Seaweeds in Pig Nutrition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Chemical Composition
3. Influence on Growth Performance
4. Influence on Digestibility
5. Prebiotic Function
6. Antibacterial Function
7. Influence on Antioxidant Function
8. Anti-inflammatory Function
9. Immunomodulatory Function
10. Potential Toxicity
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rajauria, G.; Cornish, L.; Ometto, F.; Msuya, F.E.; Villa, R. Identification and selection of algae for food, feed, and fuel applications. In Seaweed Sustainability, Food and Non–Food Applications, 1st ed.; Academic Press: London, UK, 2015; pp. 315–345. [Google Scholar]
- Guedes, C.; Barbosa, A.; Amaro, C.R.; Pereira, H.M.; Malcata, X. Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. Int. J. Food Sci Technol. 2011, 46, 862–870. [Google Scholar] [CrossRef]
- García, J.L.; De Vicente, M.; Galán, B. Microalgae, old sustainable food and fashion nutraceuticals. Microb. Biotechnol. 2017, 10, 1017–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Yuan, J.P.; Wu, C.F.; Wang, J.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs 2011, 9, 1806–1828. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, L.; Murphy, B.; McLoughlin, P.; Duggan, P.; Lawlor, P.G.; Hughes, H.; Gardiner, G.E. Prebiotics from marine macroalgae for human and animal health applications. Mar. Drugs 2010, 8, 2038–2064. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, J.; Takatani, N.; Kobayashi, N.; Mikami, K.; Miyashita, K.; Yamano, Y.; Wada, A.; Maoka, T.; Hosokawa, M. Carotenoid Profiling of a Red Seaweed Pyropia yezoensis: Insights into Biosynthetic Pathways in the Order Bangiales. Mar. Drugs 2018, 16, 426. [Google Scholar] [CrossRef] [Green Version]
- Usov, A. Polysaccharides of the red algae. Adv. Carbohydr. Chem. Biochem. 2011, 65, 115–217. [Google Scholar]
- Kidgell, J.T.; Magnusson, M.; de Nys, R.; Glasson, C.R.K. Ulvan: A systematic review of extraction, composition and function. Algal Res. 2019, 39, 101422. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The Global State of Seaweed Production, Trade and Utilization; Globefish Research Program: Rome, Italy, 2018; p. 2. [Google Scholar]
- Lee, J.B.; Takeshita, A.; Hayashi, K.; Hayashi, T. Structures and antiviral activities of polysaccharides from Sargassum trichophyllum. Carbohydr. Polym. 2011, 86, 995–999. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Tiwari, U.; Rajauria, G. Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Sci. Hum. Wellness 2019, 8, 252–263. [Google Scholar] [CrossRef]
- Marsham, S.; Scott, G.W.; Tobin, M.I. Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem. 2007, 100, 1331–1336. [Google Scholar] [CrossRef]
- Wong, K.H.; Cheung, P.C.K. Nutritional evaluation of some subtropical red and green seaweeds Part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chem. 2001, 72, 11–17. [Google Scholar] [CrossRef]
- Murty, U.S.; Banerjee, A.K. Seaweeds: The wealth of oceans. In Handbook of Marine Macroalgae: Biotechnology and Applied Phycology; Se-Kwon, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Fleurence, J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuze, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Agregán, R.; Munekata, P.E.S.; Franco, D.; Carballo, J.; Sahin, S.; Lacomba, R.; Barba, F.J. Proximate Composition and Nutritional Value of Three Macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcate. Mar. Drugs 2017, 15, 360. [Google Scholar] [CrossRef] [Green Version]
- Cabrita, A.R.J.; Maia, M.R.G.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J.M. Tracing seaweeds as mineral sources for farm–animals. J. Appl. Phycol. 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- Burtin, P. Nutritional Value of Seaweeds. Electron. J. Environ. Agric. Food Chem. 2003, 2, 498–503. [Google Scholar]
- Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M.S. Minerals from macroalgae origin: Health benefits and risks for consumers. Mar. Drugs 2018, 16, 11. [Google Scholar] [CrossRef] [Green Version]
- Ruperez, P.; Toledano, G. Indigestible fraction of edible marine seaweeds. J. Sci. Food Agric. 2003, 83, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, H. Functional Ingredients from Algae for Foods and Nutraceuticals; Woodhead Publishing Limited: Cambridge, UK, 2013; pp. 228–229. [Google Scholar]
- Angell, A.R.; Angell, S.F.; DeNys, R.; Paul, N.A. Seaweed as a protein source for mono–gastric livestock. Trends Food Sci. Technol. 2016, 54, 74–84. [Google Scholar] [CrossRef]
- Galland-Irmouli, A.V.; Fleurence, J.; Lamghari, R.; Lucon, M.; Rouxel, C.; Barbaroux, O.; Bronowicki, J.P.; Villaume, C.; Gueant, J.L. Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J. Nutr. Biochem. 1999, 10, 353–359. [Google Scholar] [CrossRef]
- Biancarosa, I.; Espe, M.; Bruckner, C.G.; Heesch, S.; Liland, N.; Waagbø, R.; Torstensen, B.; Lock, E.J. Amino acid composition, protein content, and nitrogen–to protein conversion factors of 21 seaweed species from Norwegian waters. Appl. Phycol. 2017, 29, 1001–1009. [Google Scholar] [CrossRef]
- Saini, R.; Badole, S.L.; Zanwar, A.A. Bioactive Dietary Factors and Plant Extracts in Dermatology; Watson, R.R., Zibadi, S., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 73–82. [Google Scholar]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Nutritional quality of some wild and cultivated seaweeds: Nutrient composition, total phenolic content and in vitro digestibility. J. Appl. Phycol. 2016, 28, 3575–3585. [Google Scholar] [CrossRef]
