Amino Acids Influencing Intestinal Development and Health of the Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Impacts of Amino Acids on Piglet Intestinal Health
2.1. Arginine
2.2. Glutamate
2.3. Threonine
2.4. Tryptophan
2.5. Sulphur-Containing Amino Acids
2.6. Branched-Chain Amino Cids
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jayaraman, B.; Nyachoti, C.M. Husbandry practices and gut health outcomes in weaned piglets: A review. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2017, 3, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Lallès, J.-P.; Bosi, P.; Smidt, H.; Stokes, C.R. Weaning—A challenge to gut physiologists. Livest. Sci. 2007, 108, 82–93. [Google Scholar] [CrossRef]
- Chen, H.; Chen, D.; Qin, W.; Liu, Y.; Che, L.; Huang, Z.; Luo, Y.; Zhang, Q.; Lin, D.; Liu, Y.; et al. Wheat bran components modulate intestinal bacteria and gene expression of barrier function relevant proteins in a piglet model. Int. J. Food Sci. Nutr. 2017, 68, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Ewaschuk, J.B.; Murdoch, G.K.; Johnson, I.R.; Madsen, K.L.; Field, C.J. Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection. Br. J. Nutr. 2011, 106, 870–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Li, D.; She, R. Effect of weaning on small intestinal structure and function in the piglet. Arch. Anim. Nutr. 2002, 56, 275–286. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, X.; Zhu, J.; Cheng, L.; Cao, J.; Wu, Z.; Weng, P.; Zheng, X. A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food Funct. 2018, 9, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Schindell, B.; Li, W.; Ni, L.; Liu, S.; Wijerathne, C.U.B.; Gong, J.; Nyachoti, C.M.; Karmin, O.; Yang, C. Distribution and localization of porcine calcium sensing receptor (pCaSR) in different tissues of weaned piglets. J. Anim. Sci. 2019. [Google Scholar] [CrossRef]
- Tang, W.; Qian, Y.; Yu, B.; Zhang, T.; Gao, J.; He, J.; Huang, Z.; Zheng, P.; Mao, X.; Luo, J.; et al. Effects of Bacillus subtilis DSM32315 supplementation and dietary crude protein level on performance, barrier function and gut microbiota profile in weaned piglets. J. Anim. Sci. 2019. [Google Scholar] [CrossRef]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef]
- Van den Brand, H.; Soede, N.M.; Kemp, B. Supplementation of dextrose to the diet during the weaning to estrus interval affects subsequent variation in within-litter piglet birth weight. Anim. Reprod. Sci. 2006, 91, 353–358. [Google Scholar] [CrossRef]
- Lindemann, M.D.; Cornelius, S.G.; el Kandelgy, S.M.; Moser, R.L.; Pettigrew, J.E. Effect of age, weaning and diet on digestive enzyme levels in the piglet. J. Anim. Sci. 1986, 62, 1298–1307. [Google Scholar] [CrossRef]
- Pluske, J.R.; Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Payne, H.G.; Hampson, D.J.; Callesen, J.; Wilson, R.H. Piglet growth before and after weaning in relation to a qualitative estimate of solid (creep) feed intake during lactation: A pilot study. Arch. Anim. Nutr. 2007, 61, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Hay, E.H.; Roberts, A. Genotype x prenatal and post-weaning nutritional environment interaction in a composite beef cattle breed using reaction norms and a multi-trait model. J. Anim. Sci. 2018, 96, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Najdi Hejazi, S.; Orsat, V. Optimization of the malting process for nutritional improvement of finger millet and amaranth flours in the infant weaning food industry. Int. J. Food Sci. Nutr. 2017, 68, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Haenen, D.; Zhang, J.; Souza da Silva, C.; Bosch, G.; van der Meer, I.M.; van Arkel, J.; van den Borne, J.J.; Perez Gutierrez, O.; Smidt, H.; Kemp, B.; et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J. Nutr. 2013, 143, 274–283. [Google Scholar] [CrossRef]
