.0 | 10.0 | |
Maize oil | 2.0 | 2.0 | 2.0 | 2.0 | |
Bentonite | 2.0 | 2.0 | 2.0 | 2.0 | |
Lysine HCl | 0.45 | 0.45 | 0.45 | 0.50 | |
Methionine | 0.05 | 0.05 | 0.10 | 0.10 | |
Premix 1 | 3.0 | 3.0 | 3.0 | 3.0 | |
Composition | % | ||||
Crude Protein | 11.5 | 13.5 | 15.4 | 17.5 | |
Ether extract | 4.5 | 4.4 | 4.2 | 4.1 | |
NDF | 11.3 | 11.2 | 11.1 | 11.1 | |
ADF | 3.7 | 3.8 | 3.9 | 4.1 | |
ADL | 1.3 | 1.7 | 1.8 | 1.7 | |
Ash | 6.5 | 6.8 | 7.0 | 7.3 | |
Lysine 2 | 0.87 | 1.02 | 1.15 | 1.29 | |
Methionine 2 | 0.27 | 0.30 | 0.37 | 0.39 | |
Gross energy 2 | MJ/kg | 16.1 | 16.1 | 16.1 | 16.2 |
Diet | RMSE | P-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CP12 | CP14 | CP16 | CP18 | Diet | Trial | Initial Weight | Linear | Quadratic | ||
Initial weight (kg) | 28.32 | 27.81 | 28. 30 | 28.33 | 2.60 | 0.900 | 0.021 | - | 0.738 | 0.615 |
Final weight (kg) | 63.04 a | 61.82 ab | 60.72 b | 61.01 ab | 1.81 | 0.050 | 0.593 | 0.0002 | 0.010 | 0.905 |
Total feed intake (kg) | 113.1 a | 111.8 ab | 110.6ab | 108.3 b | 2.8 | 0.045 | <0.0001 | 0.406 | 0.006 | 0.545 |
Total CP intake (kg) | 13.01 D | 15.12 C | 17.09 B | 19.04 A | 0.42 | <0.0001 | <0.0001 | 0.399 | 0.014 | 0.411 |
ADG (kg/d) | 0.76 | 0.74 | 0.71 | 0.72 | 0.04 | 0.064 | <0.0001 | 0.333 | 0.014 | 0.914 |
FCI | 3.33 | 3.32 | 3.43 | 3.30 | 0.18 | 0.334 | 0.004 | 0.131 | 0.165 | 0.584 |
PCI | 0.37 D | 0.44 C | 0.53 B | 0.58 A | 0.03 | <0.0001 | 0.010 | 0.232 | <0.0001 | 0.704 |
Diet | P-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CP12 | CP14 | CP16 | CP18 | RMSE | Diet | Trial | Initial Weight | Linear | Quadratic | |
Carcass weight (kg) | 52.61 A | 50.92 AB | 49.81 B | 49.30 B | 1.67 | 0.005 | 0.131 | 0.001 | 0.001 | 0.810 |
Dressing percentage (%) | 83.30 | 82.42 | 81.62 | 80.81 | 2.24 | 0.304 | 0.021 | 0.900 | 0.067 | 0.895 |
Carcass composition (%) | ||||||||||
Head | 8.93 | 8.26 | 8.93 | 9.29 | 0.70 | 0.174 | 0.298 | 0.589 | 0.235 | 0.118 |
Neck | 9.01 | 8.65 | 8.66 | 8.92 | 0.74 | 0.865 | 0.995 | 0.110 | 0.711 | 0.472 |
Shoulder | 13.66 | 13.74 | 13.31 | 13.68 | 0.56 | 0.599 | 0.056 | 0.107 | 0.803 | 0.446 |
Ribs | 25.70 | 26.11 | 25.01 | 25.32 | 1.25 | 0.455 | 0.028 | 0.246 | 0.360 | 0.928 |
Loin and belly | 14.88 | 15.24 | 15.50 | 14.50 | 0.87 | 0.305 | 0.0001 | 0.023 | 0.657 | 0.116 |
Ham | 25.27 | 25.52 | 26.00 | 26.19 | 0.64 | 0.116 | 0.003 | 0.115 | 0.020 | 0.789 |