- Sardari, R.R.R.; Nordberg Karlsson, E. Marine Poly- and Oligosaccharides as Prebiotics. J. Agric. Food Chem. 2018, 66, 11544–11549. [Google Scholar] [CrossRef] [PubMed]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Tanna, B.; Mishra, A. Nutraceutical Potential of Seaweed Polysaccharides: Structure, Bioactivity, Safety, and Toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 817–831. [Google Scholar] [CrossRef] [Green Version]
- Balboa, E.M.; Conde, E.; Moure, A.; Falqué, E.; Domínguez, H. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem. 2013, 138, 1764–1785. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kurnianto, D. Green Seaweeds–Derived Polysaccharides Ulvan: Occurrence, Medicinal Value and Potential Applications. In Seaweed Polysaccharides, Isolation, Biological and Biomedical Applications, 1st ed.; Jayachandran, V., Sukumaran, A., Se-Kwon, K., Eds.; Elsevier Science Publishing Co. Inc.: New York, NY, USA, 2017; pp. 205–221. [Google Scholar]
- Xu, S.-Y.; Huang, X.; Cheong, K.-L. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Mar. Drugs 2017, 15, 388. [Google Scholar] [CrossRef] [Green Version]
- Cherry, P.; Yadav, S.; Strain, C.R.; Allsopp, P.J.; McSorley, E.M.; Ross, R.P.; Stanton, C. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar. Drugs 2019, 17, 327. [Google Scholar] [CrossRef] [Green Version]
- Maghin, F.; Ratti, S.; Corino, C. Biological functions and health promoting effects of brown seaweeds in swine nutrition. J. Dairy Vet. Anim. Res. 2014, 1, 14–16. [Google Scholar] [CrossRef] [Green Version]
- Chandini, S.K.; Ganesan, P.; Bhaskar, N. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chem. 2008, 107, 707–713. [Google Scholar] [CrossRef]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitate, Laminaria hyperborean, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Mæhre, H.K.; Malde, M.K.; Eilertsen, K.E.; Elvevoll, E.O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H. Seaweed: Ecology, Nutrient Composition and Medicinal Uses, 1st ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 15–47. [Google Scholar]
- Kolb, N.; Vallorani, L.; Milanovi, N.; Stocchi, V. Evaluation of Marine Algae Wakame (Undaria pinnatifida) and Kombu (Laminaria digitata japonica) as Food Supplements. Food Technol. Biotechnol. 2004, 42, 57–61. [Google Scholar]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- Anderson, M.J.; Blanton, J.R.; Gleghorn, J.; Kim, S.W.; Johnson, J.W. Ascophyllum nodosum supplementation strategies that improve overall carcass merit of implanted English crossbred cattle. Asian Aust. J. Anim. Sci. 2006, 19, 1514–1518. [Google Scholar] [CrossRef]
- Park, Y.H.; Jang, D.S.; Kim, S.B. Utilization of Marine Products, 2nd ed.; Hyoungsul Press: Seoul, Korea, 1997; pp. 283–336. [Google Scholar]
- Marín, A.; Casas-Valdez, M.; Carrillo, S.; Hernández, H.; Monroy, A.; Sanginés, L.; Pérez-Gil, F. The marine algae Sargassum spp. (Sargassaceae) as feed for sheep in tropical and subtropical regions. Rev. Biol. Trop. 2009, 57, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Pintos, N.; Perez-Jimenez, J.; Buschmann, A.H.; Vergara-Salinas, J.R.; Perez-Correa, J.C.; Saura-Calixto, F. Macromolecular antioxidants and dietary fiber in edible seaweeds. J. Food Sci. 2017, 2, 289–295. [Google Scholar] [CrossRef]
- Ortiz, J.; Romero, N.; Robert, P.; Araya, J.; Lopez-Hernández, J.; Bozzo, C.; Navarrete, E.; Osorio, A.; Rios, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem. 2006, 99, 98–104. [Google Scholar] [CrossRef]
- Cruz-Suárez, L.E.; Ricque-Marie, D.; Tapia-Salazar, M.; Guajardo-Barbosa, C. Uso de harina de kelp (Macrocystis pyrifera) en alimentos para camarón. In Avances en Nutrición Acuícola, V. Memorias del Quinto Simposium Internacional de Nutrición Acuícola; Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Olvera-Novoa, M.A., Cerecedo-Olvera, R., Eds.; Universidad Autónoma de Nuevo León: Monterrey, Nuevo León, México, 2000; pp. 227–266. [Google Scholar]
- Duis, K.; Inglis, V.; Beveridge, M.C.M.; Hammer, C. Leaching of four different antibacterials from oil- and alginate-coated fish-feed pellets. Aquac. Res. 1995, 26, 549–556. [Google Scholar] [CrossRef]
- Hagen Rødde, R.; Vårum, K.M.; Larsen, B.A.; Myklestad, S.M. Seasonal and geographical variation in the chemical composition of the red alga Palmaria palmata (L.) Kuntze. Bot. Mar. 2004, 47, 125–133. [Google Scholar]
- Wong, K.H.; Cheung, P.C.K. Nutritional evaluation of some subtropical red and green seaweeds: Part I—Proximate composition, amino acid profiles and some physico–chemical properties. Food Chem. 2000, 71, 475–482. [Google Scholar] [CrossRef]
- Gaillard, C.; Bhatti, H.S.; Novoa-Garrido, M.; Lind, V.; Roleda, M.Y.; Weisbjerg, M.R. Amino acid profiles of nine seaweed species and their in situ degradability in dairy cows. Anim. Feed Sci. Technol. 2018, 241, 210–222. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Phycochemical Constituents and Biological Activities of Fucus spp. Mar. Drugs 2018, 16, 249. [Google Scholar] [CrossRef] [Green Version]
- Saravana, P.S.; Yin, S.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Evaluation of the chemical composition of brown seaweed (Saccharina japonica) hydrolysate by pressurized hot water extraction. Algal Res. 2016, 13, 246–254. [Google Scholar] [CrossRef]
- Cruz-Suarez, L.E.; Tapia-Salazar, M.; Nieto-López, M.G.; Guajardo, C. Comparison of Ulva clathrata and the kelps Macrocystis pyrifera and Ascophyllum nodosum as ingredients in shrimp feeds. Aquac. Nutr. 2009, 15, 421–430. [Google Scholar] [CrossRef]