- Raab, S.; Leiser, R.; Kemmer, H.; Claus, R. Effects of energy and purines in the diet on proliferation, differentiation, and apoptosis in the small intestine of the pig. Metabolism 1998, 47, 1105–1111. [Google Scholar] [CrossRef]
- Zhang, H.; Malo, C.; Boyle, C.R.; Buddington, R.K. Diet influences development of the pig (Sus scrofa) intestine during the first 6 h after birth. J. Nutr. 1998, 128, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Dikalova, A.E.; Aschner, J.L.; Zhang, Y.; Kaplowitz, M.R.; Fike, C.D. Reactive oxygen species modulate Na(+)-coupled neutral amino acid transporter 1 expression in piglet pulmonary arterial endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H911–H919. [Google Scholar] [CrossRef]
- Liu, H.; Tan, B.; Huang, B.; Li, J.; Wang, J.; Liao, P.; Guan, G.; Ji, P.; Yin, Y. Involvement of calcium-sensing receptor activation in the alleviation of intestinal inflammation in a piglet model by dietary aromatic amino acid supplementation. Br. J. Nutr. 2018, 120, 1321–1331. [Google Scholar] [CrossRef] [Green Version]
- Suryawan, A.; Davis, T.A. Amino Acid- and Insulin-Induced Activation of mTORC1 in Neonatal Piglet Skeletal Muscle Involves Sestin2-GATOR2, Rag A/C-mTOR, and RHEB-mTOR Complex Formation. J. Nutr. 2018, 148, 825–833. [Google Scholar] [CrossRef]
- Dikalova, A.; Fagiana, A.; Aschner, J.L.; Aschner, M.; Summar, M.; Fike, C.D. Sodium-coupled neutral amino acid transporter 1 (SNAT1) modulates L-citrulline transport and nitric oxide (NO) signaling in piglet pulmonary arterial endothelial cells. PLoS ONE 2014, 9, e85730. [Google Scholar] [CrossRef] [PubMed]
- Levesque, C.L.; Turner, J.; Li, J.; Wizzard, P.; St Pierre, B.; Lim, D.; Wales, P. In a Neonatal Piglet Model of Intestinal Failure, Administration of Antibiotics and Lack of Enteral Nutrition Have a Greater Impact on Intestinal Microflora Than Surgical Resection Alone. JPEN J. Parenter. Enter. Nutr. 2017, 41, 938–945. [Google Scholar] [CrossRef]
- Naberhuis, J.K.; Deutsch, A.S.; Tappenden, K.A. Teduglutide-Stimulated Intestinal Adaptation Is Complemented and Synergistically Enhanced by Partial Enteral Nutrition in a Neonatal Piglet Model of Short Bowel Syndrome. JPEN J. Parenter. Enter. Nutr. 2017, 41, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Bergesen, O.; Schjonsby, H.; Andersen, K.J.; Schjerven, L. Intestinal epithelial function and villus surface area in rats with bile fistulae. Scand. J. Gastroenterol. 1987, 22, 731–736. [Google Scholar] [CrossRef]
- Williams, J.M.; Duckworth, C.A.; Burkitt, M.D.; Watson, A.J.; Campbell, B.J.; Pritchard, D.M. Epithelial cell shedding and barrier function: A matter of life and death at the small intestinal villus tip. Vet. Pathol. 2015, 52, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Mansilla, W.D.; Silva, K.E.; Zhu, C.; Nyachoti, C.M.; Htoo, J.K.; Cant, J.P.; de Lange, C.F.M. Ammonia-nitrogen added to low-crude-protein diets deficient in dispensable amino acid-nitrogen increases the net release of alanine, citrulline, and glutamate post-splanchnic organ metabolism in growing pigs. J. Nutr. 2018, 148, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Zdraljevic, S.; Fox, B.W.; Strand, C.; Panda, O.; Tenjo, F.J.; Brady, S.C.; Crombie, T.A.; Doench, J.G.; Schroeder, F.C.; Andersen, E.C. Natural variation in C. elegans arsenic toxicity is explained by differences in branched chain amino acid metabolism. eLife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Tomas, A.; Casellas, J.; Ramirez, O.; Munoz, G.; Noguera, J.L.; Sanchez, A. High amino acid variation in the intracellular domain of the pig prolactin receptor (PRLR) and its relation to ovulation rate and piglet survival traits. J. Anim. Sci. 2006, 84, 1991–1998. [Google Scholar] [CrossRef]
- Wang, C.; Kang, C.; Xian, Y.; Zhang, M.; Chen, X.; Pei, M.; Zhu, W.; Hang, S. Sensing of L-Arginine by Gut-Expressed Calcium Sensing Receptor Stimulates Gut Satiety Hormones Cholecystokinin and Glucose-Dependent Insulinotropic Peptide Secretion in Pig Model. J. Food Sci. 2018, 83, 2394–2401. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Johnson, G.A.; Hou, Y. BOARD-INVITED REVIEW: Arginine nutrition and metabolism in growing, gestating, and lactating swine. J. Anim. Sci. 2018, 96, 5035–5051. [Google Scholar] [CrossRef]
