In ovo Injection of a Galacto-Oligosaccharide Prebiotic in Broiler Chickens Submitted to Heat-Stress: Impact on Transcriptomic Profile and Plasma Immune Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals Tested, Experimental Groups and Overall Sampling
2.2. RNA and Plasma Analysis
2.3. Data Analysis
3. Results
3.1. Transcriptomic Profile
3.2. Plasma IgG, IgA, SAA
4. Discussion
4.1. Transcriptome
4.1.1. GOS and Gene Sets Related to Immune Response
4.1.2. GOS and Gene Sets Related to Energy Metabolism
4.1.3. Heat Stress Effect
4.2. Plasma IgG, IgA, SAA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Petracci, M.; Mudalal, S.; Soglia, F.; Cavani, C. Meat quality in fast-growing broiler chickens. Worlds. Poult. Sci. J. 2015, 71, 363–374. [Google Scholar] [CrossRef]
- Aviagen. Ross 308 Broiler Performance Objectives; Aviagen Ltd.: Newbridge, UK, 2017. [Google Scholar]
- Petracci, M.; Cavani, C. Muscle Growth and Poultry Meat Quality Issues. Nutrients 2012, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Jia, G.Q.; Zuo, J.J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D.Y. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, A.F.; Zulkifli, I.; Omar, A.R.; Raha, A.R. Physiological responses of 3 chicken breeds to acute heat stress. Poult. Sci. 2011, 90, 1435–1440. [Google Scholar] [CrossRef]
- Sandercock, D.A.; Hunter, R.R.; Nute, G.R.; Mitchell, M.; Hocking, P.M. Thermoregulatory capacity and muscle membrane integrity are compromised in broilers compared with layers at the same age or body weight. Br. Poult. Sci. 2006, 47, 322–329. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M. Physiological alterations of poultry to the high environmental temperature. J. Biol. 2018, 76, 101–106. [Google Scholar] [CrossRef]
- Song, Z.H.; Cheng, K.; Zheng, X.C.; Ahmad, H.; Zhang, L.L.; Wang, T. Effects of dietary supplementation with enzymatically treated Artemisia annua on growth performance, intestinal morphology, digestive enzyme activities, immunity, and antioxidant capacity of heat-stressed broilers. Poult. Sci. 2018, 97, 430–437. [Google Scholar] [CrossRef]
- Burkholder, K.M.; Thompson, K.L.; Einstein, M.E.; Applegate, T.J.; Patterson, J.A. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poult. Sci. 2008, 87, 1734–1741. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.H.; Yang, L.; Chen, X.Y.; Jiang, R.S.; Jin, S.H.; Geng, Z.Y. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef] [PubMed]
- Lan, P.T.N.; Sakamoto, M.; Benno, Y. Effects of two probiotic Lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol. Immunol. 2004, 48, 917–929. [Google Scholar] [CrossRef]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Shabbir, M.Z.; Rehman, H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Zaneb, H.; Yousaf, M.S.; Ijaz, A.; Sohail, M.U.; Muti, S.; Usman, M.M.; Ijaz, S.; Rehman, H. Effect of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress. J. Anim. Physiol. Anim. Nutr. (Berl.) 2013, 97, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Pourabedin, M.; Zhao, X. Prebiotics and gut microbiota in chickens. Fems Microbiol. Lett. 2015, 362, fnv122. [Google Scholar] [CrossRef]
- Jung, S.J.; Houde, R.; Baurhoo, B.; Zhao, X.; Lee, B.H. Effects of galacto-oligosaccharides and a Bifidobacteria lactis-based probiotic strain on the growth performance and fecal microflora of broiler chickens. Poult. Sci. 2008, 87, 1694–1699. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.A.; Ali, R.A.; Mendoza, M.A.; Hassan, H.M.; Koci, M.D. Impact of Dietary galacto-Oligosaccharide (gOs) on chicken’s gut Microbiota, Mucosal gene expression, and Salmonella colonization. Front. Vet. Sci. 2017, 4, 192. [Google Scholar] [CrossRef] [PubMed]