- Draper, J.; Walsh, A.M.; McDonnell, M.; O’Doherty, J.V. Maternally offered seaweed extracts improves the performance and health status of the post weaned pig. J. Anim. Sci. 2016, 94, 391–394. [Google Scholar] [CrossRef]
- Ruiz, Á.R.; Gadicke, P.; Andrades, S.M.; Cubillos, R. Supplementing nursery pig feed with seaweed extracts increases final body weight of pigs. Austral J. Vet. Sci. 2018, 50, 83–87. [Google Scholar] [CrossRef]
- Bouwhuis, M.A.; Sweeney, T.; Mukhopadhya, A.; McDonnell, M.J.; O’Doherty, J.V. Maternal laminarin supplementation decreases Salmonella Typhimurium shedding and improves intestinal health in piglets following an experimental challenge with S. Typhimurium post–weaning. Anim. Feed Sci. Technol. 2017, 223, 156–168. [Google Scholar] [CrossRef]
- Bouwhuis, M.A.; McDonnell, M.J.; Sweeney, T.; Mukhopadhya, A.; O’Shea, C.J.; O’Doherty, J.V. Seaweed extracts and galacto–oligosaccharides improve intestinal health in pigs following Salmonella Typhimurium challenge. Animal 2017, 11, 1488–1496. [Google Scholar] [CrossRef]
- Michiels, J.; Skrivanova, E.; Missotten, J.; Ovyn, A.; Mrazek, J.; De Smet, S.; Dierick, N. Intact brown seaweed (Ascophyllum nodosum) in diets of weaned piglets: Effects on performance, gut bacteria and morphology and plasma oxidative status. J. Anim. Physiol. Anim. Nutr. 2012, 96, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Jiang, F.; Xu, Q.S.; Chen, D.W.; He, J. Alginic acid oligosaccharide accelerates weaned pig growth through regulating antioxidant capacity, immunity and intestinal development. RSC Adv. 2016, 6, 87026–87035. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, J.; Chen, D.W.; Yu, B.; He, J. Effects of alginate oligosaccharide on the growth performance, antioxidant capacity and intestinal digestion–absorption function in weaned pigs. Anim. Feed Sci. Technol. 2017, 234, 118–127. [Google Scholar] [CrossRef]
- Choi, Y.; Hosseindoust, A.; Goel, A.; Lee, S.; Jha, P.K.; Kwon, I.K.; Chae, B.J. Effects of Ecklonia cava as fucoidan–rich algae on growth performance, nutrient digestibility, intestinal morphology and caecal microflora in weanling pigs. Asian–Australas. J. Anim. Sci. 2017, 30, 64–70. [Google Scholar] [CrossRef] [Green Version]
- O’Doherty, J.V.; McDonnell, P.; Figat, S. The effect of dietary laminarin and fucoidan in the diet of the weanling piglet on performance and selected faecal microbial populations. Livest. Sci. 2010, 134, 208–210. [Google Scholar] [CrossRef]
- Dillon, S.; Sweeney, T.; Figat, S.; Callan, J.J.; O’Doherty, J.V. The effects of lactose inclusion and seaweed extract on performance, nutrient digestibility and microbial populations in newly weaned piglets. Livest. Sci. 2010, 134, 205–207. [Google Scholar] [CrossRef]
- Gahan, D.A.; Lynch, M.B.; Callan, J.J.; O’Sullivan, J.T.; O’Doherty, J.V. Performance of weanling piglets offered low–, medium– or high–lactose diets supplemented with a seaweed extract from Laminaria spp. Animal 2009, 3, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Heim, G.; Sweeney, T.; O’Shea, C.J.; Doyle, D.N.; O’Doherty, J.V. Effect of maternal supplementation with seaweed extracts on growth performance and aspects of gastrointestinal health of newly weaned piglets after challenge with enterotoxigenic Escherichia coli K88. Br. J. Nutr. 2014, 112, 1955–1965. [Google Scholar] [CrossRef] [Green Version]
- McAlpine, P.; O’Shea, C.J.; Varley, P.F.; Flynn, B.; O’Doherty, J.V. The effect of seaweed extract as an alternative to zinc oxide diets on growth performance, nutrient digestibility, and fecal score of weaned piglets. J. Anim. Sci. 2012, 90, 224–226. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, P.; Figat, S.; O’Doherty, J.V. The effect of dietary laminarin and fucoidan in the diet of the weanling piglet on performance, selected faecal microbial populations and volatile fatty acid concentrations. Animal 2010, 4, 579–585. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, C.J.; McAlpine, P.; Sweeney, T.; Varley, P.F.; O’Doherty, J.V. Effect of the interaction of seaweed extracts containing laminarin and fucoidan with zinc oxide on the growth performance, digestibility and faecal characteristics of growing piglets. Br. J. Nutr. 2014, 111, 798–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, A.M.; Sweeney, T.; O’Shea, C.J.; Doyle, D.N.; O‘Doherty, J.V. Effect of supplementing varying inclusion levels of laminarin and fucoidan on growth performance, digestibility of diet components, selected faecal microbial populations and volatile fatty acid concentrations in weaned pigs. Anim. Feed Sci. Technol. 2013, 183, 151–159. [Google Scholar] [CrossRef]
- Gardiner, G.E.; Campbell, A.J.; O’Doherty, J.V.; Pierce, E.; Lynch, P.B.; Leonard, F.C.; Stanton, C.; Ross, R.P.; Lawlor, P.G. Effect of Ascophyllum nodosum extract on growth performance, digestibility, carcass characteristics and selected intestinal microflora populations of grower–finisher pigs. Anim. Feed Sci. Technol. 2008, 141, 259–273. [Google Scholar] [CrossRef]
- Sweeney, T.; O’Doherty, J.V. Marine macroalgal extracts to maintain gut homeostasis in the weaning piglet. Domest. Anim. Endocrinol. 2016, 56, S84–S89. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture -2008 (SOFIA); FAO: Rome, Italy, 2009. [Google Scholar]
- Evans, F.D.; Critchley, A.T. Seaweeds for animal production use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- Cian, R.E.; Drago, S.R.; Sánchez de Medina, F.; Martínez-Augustin, O. Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Mar. Drugs 2015, 13, 5358–5383. [Google Scholar] [CrossRef] [Green Version]