- Anderson, L.C.; Lewis, A.J.; Peo, E.R., Jr.; Crenshaw, J.D. Effects of excess arginine with and without supplemental lysine on performance, plasma amino acid concentrations and nitrogen balance of young swine. J. Anim. Sci. 1984, 58, 369–377. [Google Scholar] [CrossRef]
- Didelija, I.C.; Mohammad, M.A.; Marini, J.C. Ablation of Arginase II Spares Arginine and Abolishes the Arginine Requirement for Growth in Male Mice. J. Nutr. 2017, 147, 1510–1516. [Google Scholar] [CrossRef]
- Otani, L.; Mori, T.; Koyama, A.; Takahashi, S.; Kato, H. Supplemental arginine above the requirement during suckling causes obesity and insulin resistance in rats. Nutr. Res. 2016, 36, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Peine, J.L.; Jia, G.; Van Emon, M.L.; Neville, T.L.; Kirsch, J.D.; Hammer, C.J.; O’Rourke, S.T.; Reynolds, L.P.; Caton, J.S. Effects of maternal nutrition and rumen-protected arginine supplementation on ewe performance and postnatal lamb growth and internal organ mass. J. Anim. Sci. 2018, 96, 3471–3481. [Google Scholar] [CrossRef]
- Gao, T.; Zhao, M.; Zhang, L.; Li, J.; Yu, L.; Lv, P.; Gao, F.; Zhou, G. Effect of in ovo feeding of l-arginine on the hatchability, growth performance, gastrointestinal hormones, and jejunal digestive and absorptive capacity of posthatch broilers. J. Anim. Sci. 2017, 95, 3079–3092. [Google Scholar] [CrossRef]
- Zielinska, M.; Ruszkiewicz, J.; Hilgier, W.; Fresko, I.; Albrecht, J. Hyperammonemia increases the expression and activity of the glutamine/arginine transporter y+ LAT2 in rat cerebral cortex: Implications for the nitric oxide/cGMP pathway. Neurochem. Int. 2011, 58, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, Q.L.; van der Linden, D.S.; Sales, F.A.; Wards, N.J.; Blair, H.T.; Pacheco, D.; Oliver, M.H.; McCoard, S.A. Parenteral administration of l-arginine to twin-bearing Romney ewes during late pregnancy is associated with reduced milk somatic cell count during early lactation. J. Dairy Sci. 2019, 102, 3071–3081. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.L.; Li, X.L.; Xi, P.B.; Zhang, J.; Wu, G.; Zhu, W.Y. Regulatory role for L-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 2012, 43, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Xi, Q.; Umstot, E.; Zhao, G.; Narayanan, D.; Leffler, C.W.; Jaggar, J.H. Glutamate regulates Ca2+ signals in smooth muscle cells of newborn piglet brain slice arterioles through astrocyte- and heme oxygenase-dependent mechanisms. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H562–H569. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, J.M.; Argenzio, R.A.; Chen, W.; Gomez, G.G. Asparagine stimulates piglet intestinal Cl- secretion by a mechanism requiring a submucosal glutamate receptor and nitric oxide. J. Pharmacol. Exp. Ther. 1995, 274, 404–412. [Google Scholar] [PubMed]
- Tan, X.; Zhang, J.; Yang, H.; Li, J.; Li, Y.; Ding, X.; Huang, P.; Wang, Q.; Yin, J.; Yin, Y. Glutamate effects on sucking piglet intestinal morphology and luminal metabolites. J. Anim. Physiol. Anim. Nutr. 2019, 103, 612–617. [Google Scholar] [CrossRef]
- Xi, Q.; Tcheranova, D.; Basuroy, S.; Parfenova, H.; Jaggar, J.H.; Leffler, C.W. Glutamate-induced calcium signals stimulate CO production in piglet astrocytes. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H428–H433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera, R.A.; Usry, J.L.; Arrellano, C.; Nogueira, E.T.; Kutschenko, M.; Moeser, A.J.; Odle, J. Effects of creep feeding and supplemental glutamine or glutamine plus glutamate (Aminogut) on pre- and post-weaning growth performance and intestinal health of piglets. J. Anim. Sci. Biotechnol. 2013, 4, 29. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, G. L-Glutamate nutrition and metabolism in swine. Amino Acids 2018, 50, 1497–1510. [Google Scholar] [CrossRef]
