Association of HSF1 Genetic Variation with Heat Tolerance in Chinese Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal Source, DNA Preparation, and Data Collection
2.3. Primers Design, PCR Amplification and DNA Sequencing
2.4. Data Analysis
3. Results
3.1. Distribution of Genotypic and Allelic Frequencies
3.2. Diversity Analysis
3.3. Correlation Analysis of the HSF1 Gene for Heat Tolerance
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Anckar, J.; Sistonen, L. Regulation of HSF1 function in the heat stress response: Implications in aging and disease. Annu. Rev. Biochem. 2011, 80, 1089–1115. [Google Scholar] [CrossRef] [PubMed]
- West, J. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Jordan, E. Effects of heat stress on reproduction. J. Dairy Sci. 2003, 86, E104–E114. [Google Scholar] [CrossRef]
- Tao, S.; Monteiro, A.; Thompson, I.; Hayen, M.; Dahl, G. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. J. Dairy Sci. 2012, 95, 7128–7136. [Google Scholar] [CrossRef]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J. Impact of heat stress on health and performance of dairy animals: A. review. Vet. World 2016, 9, 260. [Google Scholar] [CrossRef]
- Garner, J.; Douglas, M.; Williams, S.; Wales, W.; Marett, C.; Nguyen, T.; Reich, C.; Hayes, B. Genomic selection improves heat tolerance in dairy cattle. Sci. Rep. 2016, 6, 739896. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis; Cambridge University: Cambridge, UK, 2014. [Google Scholar]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2013, 86, E52–E77. [Google Scholar] [CrossRef]
- Vihervaara, A.; Sistonen, L. HSF1 at a glance. J. Cell Sci. 2014, 127, 261–266. [Google Scholar] [CrossRef]
- Hsu, A.; Murphy, C.; Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 2003, 300, 1142–1145. [Google Scholar] [CrossRef]
- Douglas, P.; Baird, N.; Simic, M.; Uhlein, S.; McCormick, M.A.; Wolff, S.; Kennedy, B.; Dillin, A. Heterotypic signals from neural HSF-1 separate thermotolerance from longevity. Cell Rep. 2015, 12, 1196–1204. [Google Scholar] [CrossRef]
- Dai, C.; Whitesell, L.; Rogers, A.; Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 2007, 130, 1005–1018. [Google Scholar] [CrossRef]
- Kumar, A.; Ashraf, S.; Goud, T.; Grewal, A.; Singh, S.; Yadav, B.; Upadhyay, R. Expression profiling of major heat shock protein genes during different seasons in cattle (Bos indicus) and buffalo (Bubalus bubalis) under tropical climatic condition. J. Therm. Biol. 2015, 51, 55–64. [Google Scholar] [CrossRef]
- Li, Q.; Ju, Z.; Huang, J.; Li, J.; Li, R.; Hou, M.; Wang, C.; Zhong, J. Two novel SNPs in HSF1 gene are associated with thermal tolerance traits in Chinese Holstein cattle. DNA Cell Biol. 2011, 30, 247–254. [Google Scholar] [CrossRef]
- Baena, M.; Tizioto, P.; Meirelles, S.; Regitano, L. HSF1 and HSPA6 as functional candidate genes associated with heat tolerance in Angus cattle. Revista Brasileira de Zootecnia 2018, 47, 360–363. [Google Scholar] [CrossRef]
- Baumgard, L.; Wheelock, J.; Sanders, S.; Moore, C.; Green, H.; Waldron, M.; Rhoads, R. Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows. J. Dairy Sci. 2011, 94, 5620–5633. [Google Scholar] [CrossRef]
- Lopdell, T.; Tiplady, K.; Struchalin, M.; Johnson, T.; Keehan, M.; Couldrey, R.; Davis, S.; Snell, R.; Spelman, R.; Littlejohn, M. DNA and RNA-sequence based GWAS highlights membrane-transport genes as key modulators of milk lactose content. BMC Genet. 2017, 18, 968. [Google Scholar] [CrossRef]
- Chen, N.; Fu, W.; Zhao, J.; Shen, J.; Chen, Q.; Zheng, Z.; Chen, H.; Sonstegard, T.S.; Lei, C.; Jiang, Y. The Bovine Genome Variation Database (BGVD): Integrated Web-database for Bovine Sequencing Variations and Selective Signatures. BioRxiv. 2019, 802223. [Google Scholar]
- Jia, S.; Chen, H.; Zhang, G.; Wang, Z.; Lei, C.; Yao, R.; Han, X. Genetic variation of mitochondrial d-loop region and evolution analysis in some Chinese cattle breeds. J. Genet. Genom. 2007, 34, 510–518. [Google Scholar] [CrossRef]