- De Jesus Raposo, M.F.; De Morais, A.M.M.B.; De Morais, R.M.S.C. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar. Drugs 2016, 14, 27. [Google Scholar] [CrossRef]
- Okolie, C.L.; Rajendran, S.R.C.K.; Udenigwe, C.C.; Aryee, A.N.A.; Mason, B. Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators. J. Food Biochem. 2017, 41, e12392. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Y.; Hu, L.; Yu, H.; Xing, R.; Li, R.; Wang, X.; Li, P. In vitro prebiotic effects of seaweed polysaccharides. J. Oceanol. Limnol. 2018, 36, 926–932. [Google Scholar] [CrossRef]
- Mukhopadhya, A.; O’Doherty, J.V.; Smith, A.; Bahar, B.; Sweeney, T. The microbiological and immunomodulatory effects of spray–dried versus wet dietary supplementation of seaweed extract in the pig gastrointestinal tract. J. Anim. Sci. 2012, 90, 28–30. [Google Scholar] [CrossRef]
- Murphy, P.; Dal Bello, F.; O’Doherty, J.; Arendt, E.K.; Sweeney, T.; Coffey, A. Analysis of bacterial community shifts in the gastrointestinal tract of pigs fed diets supplemented with b–glucan from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae. Animal 2013, 7, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.B.; Sweeney, T.; Callan, J.J.; O’Sullivan, J.T.; O’Doherty, J.V. The effect of dietary Laminaria derived laminarin and fucoidan on intestinal microflora and volatile fatty acid concentration in pigs. Livest. Sci. 2010, 133, 157–160. [Google Scholar] [CrossRef]
- Lynch, M.B.; Sweeney, T.; Callan, J.J.; O’Sullivan, J.T.; O’Doherty, J.V. The effect of dietary Laminaria derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs. J. Sci. Food Agric. 2010, 90, 430–437. [Google Scholar] [CrossRef]
- Reilly, P.; Sweeney, T.; Pierce, K.M.; Callan, J.J.; Julka, A.; O’Doherty, J.V. The effect of seaweed extract inclusion on gut health and immune status of the weaned pig. Animal 2008, 2, 1465–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, S.G.; Sweeney, T.; Bahar, B.; O’Doherty, J.V. Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge. J. Anim. Sci. 2012, 90, 505–514. [Google Scholar] [CrossRef]
- Walsh, A.M.; Sweeney, T.; O’Shea, C.J.; Doyle, D.N.; O’Doherty, J.V. Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br. J. Nutr. 2013, 110, 1630–1638. [Google Scholar] [CrossRef] [Green Version]
- Heim, G.; O’Doherty, J.V.; O’Shea, C.J.; Doyle, D.N.; Egan, A.M.; Thornton, K.; Sweeney, T. Maternal supplementation of seaweed–derived polysaccharides improves intestinal health and immune status of suckling piglets. J. Nutr. Sci. 2015, 4, e27. [Google Scholar] [CrossRef] [Green Version]
- Heim, G.; Sweeney, T.; O’shea, C.J.; Doyle, D.N.; O’doherty, J.V. Effect of maternal dietary supplementation of laminarin and fucoidan, independently or in combination, on pig growth performance and aspects of intestinal health. Anim. Feed Sci. Technol. 2015, 204, 28–41. [Google Scholar] [CrossRef]
- Bouwhuis, M.A.; Sweeney, T.; Mukhopadhya, A.; Thornton, K.; McAlpine, P.O.; O’Doherty, J.V. Zinc methionine and laminarin have growth–enhancing properties in newly weaned pigs influencing both intestinal health and diarrhoea occurrence. J. Anim. Physiol. Anim. Nutr. 2016, 101, 1273–1285. [Google Scholar] [CrossRef]
- McDonnell, M.; Bouwhuis, M.; Sweeney, T.; O’Shea, C.; O’Doherty, J. Effects of dietary supplementation of galactooligosaccharides and seaweed–derived polysaccharides on an experimental Salmonella Typhimurium challenge in pigs. J. Anim. Sci. 2016, 94, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Rossi, R.; Pastorelli, G.; Cannata, S.; Corino, C. Recent advances in the use of fatty acids as supplements in pig diets: A review. Anim. Feed Sci. Technol. 2010, 162, 1–11. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, J.; Chen, D.W.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; He, J. Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status. RSC Adv. 2018, 8, 13482–13492. [Google Scholar] [CrossRef] [Green Version]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatsos, I.N.; Rebours, C. Seaweed extracts as antimicrobial agents in aquaculture. J. Appl. Phycol. 2015, 27, 2017–2035. [Google Scholar] [CrossRef] [Green Version]
- Eom, S.H.; Kim, Y.M.; Kim, S.K. Antimicrobial effect of phlorotannins from marine brown algae. Food Chem. Toxicol. 2012, 50, 3251–3255. [Google Scholar] [CrossRef]
- Pina–Pérez, M.C.; Rivas, A.; Martínez, A.; Rodrigo, D. Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chem. 2017, 235, 34–44. [Google Scholar] [CrossRef]
- Shannon, E.; Abu–Ghannam, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs 2016, 14, 81. [Google Scholar] [CrossRef]
- Lane, A.L.; Stout, E.P.; Lin, A.-S.; Prudhomme, J.; le Roch, K.; Fairchild, C.R.; Franzblau, S.G.; Hay, M.E.; Aalbersberg, W.; Kubanek, J. Antimalarial bromophycolides J–Q from the Fijian red alga Callophycus serratus. J. Org. Chem. 2009, 74, 2736–2742. [Google Scholar] [CrossRef] [Green Version]
- Castillo, S.; Heredia, N.; García, S. 2 (5H)–Furanone, epigallocatechin gallate, and a citric–based disinfectant disturb quorum–sensing activity and reduce motility and biofilm formation of Campylobacter jejuni. Folia Microbiol. 2015, 60, 89–95. [Google Scholar] [CrossRef]
- Kadam, S.U.; O’Donnell, C.P.; Rai, D.K.; Hossain, M.B.; Burgess, C.M.; Walsh, D.; Tiwari, B.K. Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound assisted extraction, characterization and bioactivity. Mar. Drugs 2015, 13, 4270–4280. [Google Scholar] [CrossRef]