Kidney | 0.35 b | 0.40 ab | 0.46 a | 0.46 a | 0.08 | 0.050 | 0.923 | 0.153 | 0.011 | 0.497 |
Tissues (%) | ||||||||||
Total lean | 38.32 | 37.61 | 38.21 | 39.60 | 1.68 | 0.813 | 0.647 | 0.068 | 0.509 | 0.549 |
Total fat | 45.31 | 45.90 | 45.34 | 43.13 | 2.64 | 0.669 | 0.627 | 0.163 | 0.346 | 0.513 |
Subcutaneous fat | 36.20 | 37.01 | 36.31 | 34.50 | 2.42 | 0.680 | 0.952 | 0.167 | 0.372 | 0.413 |
Intermuscular fat | 6.55 | 6.40 | 6.37 | 6.44 | 0.60 | 0.839 | 0.009 | 0.932 | 0.926 | 0.386 |
Total bone | 14.71 | 14.84 | 14.51 | 15.33 | 1.19 | 0.744 | 0.208 | 0.645 | 0.579 | 0.624 |
Diet | RMSE | P-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CP12 | CP14 | CP16 | CP18 | Diet | Trial | Initial Weight | Linear | Quadratic | ||
Daily gain (g/d) | ||||||||||
Lean | 273.3 | 258.2 | 245.8 | 262.8 | 20.8 | 0.120 | 0.0001 | 0.264 | 0.048 | 0.507 |
Fat | 356.7 | 351.2 | 328.7 | 304.9 | 32.1 | 0.080 | 0.0001 | 0.020 | 0.012 | 0.668 |
Bone | 82.6 | 80.2 | 70.5 | 80.3 | 12.9 | 0.344 | 0.165 | 0.550 | 0.291 | 0.510 |
Protein of lean (g/d) | 59.5 | 56.8 | 54.0 | 57.0 | 5.8 | 0.295 | 0.001 | 0.236 | 0.107 | 0.767 |
Conversion rates (kg/kg) | ||||||||||
Feed conversion in lean | 9.13 | 9.72 | 9.99 | 9.19 | 0.86 | 0.397 | 0.005 | 0.759 | 0.286 | 0.334 |
Protein conversion in lean protein | 4.82 C | 6.03 B | 7.00 A | 7.43 A | 0.69 | <0.0001 | 0.020 | 0.604 | <0.0001 | 0.579 |
Diet | RMSE | P-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
CP12 | CP14 | CP16 | CP18 | Diet | MW | Linear | Quadratic | ||
Intake (g/d): | |||||||||
- Dry matter | 1752 | 1673 | 1723 | 1580 | 196 | 0.153 | <0.0001 | 0.034 | 0.422 |
- Crude protein | 234 C | 261 B | 308 A | 322 A | 35 | <0.0001 | 0.0002 | <0.0001 | 0.361 |
Total tract apparent digestibility: | |||||||||
- Dry matter | 0.869 | 0.864 | 0.858 | 0.853 | 0.011 | 0.080 | 0.007 | 0.032 | 0.567 |
- Organic matter | 0.890 | 0.895 | 0.890 | 0.885 | 0.024 | 0.124 | 0.0007 | 0.061 | 0.989 |
- Crude protein | 0.860 b | 0.865 ab | 0.869 a | 0.873 a | 0.010 | 0.016 | <0.0001 | 0.005 | 0.279 |
- Ether extract | 0.934 | 0.929 | 0.924 | 0.919 | 0.033 | 0.197 | 0.0009 | 0.081 | 0.952 |
- NDF | 0.750 | 0.742 | 0.734 | 0.726 | 0.042 | 0.370 | 0.091 | 0.101 | 0.557 |
Diet | RMSE | P-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
CP12 | CP14 | CP16 | CP18 | Diet | MW | Linear | Quadratic | ||
N intake (g/d/kg MW 1) | 1.60 D | 1.88 C | 2.10 B | 2.31 A | 0.24 | <0.0001 | 0.050 | <0.0001 | 0.661 |