- Cai, X.; Chen, H.; Lei, C. Matrilineal genetic inter-introgression of Bos taurus and Bos indicus in China. Livest. Sic. 2007, 128, 12–19. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, H. Studies on sex chromosome polymorphism of four local cattle (Bos taurus) breeds in China. Hered. (China) 1993, 15, 14–17. [Google Scholar]
- Chen, N.; Cai, Y.; Chen, Q.; Li, R.; Wang, K.; Huang, Y.; Hu, S.; Huang, S.; Zhang, H.; Zheng, Z.; et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 2018, 9, 2337. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, N.; Ning, Q.; Yao, Y.; Chen, H.; Dang, R.; Zhang, H.; Lei, C. PRLH and SOD1 gene variations associated with heat tolerance in Chinese cattle. Anim. Genet. 2018, 49, 447–451. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratories: New York, NY, USA, 1989. [Google Scholar]
- Mcdowell, R.; Hooven, N.; Camoens, J. Effect of climate on performance of Holsteins in first lactation. J. Dairy Sci. 1976, 59, 965–971. [Google Scholar] [CrossRef]
- Mwai, O.; Hanotte, O.; Kwon, Y.; Cho, S. Invited Review-African Indigenous Cattle: Unique Genetic Resources in a Rapidly Changing World. Asian-Australas. J. Anim. Sci. 2015, 28, 911–921. [Google Scholar] [CrossRef]
- Hamid, M.; Rahman, A.; Zaman, M.; Hossain, K. Cattle genetic resources and their conservation in Bangladesh. Asian J. Anim. Sci. 2017, 11, 54–64. [Google Scholar] [CrossRef]
- Hansen, P. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci. 2004, 82, 349–360. [Google Scholar] [CrossRef]
- Beatty, D.; Barnes, A.; Taylor, E.; Pethick, D.; McCarthy, M.; Maloney, S. Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. J. Anim. Sci. 2006, 84, 972–985. [Google Scholar] [CrossRef]
- Yeh, F.; Yang, R.; Boyle, T. Pop Gene Version 1.31: Microsoft Window-base Software for Population Genetic Analysis: A Quick User’s Guide; University of Alberta; Center for International Forestry Research: Alberta, AB, Canada, 1999. [Google Scholar]
- Nei, M.; Roychoudhury, A.K. Sampling variances of heterozygosity and genetic distance. Genetics 1974, 76, 379–390. [Google Scholar]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Sigdel, A.; Abdollahi-Arpanahi, R.; Aguilar, I.; Peñagaricano, F. Whole Genome Mapping Reveals Novel Genes and Pathways Involved in Milk Production Under Heat Stress in US Holstein Cows. Front. Genet. 2019, 10, 928. [Google Scholar] [CrossRef]
- Kourtis, N.; Nikoletopoulou, V.; Tavernarakis, N. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature 2012, 490, 213–218. [Google Scholar] [CrossRef]
- Henderson, S.; Johnson, T. DAF-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 2001, 11, 1975–1980. [Google Scholar] [CrossRef]
- Tarantino, G.; Costantini, S.; Finelli, C.; Capone, F.; Guerriero, E.; La Sala, N.; Gioia, S.; Castello, G. Carotid intima-media thickness is predicted by combined eotaxin levels and severity of hepatic steatosis at ultrasonography in obese patients with nonalcoholic fatty liver disease. PLoS ONE 2014, 9, e105610. [Google Scholar] [CrossRef]
- Lei, C.; Chen, H.; Zhang, H.; Cai, X.; Liu, R.; Luo, L.; Wang, C.; Zhang, W.; Ge, Q.; Zhang, R.; et al. Origin and phylogeographical structure of Chinese cattle. Anim. Genet. 2006, 37, 579–582. [Google Scholar] [CrossRef]
- Chen, N.; Huang, J.; Zulfiqar, A.; Li, R.; Xi, Y.; Zhang, M.; Dang, R.; Lan, X.; Chen, H.; Ma, Y.; et al. Population structure and ancestry of Qinchuan cattle. Anim. Genet. 2018, 49, 246–248. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.; Liu, Y.; Liu, Y.; Li, X.; Yao, Y. Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation. Mol. Phylogenet. Evol. 2006, 38, 146–154. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, A.; Sodhi, M.; Verma, P.; Swami, S.K.; Jast, A.; Shandilya, U.K.; Mukesh, M. Characterizing binding sites of heat responsive microRNAs and their expression pattern in heat stressed PBMCs of native cattle, exotic cattle and riverine buffaloes. Mol. Biol. Rep, (Epub ahead of print).