- Varasteh, S.; Braber, S.; Akbari, P.; Garssen, J.; Fink-Gremmels, J. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS ONE 2015, 10, e0138975. [Google Scholar] [CrossRef] [PubMed]
- Huyghebaert, G.; Ducatelle, R.; Van Immerseel, F. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 2011, 187, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Villaluenga, C.M.; Wardeńska, M.; Pilarski, R.; Bednarczyk, M.; Gulewicz, K. Utilization of the chicken embryo model for assessment of biological activity of different oligosaccharides. Folia Biol. (Praha) 2004, 52, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Pilarski, R.; Bednarczyk, M.; Lisowski, M.; Rutkowski, A.; Bernacki, Z.; Wardeńska, M.; Gulewicz, K. Assessment of the effect of α-galactosides injected during embryogenesis on selected chicken traits. Folia Biol. (Praha) 2005, 53, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Slawinska, A.; Siwek, M.; Żylińska, J.; Bardowski, J.; Brzezińska, J.; Gulewicz, K.A.; Nowak, M.; Urbanowski, M.; Płowiec, A.; Bednarczyk, M.K. Influence of synbiotics delivered in ovo on immune organs development and structure. Folia Biol. (Krakov) 2014, 62, 135–142. [Google Scholar] [CrossRef]
- Madej, J.P.; Stefaniak, T.; Bednarczyk, M. Effect of in ovo-delivered prebiotics and synbiotics on lymphoid-organs’ morphology in chickens. Poult. Sci. 2015, 94, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Pruszynska-Oszmalek, E.; Kolodziejski, P.A.; Stadnicka, K.; Sassek, M.; Chalupka, D.; Kuston, B.; Nogowski, L.; Mackowiak, P.; Maiorano, G.; Jankowski, J.; et al. In ovo injection of prebiotics and synbiotics affects the digestive potency of the pancreas in growing chickens. Poult. Sci. 2015, 94, 1909–1916. [Google Scholar] [CrossRef] [PubMed]
- Slawinska, A.; Plowiec, A.; Siwek, M.; Jaroszewski, M.; Bednarczyk, M. Long-term transcriptomic effects of prebiotics and synbiotics delivered in ovo in broiler chickens. PLoS ONE 2016, 11, e0168899. [Google Scholar] [CrossRef] [PubMed]
- Bednarczyk, M.; Urbanowski, M.; Gulewicz, P.; Kasperczyk, K.; Maiorano, G.; Szwaczkowski, T. Field and in vitro study on prebiotic effect of raffinose family oligosaccharides in chickens. Bull. Vet. Inst. Pulawy 2011, 55, 465–469. [Google Scholar]
- Maiorano, G.; Sobolewska, A.; Cianciullo, D.; Walasik, K.; Elminowska-Wenda, G.; Sławińska, A.; Tavaniello, S.; Żylińska, J.; Bardowski, J.; Bednarczyk, M. Influence of in ovo prebiotic and synbiotic administration on meat quality of broiler chickens. Poult. Sci. 2012, 91, 2963–2969. [Google Scholar] [CrossRef]
- Slawinska, A.; Zampiga, M.; Sirri, F.; Meluzzi, A.; Bertocchi, M.; Tavaniello, S.; Maiorano, G. Impact of galactooligosaccharides delivered in ovo on mitigating negative effects of heat stress on performance and welfare of broilers. Poult. Sci. 2019, pez556. [Google Scholar] [CrossRef]
- Slawinska, A.; Mendes, S.; Dunislawska, A.; Siwek, M.; Zampiga, M.; Sirri, F.; Meluzzi, A.; Tavaniello, S.; Maiorano, G. Avian model to mitigate gut-derived immune response and oxidative stress during heat. BioSystem 2019, 178, 10–15. [Google Scholar] [CrossRef]
- Tzortzis, G.; Goulas, A.K.; Gibson, G.R. Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl. Microbiol. Biotechnol. 2005, 68, 412–416. [Google Scholar] [CrossRef]