Nitrogen balance: | |||||||||
Fecal N (g/d/kg MW) | 0.23 C | 0.25 BC | 0.27 AB | 0.30 A | 0.05 | 0.002 | <0.0001 | 0.0004 | 0.548 |
Absorbed N (g/d/kg MW) | 1.38 D | 1.63 C | 1.83 B | 2.01 A | 0.21 | <0.0001 | 0.373 | <0.0001 | 0.512 |
Urinary N (g/d/kg MW) | 0.68 C | 0.79 B | 1.10 A | 1.14 A | 0.14 | <0.0001 | 0.036 | <0.0001 | 0.011 |
Total excreted N (g/d/kg MW) | 0.89 C | 1.04 B | 1.41 A | 1.40 A | 0.17 | <0.0001 | 0.840 | <0.0001 | 0.026 |
Retained N (g/d/kg MW) | 0.72 b | 0.84 ab | 0.70 b | 0.91 a | 0.22 | 0.018 | 0.061 | 0.063 | 0.222 |
Biological Value 2 | 51.78 A | 51.79 A | 36.54 C | 44.97 B | 9.68 | <0.0001 | 0.027 | 0.0004 | 0.030 |
Retained/intake N | 44.27 A | 43.73 A | 31.84 B | 39.26 A | 8.67 | <0.0001 | 0.133 | 0.002 | 0.043 |
Digestible Energy (MJ/kg DM) | 16.71 | 16.60 | 16.60 | 16.74 | 34.81 | 0.267 | 0.001 | 0.994 | 0.066 |
Metabolizable Energy (MJ/kg DM) | 16.54 a | 16.36 ab | 16.23 b | 16.38 ab | 34.36 | 0.028 | 0.001 | 0.044 | 0.018 |
ME:DE | 98.80 | 98.49 | 97.82 | 97.82 | 10.36 | 0.616 | 0.108 | 0.332 | 0.346 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquilani, C.; Sirtori, F.; Franci, O.; Acciaioli, A.; Bozzi, R.; Benvenuti, D.; Čandek-Potokar, M.; Pugliese, C. Effects of Different Protein Levels on the Nitrogen Balance, Performance and Slaughtering Traits of Cinta Senese Growing Pigs. Animals 2019, 9, 1021. https://doi.org/10.3390/ani9121021
Aquilani C, Sirtori F, Franci O, Acciaioli A, Bozzi R, Benvenuti D, Čandek-Potokar M, Pugliese C. Effects of Different Protein Levels on the Nitrogen Balance, Performance and Slaughtering Traits of Cinta Senese Growing Pigs. Animals. 2019; 9(12):1021. https://doi.org/10.3390/ani9121021
Chicago/Turabian StyleAquilani, Chiara, Francesco Sirtori, Oreste Franci, Anna Acciaioli, Riccardo Bozzi, Doria Benvenuti, Marjeta Čandek-Potokar, and Carolina Pugliese. 2019. "Effects of Different Protein Levels on the Nitrogen Balance, Performance and Slaughtering Traits of Cinta Senese Growing Pigs" Animals 9, no. 12: 1021. https://doi.org/10.3390/ani9121021
APA StyleAquilani, C., Sirtori, F., Franci, O., Acciaioli, A., Bozzi, R., Benvenuti, D., Čandek-Potokar, M., & Pugliese, C. (2019). Effects of Different Protein Levels on the Nitrogen Balance, Performance and Slaughtering Traits of Cinta Senese Growing Pigs. Animals, 9(12), 1021. https://doi.org/10.3390/ani9121021