- Li, X.G.; Sui, W.G.; Gao, C.Q.; Yan, H.C.; Yin, Y.L.; Li, H.C.; Wang, X.Q. L-Glutamate deficiency can trigger proliferation inhibition via down regulation of the mTOR/S6K1 pathway in pig intestinal epithelial cells. J. Anim. Sci. 2016, 94, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Donnerer, J.; Liebmann, I. Evidence for opioid-induced release of glutamate in guinea pig longitudinal muscle-myenteric plexus strip. Neurosci. Lett. 2009, 462, 118–120. [Google Scholar] [CrossRef]
- Duan, J.; Yin, J.; Ren, W.; Liu, T.; Cui, Z.; Huang, X.; Wu, L.; Kim, S.W.; Liu, G.; Wu, X.; et al. Dietary supplementation with L-glutamate and L-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide. Amino Acids 2016, 48, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liu, M.; Ren, W.; Duan, J.; Yang, G.; Zhao, Y.; Fang, R.; Chen, L.; Li, T.; Yin, Y. Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets. PLoS ONE 2015, 10, e0122893. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Iguchi, H.; Kamisuki, S.; Sugawara, F.; Furuichi, T.; Shinoda, Y. Low doses of the mycotoxin citrinin protect cortical neurons against glutamate-induced excitotoxicity. J. Toxicol. Sci. 2016, 41, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Yin, J.; Wu, M.; Liao, P.; Deng, D.; Liu, G.; Wen, Q.; Wang, Y.; Qiu, W.; Liu, Y.; et al. Dietary glutamate supplementation ameliorates mycotoxin-induced abnormalities in the intestinal structure and expression of amino acid transporters in young pigs. PLoS ONE 2014, 9, e112357. [Google Scholar] [CrossRef] [PubMed]
- Apple, J.K.; Maxwell, C.V.; Bass, B.E.; Yancey, J.W.S.; Payne, R.L.; Thomson, J. Effects of reducing dietary crude protein levels and replacement with crystalline amino acids on growth performance, carcass composition, and fresh pork quality of finishing pigs fed ractopamine hydrochloride. J. Anim. Sci. 2017, 95, 4971–4985. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.T.; Ma, W.F.; Zeng, X.F.; Xie, C.Y.; Thacker, P.A.; Htoo, J.K.; Qiao, S.Y. Estimation of the standardized ileal digestible valine to lysine ratio required for 25- to 120-kg pigs fed low crude protein diets supplemented with crystalline amino acids. J. Anim. Sci. 2015, 93, 4761–4773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Li, Y.; Zhang, T.; Ying, Z.; Su, W.; Zhang, L.; Wang, T. l-Threonine improves intestinal mucin synthesis and immune function of intrauterine growth-retarded weanling piglets. Nutrition 2019, 59, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.Y.; Azzam, M.M.M.; Zou, X.T. Effects of dietary threonine supplementation on intestinal barrier function and gut microbiota of laying hens. Poult. Sci. 2017, 96, 3654–3663. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Rochell, S.J.; Applegate, T.J. Threonine, arginine, and glutamine: Influences on intestinal physiology, immunology, and microbiology in broilers. Poult. Sci. 2018, 97, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Doepel, L.; Hewage, I.I.; Lapierre, H. Milk protein yield and mammary metabolism are affected by phenylalanine deficiency but not by threonine or tryptophan deficiency. J. Dairy Sci. 2016, 99, 3144–3156. [Google Scholar] [CrossRef] [Green Version]
- Van der Sluis, M.; Schaart, M.W.; de Koning, B.A.; Schierbeek, H.; Velcich, A.; Renes, I.B.; van Goudoever, J.B. Threonine metabolism in the intestine of mice: Loss of mucin 2 induces the threonine catabolic pathway. J. Pediatric Gastroenterol. Nutr. 2009, 49, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Wellington, M.O.; Htoo, J.K.; Van Kessel, A.G.; Columbus, D.A. Impact of dietary fiber and immune system stimulation on threonine requirement for protein deposition in growing pigs. J. Anim. Sci. 2018, 96, 5222–5232. [Google Scholar] [CrossRef]