- Rodrigues, D.; Alves, C.; Horta, A.; Pinteus, S.; Silva, J.; Culioli, G.; Thomas, O.P.; Pedrosa, R. Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga, Sphaerococcus coronopifolius. Mar. Drugs 2015, 13, 713–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou Zeid, A.H.; Aboutabl, E.A.; Sleem, A.A.; El-Rafie, H.M. Water soluble polysaccharides extracted from Pterocladia capillacea and Dictyopteris membranacea and their biological activities. Carbohydr. Polym. 2014, 113, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Vijayabaskar, P.; Vaseela, N.; Thirumaran, G. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chin. J. Nat. Med. 2012, 10, 421–428. [Google Scholar] [CrossRef]
- Ren, D.; Bedzyk, L.A.; Ye, R.W.; Thomas, S.M.; Wood, T.K. Differential gene expression shows natural brominated furanones interfere with the autoinducer–2 bacterial signaling system of Escherichia coli. Biotechnol. Bioeng. 2004, 88, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Holanda, M.L.; Melo, V.M.M.; Silva, L.M.C.M.; Amorim, R.C.N.; Pereira, M.G.; Benevides, N.M.B. Differential activity of a lectin from Solieria filiformis against human pathogenic bacteria. Braz. J. Med. Biol. Res. 2005, 38, 1769–1773. [Google Scholar] [CrossRef] [Green Version]
- Brameyer, S.; Heermann, R. Specificity of signal–binding via non–AHL LuxR–type receptors. PLoS ONE 2015, 10, e0124093. [Google Scholar] [CrossRef] [Green Version]
- Hentzer, M.; Givskov, M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Investig. 2003, 112, 1300–1307. [Google Scholar] [CrossRef]
- Lee, J.-H.; Eom, S.-H.; Lee, E.-H.; Jung, Y.-J.; Kim, H.-J.; Jo, M.-R.; Son, K.-T.; Lee, H.-J.; Kim, J.H.; Lee, M.-S. In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne–related bacteria. Algae 2014, 29, 47–55. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.K. Biological phlorotannins of Eisenia bicyclis. In Marine Algae Extracts: Processes, Products, and Applications; Kim, S.-K., Chojnacka, K., Eds.; Wiley: Oxford, UK, 2015; pp. 453–464. [Google Scholar]
- Eom, S.-H.; Lee, D.-S.; Jung, Y.-J.; Park, J.-H.; Choi, J.-I.; Yim, M.-J.; Jeon, J.-M.; Kim, H.-W.; Son, K.-T.; Je, J.-Y.; et al. The mechanism of antibacterial activity of phlorofucofuroeckol–A against methicillin–resistant Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2014, 98, 9795–9804. [Google Scholar] [CrossRef]
- Beaulieu, L.; Bondu, S.; Doiron, K.; Rioux, L.-E.; Turgeon, S.L. Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J. Funct. Foods 2015, 17, 685–697. [Google Scholar] [CrossRef]
- Berri, M.; Olivier, S.C.; Olivier, M.; Helloin, E.; Jacques, I.; Salmon, H.; Demais, H.; Le Goff, M.; Nival Collen, P. Marine–sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. J. Appl. Phycol. 2016, 28, 2999–3008. [Google Scholar]
- Jacobsen, C.; Sørensen, A.M.; Holdt, S.L.; Akoh, C.C.; Hermund, D.B. Source, Extraction, Characterization, and Applications of Novel Antioxidants from Seaweed. Annu. Rev. Food Sci. Technol. 2019, 10, 541–568. [Google Scholar] [CrossRef] [PubMed]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–549. [Google Scholar] [CrossRef]
- Rupérez, P.; Saura-Calixto, F. Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur. Food Res. Technol. 2001, 212, 349–354. [Google Scholar]
- Farvin, K.H.S.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef]
- Ramus, J.; Lemons, F.; Zimmerman, C. Adaptation of light–harvesting pigments to downwelling light and the consequent photosynthetic performance of the eulittoral rockweeds Ascophyllum nodosum and Fucus vesiculosus. Mar. Biol. 1977, 42, 293–303. [Google Scholar] [CrossRef]
- Noviendri, D.; Jaswir, I.; Salleh, M.H.; Taher, M.; Miyashita, K.; Ramli, N. Fucoxanthin extraction and fatty acid analysis of Sargassum binderi and S. duplicatum. J. Med. Plants Res. 2011, 5, 2405–2412. [Google Scholar]
- Narayani, S.S.; Saravanan, S.; Bharathiaraja, S.; Mahendran, S. Extraction, partially purification and study on antioxidant property of fucoxanthin from Sargassum cinereum J. Agardh. J. Chem. Pharm. Res. 2016, 8, 610–616. [Google Scholar]
- Jensen, A. Tocopherol content of seaweed and seaweed meal: II. Individual, diurnal and seasonal variations in some Fucaceae. J. Sci. Food Agric. 1969, 20, 454–458. [Google Scholar] [CrossRef]
- Jensen, A. Tocopherol content of seaweed and seaweed meal. 3. Influence of processing and storage on content of tocopherols, carotenoids and ascorbic acid in seaweed meal. J. Sci. Food Agric. 1969, 20, 622–626. [Google Scholar] [CrossRef]
- Wen, X.; Peng, C.; Zhou, H.; Lin, Z.; Lin, G.; Chen, S.; Li, P. Nutritional composition and assessment of Gracilaria lemaneiformis Bory. J. Integr. Plant Biol. 2006, 48, 1047–1053. [Google Scholar] [CrossRef]
- Naseri, A.; Holdt, S.L.; Jacobsen, C. Nutritional value added compounds in industrial red seaweed used in carrageenan production. J. Aquat. Food Prod. Technol. 2019, 28, 967–973. [Google Scholar] [CrossRef]
- Rajauria, G.; Draper, J.; McDonnel, M.; O’Doherty, J.V. Effect of dietary seaweed extracts, galactooligosaccharide and vitamin E supplementation on meat quality parameters in finisher pigs. Innov. Food Sci. Emerg. Technol. 2016, 37, 269–275. [Google Scholar] [CrossRef]
- Moroney, N.C.; O’Grady, M.N.; O’Doherty, J.V.; Kerry, J.P. Addition of seaweed (Laminaria digitata) extracts containing laminarin and fucoidan to porcine diets: Influence on the quality and shelf–life of fresh pork. Meat Sci. 2012, 92, 423–429. [Google Scholar] [CrossRef]
- Moroney, N.C.; O’Grady, M.N.; Robertson, R.C.; Stanton, C.; O’Doherty, J.V.; Kerry, J.P. Influence of level and duration of feeding polysaccharide (laminarin and fucoidan) extracts from brown seaweed (Laminaria digitata) on quality indices of fresh pork. Meat Sci. 2015, 99, 132–141. [Google Scholar] [CrossRef]