- Bednarczyk, M.; Stadnicka, K.; Kozłowska, I.; Abiuso, C.; Tavaniello, S.; Dankowiakowska, A.; Slavinska, A.; Maiorano, G. Influence of different prebiotics and mode of their administration on broiler chicken performance. Animal 2016, 10, 1271–1279. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Gao, X.-J.; Li, T.; Wei, B.; Yan, Z.-X.; Hu, N.; Huang, Y.-J.; Han, B.-L. Bacterial outer membrane vesicles from dextran sulfate sodium-induced colitis differentially regulate intestinal UDP-glucuronosyltransferase 1A1 partially through TLR4/MPAK7PI3K pathway. Drug. Metab. Dispos. 2018, 46, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T.R.; Li, L.; Sad, S. Functions of CD8 T-cell subsets secreting different cytokine patterns. Semin. Immunol. 1997, 9, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.; Hermann, M. Immunological response as a source to variability in drug metabolism and transport. Front. Pharm. 2012, 3, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavropoulou, E.; Pircalabioru, G.; Bezirtzoglou, E. The Role of Cytochromes P450 in infection. Front. Immunol. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Bezirtzoglou, V.E.E. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile. Microb. Ecol. Health Dis. 2012, 23, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Slawinska, A.; Dunislawska, A.; Plowiec, A.; Radomska, M.; Lachmanska, J.; Siwek, M.; Tavaniello, S.; Maiorano, G. Modulation of microbial communities and mucosal gene expression in chicken intestines after galactooligosaccharides delivery In Ovo. PLoS ONE 2019, 14, e0212318. [Google Scholar] [CrossRef]
- Morvay, P.L.; Baes, M.; Van Veldhoven, P.P. Differential activities of peroxisomes along the mouse intestinal epithelium. Cell Biochem. Funt. 2017, 35, 144–155. [Google Scholar] [CrossRef]
- Heaver, S.L.; Johnson, E.L.; Ley, R.E. Sphingolipids in host—Microbial interactions. Curr. Opin. Microbiol. 2018, 43, 92–99. [Google Scholar] [CrossRef]
- Trevisi, P.; Priori, D.; Jansman, A.J.M.; Luise, D.; Koopmans, S.-J.; Hynonen, U.; Palva, A.; van der Meulen, J.; Bosi, P. Molecular networks affected by neonatal microbial colonization in porcine jejunum, luminally perfused with enterotoxigenic Escherichia coli, F4ac fimbria or Lactobacillus amylovorus. PLoS ONE 2018, 13, e0202160. [Google Scholar] [CrossRef]
- Sergeant, M.J.; Constantinidou, C.; Cogan, T.A.; Bedford, M.R.; Penn, C.W.; Pallen, M.J. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE 2014, 9, e91941. [Google Scholar] [CrossRef]
- Slimen, I.B.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.H.; Sunwoo, H.; Cherian, G.; Sim, J.S. Maternal dietary ratio of linoleic acid to α -linolenic acid affects the passive immunity of hatching chicks. Poult. Sci. 2004, 83, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.R.; Smith, M.O. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult. Sci. 2003, 82, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Hwangbo, J.; Ryu, C.; Park, B.; Chae, H.; Choi, H.; Seo, O.; Choi, Y. Effects of extreme heat stress on growth performance, lymphoid organ, igg and cecum microflora of broiler chickens. Int. J. Agric. Biol. 2013, 15, 1204–1208. [Google Scholar]
- Luise, D.; Lauridsen, C.; Bosi, P.; Trevisi, P. Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J. Anim. Sci. Biotechnol. 2019, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Hassan, S.S. Broiler tolerance to heat stress at various dietary protein/energy levels. European Poult. Sci. 2017, 81, 1–15. [Google Scholar] [CrossRef]
- Midilli, M.; Alp, M.; Kocabaǧli, N.; Muǧlali, Ö.H.; Turan, N.; Yilmaz, H.; Çakir, S. Effects of dietary probiotic and prebiotic supplementation on growth performance and serum IgG concentration of broilers. S. Afr. J. Anim. Sci. 2008, 38, 21–27. [Google Scholar] [CrossRef]