- McGilvray, W.D.; Wooten, H.; Rakhshandeh, A.R.; Petry, A.; Rakhshandeh, A. Immune system stimulation increases dietary threonine requirements for protein deposition in growing pigs. J. Anim. Sci. 2019, 97, 735–744. [Google Scholar] [CrossRef]
- Banerjee, A.; McKinley, E.T.; von Moltke, J.; Coffey, R.J.; Lau, K.S. Interpreting heterogeneity in intestinal tuft cell structure and function. J. Clin. Investig. 2018, 128, 1711–1719. [Google Scholar] [CrossRef]
- Koopmans, S.; Guzik, A.; Van Der Meulen, J.; Dekker, R.; Kogut, J.; Kerr, B.; Southern, L. Effects of supplemental L-tryptophan on serotonin, cortisol, intestinal integrity, and behavior in weanling piglets. J. Anim. Sci. 2006, 84, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Yang, Y.; Wen, Y.; Zhou, Y.; Fu, X.; Ding, S.; Liu, G.; Yao, K.; Wu, X.; Deng, Z. Metabolomic analysis of amino acid and fat metabolism in rats with l-tryptophan supplementation. Amino Acids 2014, 46, 2681–2691. [Google Scholar] [CrossRef] [PubMed]
- Elremaly, W.; Mohamed, I.; Rouleau, T.; Lavoie, J.C. Impact of glutathione supplementation of parenteral nutrition on hepatic methionine adenosyltransferase activity. Redox Biol. 2016, 8, 18–23. [Google Scholar] [CrossRef]
- Jacometo, C.B.; Alharthi, A.S.; Zhou, Z.; Luchini, D.; Loor, J.J. Maternal supply of methionine during late pregnancy is associated with changes in immune function and abundance of microRNA and mRNA in Holstein calf polymorphonuclear leukocytes. J. Dairy Sci. 2018, 101, 8146–8158. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Sun, J.; Zhang, Y.; Luo, T.; Li, B.; Jiang, Y.; Shi, Y.; Le, G. Dietary methionine restriction ameliorates the impairment of learning and memory function induced by obesity in mice. Food Funct. 2019, 10, 1411–1425. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, J.; Wu, G.; Sun, J.; Wang, Y.; Guo, H.; Shi, Y.; Cheng, X.; Tang, X.; Le, G. Dietary methionine restriction regulated energy and protein homeostasis by improving thyroid function in high fat diet mice. Food Funct. 2018, 9, 3718–3731. [Google Scholar] [CrossRef] [PubMed]
- Batistel, F.; Arroyo, J.M.; Garces, C.I.M.; Trevisi, E.; Parys, C.; Ballou, M.A.; Cardoso, F.C.; Loor, J.J. Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. J. Dairy Sci. 2018, 101, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Tang, L.; Jiang, W.; Hu, K.; Liu, Y.; Jiang, J.; Kuang, S.; Tang, L.; Tang, W.; Zhang, Y.; et al. The relationship between dietary methionine and growth, digestion, absorption, and antioxidant status in intestinal and hepatopancreatic tissues of sub-adult grass carp (Ctenopharyngodon idella). J. Anim. Sci. Biotechnol. 2017, 8, 63. [Google Scholar] [CrossRef]
- Song, J.H.; Lee, H.R.; Shim, S.M. Determination of S-methyl-L-methionine (SMM) from Brassicaceae Family Vegetables and Characterization of the Intestinal Transport of SMM by Caco-2 Cells. J. Food Sci. 2017, 82, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Bouwhuis, M.A.; Sweeney, T.; Mukhopadhya, A.; Thornton, K.; McAlpine, P.O.; O’Doherty, J.V. Zinc methionine and laminarin have growth-enhancing properties in newly weaned pigs influencing both intestinal health and diarrhoea occurrence. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1273–1285. [Google Scholar] [CrossRef]
- Su, W.; Zhang, H.; Ying, Z.; Li, Y.; Zhou, L.; Wang, F.; Zhang, L.; Wang, T. Effects of dietary L-methionine supplementation on intestinal integrity and oxidative status in intrauterine growth-retarded weanling piglets. Eur. J. Nutr. 2018, 57, 2735–2745. [Google Scholar] [CrossRef]
- Wada, S.; Sato, K.; Ohta, R.; Wada, E.; Bou, Y.; Fujiwara, M.; Kiyono, T.; Park, E.Y.; Aoi, W.; Takagi, T.; et al. Ingestion of low dose pyroglutamyl leucine improves dextran sulfate sodium-induced colitis and intestinal microbiota in mice. J. Agric. Food Chem. 2013, 61, 8807–8813. [Google Scholar] [CrossRef] [PubMed]