- Xia, X.; Yao, Y.; Li, C.; Zhang, F.; Qu, K.; Chen, H.; Huang, B.; Lei, C. Genetic diversity of Chinese cattle revealed by Y-SNP and Y-STR markers. Anim. Genet. 2018, 50, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Qu, K.; Zhang, G.; Jia, Y.; Ma, Z.; Zhao, X.; Huang, Y.; Chen, H.; Huang, B.; Lei, C. Comprehensive analysis of the mitochondrial DNA diversity in Chinese cattle. Anim. Genet. 2018, 50, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Wang, Z.; Chen, W.; Wu, C.; Han, X.; Chang, H.; Zan, L.; Li, R.; Wang, J.; Song, W.; et al. Genetic diversity and population structure of indigenous yellow cattle breeds of china using 30 microsatellite markers. Anim. Genet. 2007, 38, 550–559. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, X.; Zhang, Y.; Zhao, Y.; Zhang, J.; Jia, Y.; Zhu, B.; Xu, L.; Zhang, L.; Gao, H.; et al. Genome-wide assessment of genetic diversity and population structure insights into admixture and introgression in Chinese indigenous cattle. BMC Genet. 2018, 19, 114. [Google Scholar] [CrossRef] [Green Version]
Polymorphism | Genotype (n) | Temperature (°C) (LSM ± SE) | Relative Humidity (%) (LSM±SE) | Temperature–Humidity Index (LSM ± SE) |
---|---|---|---|---|
HSF-1 gene NC_037341.1 g.616087A > G, rs135258919 | AA (191) | 8.50 A ± 4.57 | 60.78 A ± 12.41 | 50.50 A ± 5.75 |
AG (318) | 12.60 B ± 5.13 | 70.22 B ± 10.11 | 55.52 B ± 7.30 | |
GG (432) | 15.97 C ± 5.02 | 74.80 C ± 7.90 | 59.91 C ± 6.95 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, Y.; Zeng, M.; Guan, X.; Qu, K.; Liu, J.; Zhang, J.; Chen, H.; Huang, B.; Lei, C. Association of HSF1 Genetic Variation with Heat Tolerance in Chinese Cattle. Animals 2019, 9, 1027. https://doi.org/10.3390/ani9121027
Rong Y, Zeng M, Guan X, Qu K, Liu J, Zhang J, Chen H, Huang B, Lei C. Association of HSF1 Genetic Variation with Heat Tolerance in Chinese Cattle. Animals. 2019; 9(12):1027. https://doi.org/10.3390/ani9121027
Chicago/Turabian StyleRong, Yu, Mingfei Zeng, Xiwen Guan, Kaixing Qu, Jianyong Liu, Jicai Zhang, Hong Chen, Bizhi Huang, and Chuzhao Lei. 2019. "Association of HSF1 Genetic Variation with Heat Tolerance in Chinese Cattle" Animals 9, no. 12: 1027. https://doi.org/10.3390/ani9121027
APA StyleRong, Y., Zeng, M., Guan, X., Qu, K., Liu, J., Zhang, J., Chen, H., Huang, B., & Lei, C. (2019). Association of HSF1 Genetic Variation with Heat Tolerance in Chinese Cattle. Animals, 9(12), 1027. https://doi.org/10.3390/ani9121027