- Cetin, N.; Güçlü, B.K.; Cetin, E. The effects of probiotic and mannanoligosaccharide on some haematological and immunological parameters in turkeys. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2005, 52, 263–267. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, Y.M.; Kim, C.H.; Paik, I.K. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 2011, 90, 75–82. [Google Scholar] [CrossRef]
- Rezaei, S.; Jahromi, M.F.; Liang, J.B.; Zulkifli, I.; Farjam, S.; Laudadio, V.; Tufarelli, V. Effect of oligosaccharides extract from palm kernel expeller on growth performance, gut microbiota and immune response in broiler chickens Extract from PKE. Poult. Sci. 2015, 94, 2414–2420. [Google Scholar] [CrossRef] [PubMed]
- Hartog, A.; Belle, F.N.; Bastiaans, J.; Graaff, P.D.; Garssen, J.; Harthoorn, L.F.; Vos, A.P. A potential role for regulatory T-cells in the amelioration of DSS induced colitis by dietary non-digestible polysaccharides. J. Nutr. Biochem. 2015, 26, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Nazifi, S.; Tabande, M.R.; Hosseinian, S.A.; Ansari-Lari, M.; Safari, H. Evaluation of sialic acid and acute-phase proteins (haptoglobin and serum amyloids A) in healthy and avian infection bronchitis virus-infected chicks. Comp. Clin. Path. 2011, 20, 69–73. [Google Scholar] [CrossRef]
- Asasi, K.; Mohammadi, A.; Boroomand, Z.; Hosseinian, S.A.; Nazifi, S. Changes of several acute phase factors in broiler chickens in response to infectious bronchitis virus infection. Poult. Sci. 2013, 92, 1989–1996. [Google Scholar] [CrossRef]
- Kaab, H.; Bain, M.M.; Eckersall, P.D. Acute phase proteins and stress markers in the immediate response to a combined vaccination against Newcastle disease and infectious bronchitis viruses in specific pathogen free (SPF) layer chicks. Poult. Sci. 2018, 97, 463–469. [Google Scholar] [CrossRef] [PubMed]
Gene Set—Jejunum GOS 1 | FDR q Value |
---|---|
PEROXISOME | 0.000 |
SPHINGOLIPID METABOLISM | 0.000 |
HISTIDINE METABOLISM | 0.001 |
DRUG METABOLISM CYTOCHROME P450 | 0.007 |
METABOLISM OF XENOBIOTICS BY CYTOCHROME P450 | 0.006 |
DRUG METABOLISM OTHER ENZYMES | 0.006 |
PENTOSE PHOSPHATE PATHWAY | 0.006 |
FATTY ACID METABOLISM | 0.008 |
RETINOL METABOLISM | 0.008 |
STARCH AND SUCROSE METABOLISM | 0.011 |
PPAR SIGNALING PATHWAY | 0.013 |
Gene Set—Jejunum CON 2 | FDR q Value |
CELL CYCLE | 0.000 |
DNA REPLICATION | 0.000 |
RIBOSOME | 0.002 |
OOCYTE MEIOSIS | 0.006 |
SYSTEMIC LUPUS ERYTHEMATOSUS | 0.014 |
SPLICEOSOME | 0.016 |
PROGESTERONE MEDIATED OOCYTE MATURATION | 0.016 |
B CELL RECEPTOR SGNALING PATHWAY | 0.020 |
MISMATCH REPAIR | 0.024 |
HOMOLOGOUS RECOMBINATION | 0.030 |
NUCLEOTIDE EXCISION REPAIR | 0.034 |
T CELL RECEPTOR SIGNALING PATHWAY | 0.033 |
PROTEASOME | 0.050 |
Gene Set—Cecum GOS 1 | FDR q Value |
---|---|
ECM RECEPTOR INTERACTION | 0.008 |
Gene Set—Cecum CON 2 | FDR q Value |
PHOSPHATIDYLINOSITOL SIGNALING SYSTEM | 0.000 |
T CELL RECEPTOR SIGNALING PATHWAY | 0.000 |
B CELL RECEPTOR SIGNALING PATHWAY | 0.009 |
GLIOMA | 0.015 |
FC GAMMA R MEDIATED PHAGOCYTOSIS | 0.016 |
RIG I LIKE RECEPTOR SIGNALING PATHWAY | 0.017 |
CHEMOKINE SIGNALING PATHWAY | 0.015 |
ENDOCYTOSIS | 0.018 |
NATURAL KILLER CELL MEDIATED CYTOTOXICITY | 0.028 |
UIBQUITIN MEDIATED PROTEOLYSIS | 0.035 |
INOSITOL PHOSPHATE METABOLISM | 0.034 |
Gene Set—Jejunum HS 1 | FDR q Value |
---|---|
DRUG METABOLISM CYTOCHROME P450 | 0.001 |
METABOLISM OF XENOBIOTICS BY CYTOCHROME P450 | 0.001 |
RETINOL METABOLISM | 0.004 |