- Smith, A.G.; O’Doherty, J.V.; Reilly, P.; Ryan, M.T.; Bahar, B.; Sweeney, T. The effects of laminarin derived from Laminaria digitata on measurements of gut health: Selected bacterial populations, intestinal fermentation, mucin gene expression and cytokine gene expression in the pig. Br. J. Nutr. 2011, 105, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Berri, M.; Olivier, M.; Holbert, S.; Dupont, J.; Demais, H.; Le Goff, M.; Collen, P.N. Ulvan from Ulva armoricana (Chlorophyta) activates the PI3K/Akt signalling pathway via TLR4 to induce intestinal cytokine production. Algal Res. 2017, 28, 39–47. [Google Scholar] [CrossRef]
- Katayama, M.; Fukuda, T.; Okamura, T.; Suzuki, E.; Tamura, K.; Shimizu, Y.; Suda, Y.; Suzuki, K. Effect of dietary addition of seaweed and licorice on the immune performance of pigs. Anim. Sci. J. 2011, 82, 274–281. [Google Scholar] [CrossRef]
- Azizi, A.F.N.; Miyazaki, R.; Yumito, T.; Ohashi, Y.; Uno, S.; Miyajima, U.; Kumamoto, M.; Uchiyama, S.; Yasuda, M. Effect of maternal supplementation with seaweed powder on immune status of liver and lymphoid organs of piglets. J. Vet. Med. Sci. 2018, 80, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Bussy, F.; Le Goff, M.; Salmon, H.; Delaval, J.; Berri, M.; Pi, N.C. Immunomodulating effect of a seaweed extract from Ulva armoricana in pig: Specific IgG and total IgA in colostrum, milk, and blood. Vet. Anim. Sci. 2019, 7, 100051. [Google Scholar] [CrossRef]
- NRC, National Research Council. Nutrient Requirements of Swine, 7th Revised ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Duinker, A.; Roiha, I.S.; Amlund, H.; Dahl, L.; Lock, E.-J.; Kögel, T.; Måge, A.; Lunestad, B.T. Potential Risks Posed by Macroalgae for Application as Feed and Food—A Norwegian Perspective; National Institute of Nutrition and Seafood Research (NIFES): Trondheim, Norway, 2016; p. 23. [Google Scholar]
Seaweeds | BROWN | RED | GREEN | |||||
---|---|---|---|---|---|---|---|---|
Laminaria spp. * | Ascophillum nodosum | Sargassum spp. ⁑ | Fucus spp. # | Saccharina latissima | Macrocystis pyrifera | Palmaria palmata | Ulva lactuca | |
Crude protein % | 9.4 (5.3–16.1) | 7.4 (4.9–8.7) | 10 (8.5–13.6) | 12.6 (12.2–12.9) | 7.6 (7.1–8.1) | 8.3 (8–10) | 21.9 (15.1–31.4) | 16.2 (7.06–23.1) |
Ether extract % | 1.1 (0.8–2.4) | 5.3 (3.9–8.6) | 0.8 (0.5–1.2) | 6.1 (3.7–8.4) | 5.5 | 1.8 (0.5–3.9) | 8.9 (4.9–12.9) | 1.3 (0.25–1.64) |
Crude Fiber % | 11.6 (6.6–16.6) | 5.5 (5.4–5.5) | 18.2 (6.4–38) | 10.7 (5.4–16) | 23 (6.6–40) | 33.4 (5.5–50) | 1.5 (1.49–1.50) | 9.6 (6.9–12.3) |
Ash % | 27.8 (19.6–31.5) | 24.8 (21.1–30.9) | 27.6 (19.4–35.9) | 21.6 (20.7–22.5) | 22.5 (13.3–31.7) | 25.8 (20–35) | 19.3 (9–24.5) | 25.7 (21.3–26.2) |
Gross energy MJ/kg | 12.7 (12.5–13) | 14.1 | 9.1 | 15.7 (15.5–16) | 11.1 | 9 | 16.9 | 15.2 (14.7–15.7) |
Ca g/kg | 10 (8–12.55) | 16.4 (9.8–20) | 14.7 (3.8–27.2) | 9.9 (8.9–12.8) | 9.8 (9.6–10) | 14.1 (11.6–16.6) | 2.6 (1–4.2) | 12.6 (6.1–29.2) |
P g/kg | 2.2 (1.2–3) | 1 | 1.7 (1–2.2) | 1.9 (1.4–2.3) | 2.7 (2.2–3.1) | 2.9 (2.6–3.2) | 4 (3–5) | 2.1 (1.3–2.7) |
K g/kg | 54 (48.6–59.5) | 28.5 (20–37.7) | 46.2 | 22.9 (0.4–36.1) | 52.5 | 67.5 (44.8–112.3) | 37.1 (27–47.2) | 14.4 (1.5–22.1) |
Na g/kg | 23.9 (22.5–25.3) | 37.5 (25–45.7) | – | 24.2 (0.2–45.8) | 33 | 36.9 (17.1-56.7) | 7.2 (3.3–11) | 13.9 (2.9–20.2) |
Mg g/kg | 6.3( 5.5–7.2) | 6.8 (1–8.6) | 6.4 (4–7.7) | 7.5 (7–8.33) | 6.3 (5.1–7.4) | 39 (16.2–61.8) | 2.3 | 13 (1.9–20.5) |
Mn, mg/kg | 7.1 (3.1–11) | 17.8 (12–25) | 88.3 (26.7–214) | 104.7 (8.2–177.8) | 8.2 (3.9–12.4) | 11 | 71.6 (11–168) | 38.7 (10.1–122) |
Zn mg/kg | 22.6 11–31.5) | 116.8 (30.3–181) | 79.3 (12–214) | 118.1 (45.3–275.3) | 35.4 (29.2–41.55) | 12 | 65.1 (23.6–143) | 29 (16.1–45) |
Cu mg/kg | 2.4 (1.2–5.9) | 17.8 (4.2–28) | 6. (2.3–7) | 9.3 (2–23.5) | 4.5 (1.1–7.9) | 2 | 11.1 (3.8–24) | 8.5 (3.3–12) |
Fe mg/kg | 107.3 (58–179) | 157.8 (122–241) | 2678 (307–7291) | 351.9 (189–559) | 529 (30–1028) | 117 | 202.5 (139–315) | 462.2 (105–1481) |
I mg/kg | 2991.7 (833–5100) | 777 | 399.5 (216–583) | 376 (232–677) | 1448.5 (957–1940) | – | 278 | 56.7 |
Se mg/kg | 0.6 (0.29–0.93) | 0.5 | 1.2 (1.1–1.4) | 0.8 (0.2–1.2) | 1.1 (0.9–1.3) | – | 0.1 | 1.2 (0.4–1.9) |
Co mg/kg | 0.1 (0.08–0.11) | 0.6 | 0.4 (0.36–0.47) | 1.1 (0.8–1.4) | 0.4 | – | 0.03 | 0.5 (0.3–0.6) |
Vitamin E mg/kg | 672 (3–2000) | 230 (80–500) | 10 | 164 (100–356) | 1.6 | 928 | 69.6 (22–152) | 12.95 (2.8–35) |
Vitamin A mg/kg ** | 154.6 (22–299) | 57 (35–80) | 51 | 17.8 (7–28.6) | 0.42 | 12.39 | 142.9 (15.2–270) | 3.5 (0.1–7) |
Vitamin C mg/kg | 632 (355–910) | 860 (81–1650) | 560 | 383 (141–770) | 11.5 (3.5–18.8) | – | 78.3 (0.7–156) | 141.5 (42–241) |
Vitamin B1 mg/kg | 7.45 (2.4–12.5) | 14(1–27) | 4 | 0.2 | 0.72 (0.5–0.94) | – | 18 (0.7–40) | 40 |
Vitamin B2 mg/kg | 4.9 (1.4–8.5) | 7.5 (5–10) | 65 | 0.35 | 1.7 (1.4–2.1) | – | 16 (4.3–19) | 5.1 (5–5.3) |
Vitamin B3 mg/kg | 314 (158–612) | 15 | 20 | – | – | – | 45 (10.1–83) | – |
References | [13,17,19,21,37,38,39,40,41] | [17,18,21,24,28,37,42,43,44,45] | [17,19,24,37,45] | [18,19,21,23,28,37,40] | [19,21,23,28,38] | [17,46,47,48,49] | [17,23,28,37,50] | [17,19,21,23,37,44,47,51] |
Seaweeds | BROWN | RED | GREEN | |||||
---|---|---|---|---|---|---|---|---|
Laminaria digitata | Ascophillum nodosum | Sargassum spp. ⁑ | Fucus spp. # | Saccharina latissima | Macrocystis pyrifera | Palmaria palmata | Ulva lactuca | |
Lysine | 4.41 (4.1–4.8) | 4.77 (4.3–5.4) | 3.57 (2.8–4.3) | 7.6 (6.7–8.2) | 4.05 (4–4.1) | 6.63 (5.2–7.5) | 1.42 (1.2–1.65) | 2.09 (0.5–1.9) |