- Wolffram, S.; Eggenberger, E.; Scharrer, E. Kinetics of D-glucose and L-leucine transport into sheep and pig intestinal brush border membrane vesicles. Comp. Biochem. Physiol. A Comp. Physiol. 1986, 84, 589–593. [Google Scholar] [CrossRef]
- Noren, O.; Sjostrom, H.; Josefsson, L. Preparation of a highly purified glycyl-L-leucine dipeptidase from pig intestinal mucosa. Acta Chem. Scand. 1971, 25, 1913–1915. [Google Scholar] [CrossRef]
- May, R.; Sureban, S.M.; Hoang, N.; Riehl, T.E.; Lightfoot, S.A.; Ramanujam, R.; Wyche, J.H.; Anant, S.; Houchen, C.W. Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively. Stem Cells 2009, 27, 2571–2579. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, Z.; Li, W.; Zhang, C.; Sun, K.; Ji, Y.; Wang, B.; Jiao, N.; He, B.; Wang, W.; et al. Dietary L-leucine supplementation enhances intestinal development in suckling piglets. Amino Acids 2015, 47, 1517–1525. [Google Scholar] [CrossRef]
- Chang, Y.; Cai, H.; Liu, G.; Chang, W.; Zheng, A.; Zhang, S.; Liao, R.; Liu, W.; Li, Y.; Tian, J. Effects of dietary leucine supplementation on the gene expression of mammalian target of rapamycin signaling pathway and intestinal development of broilers. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2015, 1, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Xu, W.; Bai, K.W.; He, J.T.; Ahmad, H.; Zhou, L.; Zhang, L.L.; Wang, T. Protective effects of leucine on redox status and mitochondrial-related gene abundance in the jejunum of intrauterine growth-retarded piglets during early weaning period. Arch. Anim. Nutr. 2017, 71, 93–107. [Google Scholar] [CrossRef]
- Hu, J.; Nie, Y.; Chen, S.; Xie, C.; Fan, Q.; Wang, Z.; Long, B.; Yan, G.; Zhong, Q.; Yan, X. Leucine reduces reactive oxygen species levels via an energy metabolism switch by activation of the mTOR-HIF-1alpha pathway in porcine intestinal epithelial cells. Int. J. Biochem. Cell Biol. 2017, 89, 42–56. [Google Scholar] [CrossRef]
- Mao, X.; Liu, M.; Tang, J.; Chen, H.; Chen, D.; Yu, B.; He, J.; Yu, J.; Zheng, P. Dietary Leucine Supplementation Improves the Mucin Production in the Jejunal Mucosa of the Weaned Pigs Challenged by Porcine Rotavirus. PLoS ONE 2015, 10, e0137380. [Google Scholar] [CrossRef] [PubMed]
- Rudar, M.; Zhu, C.L.; de Lange, C.F. Dietary Leucine Supplementation Decreases Whole-Body Protein Turnover before, but Not during, Immune System Stimulation in Pigs. J. Nutr. 2017, 147, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Buddington, R.K.; Howard, S.C.; Lee, H.W.; Buddington, K.K. Growth Responses of Preterm Pigs Fed Formulas with Different Protein Levels and Supplemented with Leucine or beta-Hydroxyl beta-Methylbutyrate. Nutrients 2018, 10, 636. [Google Scholar] [CrossRef]
- Wang, T.; Yao, W.; He, Q.; Shao, Y.; Zheng, R.; Huang, F. L-leucine stimulates glutamate dehydrogenase activity and glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2018, 4, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Schachter, D.; Buteau, J. Glutamate formation via the leucine-to-glutamate pathway of rat pancreas. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G938–G946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Council, N.R. Nutrient Requirements of Swine; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, Q.; Yang, H.-S.; Yin, Y.-L.; Huang, P.-F. Amino Acids Influencing Intestinal Development and Health of the Piglets. Animals 2019, 9, 302. https://doi.org/10.3390/ani9060302
Mou Q, Yang H-S, Yin Y-L, Huang P-F. Amino Acids Influencing Intestinal Development and Health of the Piglets. Animals. 2019; 9(6):302. https://doi.org/10.3390/ani9060302
Chicago/Turabian StyleMou, Qi, Huan-Sheng Yang, Yu-Long Yin, and Peng-Fei Huang. 2019. "Amino Acids Influencing Intestinal Development and Health of the Piglets" Animals 9, no. 6: 302. https://doi.org/10.3390/ani9060302
APA StyleMou, Q., Yang, H. -S., Yin, Y. -L., & Huang, P. -F. (2019). Amino Acids Influencing Intestinal Development and Health of the Piglets. Animals, 9(6), 302. https://doi.org/10.3390/ani9060302