BASAL TRANSCRIPTION FACTORS | 0.034 |
Gene Set—Jejunum TN 2 | FDR q Value |
OXIDATIVE PHOSPHORYLATION | 0.000 |
PARKINSONS DISEASE | 0.000 |
ALZHEIMERS DISEASES | 0.000 |
PROTEASOME | 0.011 |
INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION | 0.010 |
CHEMOKINE SIGNALING PATHWAY | 0.008 |
CELL ADHESION MOLECULES CAMS | 0.015 |
B CELL RECEPTOR SIGNALING PATHWAY | 0.016 |
HUNTINGTONS DISEASE | 0.021 |
FC EPSILON RI SIGNALING PATHWAY | 0.020 |
AMINO SUGAR AND NUCLEOTIDE SUGAR METABOLISM | 0.030 |
PROTEIN EXPORT | 0.040 |
OLFACTORY TRANSDUCTION | 0.044 |
N GLYCAN BYOSINTHESIS | 0.046 |
Gene Set—Cecum HS 1 | FDR q Value |
---|---|
ECM RECEPTOR INTERACTION | 0.001 |
DNA REPLICATION | 0.029 |
SPLICEOSOME | 0.062 |
RNA POLYMERASE | 0.047 |
COMPLEMENT AND COAGULATION CASCADES | 0.042 |
BASAL CELL CARCINOMA | 0.035 |
SYSTEMIC LUPUS ERYTHEMATOSUS | 0.042 |
Gene Set—Cecum TN 2 | FDR q Value |
PEROXISOME | 0.000 |
NATURAL KILLER CELL MEDIATED CYTOTOXICITY | 0.000 |
SPHINGOLIPID METABOLISM | 0.000 |
STARCH AND SUCROSE METABOLISM | 0.000 |
PROPANOATE METABOLISM | 0.000 |
OXIDATIVE PHOSPHORYLATION | 0.000 |
B CELL RECEPTOR SIGNALING PATHWAY | 0.000 |
LYSOSOME | 0.000 |
T CELL RECEPTOR SIGNALING PATHWAY | 0.001 |
PARKINSONS DISEASE | 0.005 |
EPITHELIAL CELL SIGNALING IN HELICOBACTER PYLORI INFECTION | 0.008 |
VALINE LEUCINE AND ISOLEUCINE DEGRADATION | 0.008 |
ALDOSTERONE REGULATED SODIUM REABSORPTION | 0.011 |
ALZHEIMERS DISEASE | 0.011 |
UBIQUITIN MEDIATED PROTEOLYSIS | 0.023 |
CHEMOKINE SIGNALING PATHWAY | 0.022 |
INSULIN SIGNALING PATHWAY | 0.022 |
FC EPSILON RI SIGNALING PATHWAY | 0.025 |
ENDOCYTOSIS | 0.031 |
VIBRIO CHOLERAE INFECTION | 0.036 |
TOLL-LIKE RECEPTOR SIGNALING PATHWAY | 0.037 |
CITRATE CYCLE TCA CYCLE | 0.038 |
FC GAMMA R MEDIATED PHAGOCYTOSIS | 0.039 |
PPAR SIGNALING PATHWAY | 0.039 |
FATTY ACID METABOLISM | 0.040 |
BUTANOATE METABOLISM | 0.042 |
GALACTOSE METABOLISM | 0.046 |
Items | In ovo Treatment | Environmental Treatment | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GOS | SEM | CON | SEM | HS | SEM | TN | SEM | In ovo | Environmental | Interaction | |
IgG mg/mL | 4.43 | 0.46 | 4.82 | 0.54 | 4.61 | 0.55 | 4.63 | 0.44 | 0.58 | 0.97 | 0.30 |
IgA ng/mL | 25.01 | 8.21 | 34.45 | 4.65 | 30.50 | 7.21 | 28.40 | 6.68 | 0.36 | 0.87 | 0.57 |
SAA ng/mL | 4.16 | 0.62 | 4.04 | 0.38 | 4.24 | 0.64 | 3.95 | 0.36 | 0.88 | 0.70 | 0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertocchi, M.; Zampiga, M.; Luise, D.; Vitali, M.; Sirri, F.; Slawinska, A.; Tavaniello, S.; Palumbo, O.; Archetti, I.; Maiorano, G.; et al. In ovo Injection of a Galacto-Oligosaccharide Prebiotic in Broiler Chickens Submitted to Heat-Stress: Impact on Transcriptomic Profile and Plasma Immune Parameters. Animals 2019, 9, 1067. https://doi.org/10.3390/ani9121067
Bertocchi M, Zampiga M, Luise D, Vitali M, Sirri F, Slawinska A, Tavaniello S, Palumbo O, Archetti I, Maiorano G, et al. In ovo Injection of a Galacto-Oligosaccharide Prebiotic in Broiler Chickens Submitted to Heat-Stress: Impact on Transcriptomic Profile and Plasma Immune Parameters. Animals. 2019; 9(12):1067. https://doi.org/10.3390/ani9121067
Chicago/Turabian StyleBertocchi, Micol, Marco Zampiga, Diana Luise, Marika Vitali, Federico Sirri, Anna Slawinska, Siria Tavaniello, Orazio Palumbo, Ivonne Archetti, Giuseppe Maiorano, and et al. 2019. "In ovo Injection of a Galacto-Oligosaccharide Prebiotic in Broiler Chickens Submitted to Heat-Stress: Impact on Transcriptomic Profile and Plasma Immune Parameters" Animals 9, no. 12: 1067. https://doi.org/10.3390/ani9121067