Histidine | 1.82 (1.3–2.4) | 1.63 (1.4–1.9) | 0.82 (0.6–1) | 1.33 (0.4–2) | 2.2 (1.2–3.2) | 2.33 (2–2.9) | 0.4 (0.3–0.5) | 0.83 (0.1–2.0) |
Isoleucine | 2.91 (2.6–3.2) | 3.76 (3.1–4.3) | 2.70 (1.9–3.5) | 3.70 (0.9–6) | 3.1 (3–3.1) | 4.47 (3.2–5.6) | 1.31 (0.7–1.9) | 1.5 (0.4–5.2) |
Leucine | 4.93 (4.4–5.4) | 6.63 (5.3–7.5) | 5.11 (4.4–5.8) | 6.42 (1.6–10.5) | 5.06 (4.2–5.9) | 7.53 (5.5–9.2) | 2.42 (1.3–3.6) | 2.9 (0.7–6.6) |
Arginine | 3.2 (2.9–3.4) | 5.06 (4.2–6.0) | 1.6 (1–3–1.9) | 3.24 (1.1–4.6) | 4.0 (3.9–4.1) | 4.87 (3.5–6.1) | 1.9 (1.2–2.6) | 2.12 (0.5–1.3) |
Methionine | 1.5 (1.4–1.5) | 1.91 (1.3–2.5) | 0.69 (0.68–0.7) | 0.81 (0.2–1.8) | 2 (1.9–2.1) | 2.18 (1.6–2.6) | 0.91 (0.5–2.3) | 1.21 (0.2–1.8) |
Phenylalanine | 3.24 (2.8–3.6) | 4.23 (3.2–5.0) | 2.98 (2.2–3.7) | 3.56 (0.9–5.2) | 3.82 | 5.42 (4.1–6.2) | 1.7 (0.8–2.6) | 2.4 (0.2–3.6) |
Threonine | 3.68 (3.4–3.9) | 4.6 (3.6–5.4) | 3.9 (3.3–4.5) | 3.09 (1.2–5.1) | 4.3 (4.2–4.4) | 5.17 (3.6–6.7) | 1.26 (0.7–2.8) | 2.17 (0.5–3.8) |
Tryptophan | 1.74 (1.72–1.76) | – | – | 1.22 (0.5–1.9) | – | – | 0.4 (0.2–0.6) | 0.51 (0.4–0.6) |
Valine | 5.38 (4.7–6.0) | 4.76 (4.1–5.5) | 3.84 (2.9–4.8) | 4.65 (1.1–8.0) | 4.1 (3.7–4.5) | 5.87 (4.3–7.1) | 2.25 (1.1–3.4) | 2.03 (0.9–4.4) |
Tyrosine | 1.74 (1.7–1.8) | 2.05 (0.9–3.2) | 2.35 (1.8–2.9) | 2.26 (1.9–2.6) | – | 2.8 (2.1–3.5) | 1.15 (0.6–1.7) | 1.03 (0.5–1.4) |
Alanine | 6.68 (4.5–8.8) | 5.95 (5.4–6.5) | 4.23 (3.3–5.1) | 1.58 (1.5–1.6) | 6.8 (5.0–8.5) | 4.81 (4.5–5.0) | 2.23 (1.1–3.3) | 3.22 (0.7–5.9) |
Glutamine | 7.3 (4.6–9.9) | 14.5 (1.4–11.6) | 19.5 (18.9–20.1) | 20.1 (19.6–20.3) | 10.5 (10.6–10.4) | 14.1 (9.7–18.3) | 16.6 (11.0–18.7) | 13.2 (11.5–14.8) |
Asparagine | 6 (3.9–8.1) | 8.4 (8.3–8.5) | 12 (11.5–12–5) | 12.8 (10.9–16.7) | 9.4 (8.8–9.8) | 10.8 (8.3–13.3) | 11.3 (9.9–14.3) | 10.4 (7.9–12.2) |
References | [41,52] | [17,18] | [14] | [18,53] | [52,54] | [48,49,55] | [25,28] | [17,18,47] |
Algae Supplement | Dose | Animal | Control | Supplemented | Diff. % | Ref. |
---|---|---|---|---|---|---|
A. nodosum | Dried seaweed 2.5–5–10 g/kg | Weaning to 28 d | 0.220 | 0.209 | −5.0 | [60] |
0.198 | −10.0 | |||||
0.213 | −3.18 | |||||
A. nodosum | Dried seaweed 10–20 g/kg | Weaning to 11 d | 0.027 | 0.054 | +100 | [42] |
0.040 | +48.14 | |||||
Brown seaweed | Alginic acid oligosaccharides (50–100–200 mg/kg) | Weaning to 14 d | 0.216 | 0.248 (50) | +14.81 | [61] |
0.304 * (100) | +40.78 | |||||
0.301 * (200) | +39.35 | |||||
Brown seaweed | Alginates oligosaccharides (100 mg/kg) | Weaning to 21 d | 0.441 | 0.516 | +17.01 | [62] |
Ecklonia cava | FUC = 0.05 – 0.10 – 0.156 g/kg | Weaning to 28 d | 0.344 | 0.347 | +0.87 | [63] |
0.368 * | +6.98 | |||||
0.360 * | +4.65 | |||||
Laminaria digitata | LAM + FUC (0.314 –0.250 g/kg) – lactose 15 or 25%) | Weaning to 25 d | 0.275 0.287 | 0.293 (15% lact.) | +6.55 | [64] |
0.350 ** (25% lact.) | +21.95 | |||||
Laminaria spp. | LAM (1 g/day)—sows, 109 d until weaning at 20 d | 20 d lactation Weaning to 26 d Challenge Salmonella Typhimurium at 10 d post weaning | 0.340 | 0.450 ** | +32.35 | [58] |
LAM (0.3 g/kg)—piglets | 0.410 | 0.370 | −16.13 | |||
Laminaria spp. | LAM + FUC (0.18 + 0.34 g/kg) | 30.9 kg pigs for 28 d Challenge Salmonella Typhimurium at 10d | 0.620 | 0.720 *** | +16.13 | [59] |
Laminaria spp. | LAM (0.112 g/kg) y FUC (0.089 g/kg) z | Weaning to 25 d | 0.281 | 0.322 ** | +14.59 | [65] |
Laminaria spp. | LAM + FUC (1 g + 0.8 g day) − sows LAM + FUC (0.3 + 0.24 g/kg) − piglets | Weaning to 126 d | 0.760 | 0.850 **(lactation effect) | +11.84 | [56] |
0.800 | 0.810 (weaning effect) | +1.23 | ||||
Laminaria spp. | Extract (1–2–4 g/kg) x LAM = 0.11–0.22–0.44 FUC = 0.09–0.18–0.36 | Weaning to 21 d | 0.249 | 0.274 ***(1 g/kg) | +10.04 | [66] |
0.313 *** (2 g/kg) | +25.70 | |||||
0.303 ***(4 g/kg) | +21.69 | |||||
Laminaria spp. | LAM (0.30 g/kg) | Weaning to 32 d | 0.280 | 0.353 * | +26.07 | [67] |
Laminaria spp. | LAM + FUC (0.30 + 0.24 g/kg) | Weaning to 40 d | 0.356 | 0.374 | +5.06 | [68] |
Laminaria spp. | LAM (0.3 g/kg) FUC (0.36 g/kg) LAM + FUC (0.3 + 0.36 g/kg) | Weaning to 21 d | 0.288 | 0.319 * LAM 0.3 | +10.7 | [69] |
0.302 FUC 0.36 | +4.86 | |||||
0.328 LAM + FUC | +13.89 | |||||
Laminaria spp. | LAM + FUC (0.30 + 0.24 g/kg) k | Weaning to 21 d 21–40 d | 0.235 | 0.239 | +1.70 | [70] |
0.489 | 0.523 | +6.25 | ||||
Laminaria spp. | LAM (0.15–0.30 g/kg) FUC (0.24 g/kg) LAM + FUC (0.15 + 0.24 and 0.30 + 0.24 g/kg) | Weaning to 35 d | 0.340 | 0.351 FUC 0.24 | +3.24 | [71] |
0.334 LAM 0.15 | –1.76 | |||||
0.347 FUC 0.24 LAM 0.15 | +2.06 | |||||
0.390* LAM 300 | +14.71 | |||||
0.358 FUC 0.24 LAM 0.3 | +5.29 | |||||
OceanFeedSwine | Seaweeed extract (5 g/kg) | 21 to 56 d | 0.401 | 0.380 | −5.24 | [57] |
56–160 d | 0.798 | 0.824 * | +3.26 |
Algae Supplement | Dose g/kg | Animal | Effects on Digestibility | Treatment vs. Control, % | Ref. |
---|---|---|---|---|---|
A. nodosum | Dried intact (2.5 g/kg) | Male Pigs, 45 kg LW | NS | – | [73] |
A. nodosum | Dried intact (10–20 g/kg) | Weaned piglets (35 d age) | NS | – | [42] |
Brown seaweed | Alginates olisaccharides (100 mg/kg) | Weaned piglets, 6.2 kg LW | Improved digestibility of | [62] | |
N, fat, ash GE | +6.7% +10.8% +25.9% +4.0% | ||||
Ecklonia cava | Seaweed (0.5–1—1.5 g/kg) s | Weaned piglets 7.8 kg LW | Improved digestibility of GE | +3.3% (1g/kg) | [63] |
Laminaria digitata | LAM + FUC (0.314–0.250 g/kg) | Weaned piglets, 7.2 kg LW | Improved digestibility of | [64] | |
OM, N, NDF, GE | +4.5% +7.3% +73.3% +5.9% | ||||
Laminaria spp. | Extract (1–2–4 g/kg) x | Weaned piglets (24 d age) | NS | [66] | |
Laminaria spp. | Seaweed extract LAM (0.112 g/kg) y FUC (0.089 g/kg) z | Weaned piglets, (24 d age) | Improved digestibility of | [65] | |
N, GE | +6.7% +5.2% | ||||
Laminaria spp. | LAM + FUC (0.30 + 0.24 g/kg) | Weaned piglets (22 d age) | Improved digestibility of | [68] | |
DM, N, NDF | +8.8% +8.9% +57.5% | ||||
Laminaria spp. | LAM (0,15–0,30 g/kg) FUC (0,24 g/kg) LAM + FUC (0,15 + 0.24 and 0.30 + 0.24 g/kg) | Weaned piglets (24 d age) | improved digestibility of | [71] | |
DM, LAM and LAM + FUC OM, LAM and LAM + FUC N, LAM NDF, LAM and LAM + FUC GE, LAM and LAM + FUC | +7.0% – +4.5% +5.9% – +3.5% +5.1% 54.5% – 39.7% +7.3% – +4.3% | ||||
Laminaria spp. | LAM (0.30 g/kg) FUC (0.24 g/kg) LAM + FUC (0.30 + 0.24 g/kg) | Weaned piglets (24 d age) | Improved digestibility of | [67] | |
DM, LAM and LAM + FUC N, LAM Ash, LAM and LAM + FUC GE, LAM and LAM + FUC | +7.9% – +4.5% +6.6% 58.0% – 42.6% +8.5% – +4.3% | ||||
Laminaria spp. | Extract (0.66 g/kg) k | Weaned piglets (24 d age) | Improved digestibility of | [70] | |
OM, N, Ash, NDF, GE | +8.8% +8.9% +82.4% +57.5% +10.9% |
Strain | Seaweed | Functional Group | Seaweed | Ref. |
---|---|---|---|---|
Campylobacter jejuni | Delisea pulchra | Halogenated furanone | Red | [99] |
Enterococcus faecium vancomycin-resistant | Callophycus serratus | Diterpene-benzoate | Red | [98] |
Escherichia coli | Ascophyllum nodosum and Laminaria hyperborea | Laminarin | Brown | [100] |
Sphaerococcus coronopifolius | Sphaerane bromoditerpenes | Red | [101] | |
Pterocladia capillacea | Water-extracted polysaccharides | Red | [102] | |
Sargassum swartzii | Sulphated polysaccharides | Red | [103] | |
Delisea pulchra | Halogenated furanone | Red | [104] | |
Listeria monocytogenes | Ascophyllum nodosum and Laminaria hyperborea | Laminarin | Brown | [100] |
Pseudomonas aeruginosa | Solieria filiformis | Lectin | Red | [105] |
Sphaerococcus coronopifolius | Sphaerane bromoditerpenes | Red | [101] | |
Delisea pulchra | Halogenated furanone | Red | [106,107] | |
Propionibacterium | Eisenia bicyclis | Phlorofucofuroeckol | Brown | [108,109] |
Salmonella typhimurium | Ascophyllum nodosum and Laminaria hyperborea | Laminarin | Brown | [100] |
Staphylococcus aureus | Eisenia bicyclis | Phlorofucofuroeckol | Brown | [110] |
Ascophyllum nodosum and Laminaria hyperborea | Laminarin | Brown | [100] | |
Pterocladia capillacea | Water–extracted polysaccharides | Red | [102] | |
Staphylococcus aureus methicillin resistant | Saccharina longicruris | Extracted peptides (>10 kDa) | Brown | [111] |
Sphaerococcus coronopifolius | Sphaerane bromoditerpenes | Red | [101] | |
Callophycus serratus | Diterpene-benzoate | Red | [98] |
Strain | MIC (mg/mL) |
---|---|
Pasteurella multocida | 1.56 |
Pasteurella multocida subsp. multocida | 3.125 |
Streptococcus suis | 6.25 |
Trueperella pyogenes | 50 |
Bordetella bronchiseptica | 50 |
Escherichia coli K85 | >50 |
Escherichia coli K88 (F4) | >50 |
Algae Supplement | Dose g/kg or g/day | Animal | Antioxidant Effects | Treatment vs. Control, % | Ref. |
---|---|---|---|---|---|
A. nodosum | Dried seaweed 5–10 g/kg | Weaned piglets, 6.59 kg LW | Plasma TBARS a, FRAP b, α-tocopherol | NS | [60] |
Brown seaweed | Alginic acid olisaccharides (100 mg/kg) | Weaned piglets, 7.8 kg LW | Serum | [61] | |
T-AOC e SOD f CAT g MDA h | +14% +20% +37% −26% | ||||
Brown seaweed | Alginates olisaccharides (100 mg/kg) | Weaned piglets, 6.2 kg LW | Serum | [62] | |
T-AOC CAT GSHi MDA | +21% +28% +28% −10% NS | ||||
Brown seaweed | Alginates olisaccharides (100 mg/kg) | Weaned piglets, 6.2 kg LW | Duodenum | [92] | |
T-AOC | +45% | ||||
MDA | −40% | ||||
Jejunum | |||||
T-AOC | +39% | ||||
CAT | +22% | ||||
MDA | −36% | ||||
Ileum | |||||
T-AOC | +58% | ||||
CAT | +72% | ||||
MDA | –35% | ||||
Laminaria digitata | Wet (W) or spray dried (SD) seaweed LAM + FUC (0.5+0.4 g/kg) | Pigs, 14.5 kg LW | Plasma TAS c LD muscle TBARS (refrig. storage 14 d) | NS −29% SD −47% W | [125] |
Laminaria digitata | LAM + FUC (0.45 or 0.9 g/kg) 3 or 6 weeks pre slaughter | Pigs, 82 kg LW | Plasma TAS LD muscle TBARS (refrig. storage 14 d) 0.45 for 3 weeks 0.90 for 3 weeks | NS −57% −60% | [126] |
Laminaria spp. | LAM + FUC (0.18 + 0.33 g/kg) | Pigs, 71 kg LW | Serum DPPH d LD muscle TBARS (refrig. storage 14 d) | +400% −41% | [124] |
Trace Element | Brown Seaweed 1 | Green Seaweed 2 | Red Seaweed 3 | Feed 4 | Feed Ingredient 4 | Ref. |
---|---|---|---|---|---|---|
Cadmium | 0.05–8 | 0.03–4 | 0.04–3.8 | 0.5 (1 *) | 1 | [19,21,39,133] |
Mercury | <0.005–0.16 | 0.005–0.07 | <0.005–0.03 | 0.1 (0.2 *) | 0.1 | [19,21,39,133] |
Lead | 0.01–7 | 0.05–7 | 0.01–19 | 5 | 10 | [19,21,133] |
Arsenic | 8–120 | 0.8–18 | 1–50 | 2 (10 *) | 40 | [19,21,39,133] |
Inorganic arsenic | 0.03–7.7 | 0.2–0.4 | 0.03–0.6 | – | – | [21,133] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corino, C.; Modina, S.C.; Di Giancamillo, A.; Chiapparini, S.; Rossi, R. Seaweeds in Pig Nutrition. Animals 2019, 9, 1126. https://doi.org/10.3390/ani9121126
Corino C, Modina SC, Di Giancamillo A, Chiapparini S, Rossi R. Seaweeds in Pig Nutrition. Animals. 2019; 9(12):1126. https://doi.org/10.3390/ani9121126
Chicago/Turabian StyleCorino, Carlo, Silvia Clotilde Modina, Alessia Di Giancamillo, Sara Chiapparini, and Raffaella Rossi. 2019. "Seaweeds in Pig Nutrition" Animals 9, no. 12: 1126. https://doi.org/10.3390/ani9121126
APA StyleCorino, C., Modina, S. C., Di Giancamillo, A., Chiapparini, S., & Rossi, R. (2019). Seaweeds in Pig Nutrition. Animals, 9(12), 1126. https://doi.org/10.3390/ani9121126