Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health
Abstract
:Simple Summary
Abstract
1. Introduction
2. Beneficial Applications of ω-3 and ω-6 Oils in Poultry
3. Improved Growth and Productive Performance
4. Improved Immune Response and Anti-Oxidative Properties
5. Improving Egg Quality and Nutritional Value of Eggs
6. Improving Meat Quality
7. Effects of Dietary ω-3 and ω-6 Fatty Acids on Bones
8. Improved Fertility Rates and Semen Quality
9. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cherian, G. Nutrition and metabolism in poultry: Role of lipids in early diet. J. Anim. Sci. Biotechnol. 2015, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Whenham, N.; Bedford, M.R. Review on docosahexaenoic acid in poultry and swine nutrition: Consequence of enriched animal products on performance and health characteristics. Anim. Nutr. 2019, 5, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Cherian, G.; Gopalakrishnan, N.; Akiba, Y.; Sim, J.S. Effect of maternal dietary n-3 fatty acids on the accretion of long-chain polyunsaturated fatty acids in the tissues of developing chick embryo. Biolo. Neonate. 1997, 72, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Importance of the omega-6/omega-3 balance in health and disease: Evolutionary aspects of diet. World Rev. Nutr. Diet. 2011, 102, 10–21. [Google Scholar]
- Kalakuntla, S.; Nagireddy, N.K.; Panda, A.K.; Jatoth, N.; Thirunahari, R.; Vangoor, R.R. Effect of dietary incorporation of n-3 polyunsaturated fatty acids rich oil sources on fatty acid profile, keeping quality and sensory attributes of broiler chicken meat. Anim. Nutr. 2017, 3, 386–391. [Google Scholar] [CrossRef]
- Feng, Y.; Ding, Y.; Liu, J.; Tian, Y.; Yang, Y.; Guan, S.; Zhang, C. Effects of dietary omega-3/omega-6 fatty acid ratios on reproduction in the young breeder rooster. BMC Vet. Res. 2015, 11, 73. [Google Scholar] [CrossRef]
- Konieczka, P.; Barszcz, M.; Choct, M.; Smulikowska, S. The interactive effect of dietary n-6:N-3 fatty acid ratio and vitamin E level on tissue lipid peroxidation, DNA damage in intestinal epithelial cells, and gut morphology in chickens of different ages. Poult. Sci. 2017, 97, 149–158. [Google Scholar] [CrossRef]
- Arias-Rico, J.; Cerón-Sandoval, M.I.; Sandoval-Gallegos, E.M.; Ramírez-Moreno, E.; Fernández-Cortés, T.L.; Jaimez-Ordaz, J.; Contreras-López, E.; Añorve-Morga, J. Evaluation of consumption of poultry products enriched with omega-3 fatty acids in anthropometric, biochemical, and cardiovascular parameters. J. Food Quality 2018, 2018, e9620104. [Google Scholar] [CrossRef]
- Dhama, K.; Tiwari, R.; Khan, R.U.; Chakraborty, S.; Gopi, M.; Karthik, K.; Saminathan, M.; Desingu, P.A.; Sunkara, L.T. Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: The trends and advances—A review. Int. J. Pharmacol. 2014, 10, 129–159. [Google Scholar] [CrossRef]
- Dhama, K.; Latheef, S.K.; Mani, S.; Samad, H.A.; Karthik, K.; Tiwari, T.; Khan, R.U.; Alagawany, M.; Farag, M.R.; Alam, G.M.; et al. Multiple beneficial applications and modes of action of herbs in poultry health and production—A review. Int. J. Pharmacol. 2015, 11, 152–176. [Google Scholar] [CrossRef]
- Laudadio, V.; Lorusso, V.; Lastella, N.M.B.; Dhama, K.; Karthik, K.; Tiwari, R.; Alam, G.A.; Tufarelli, V. Enhancement of nutraceutical value of table eggs through poultry feeding strategies. Int. J. Pharmacol. 2015, 11, 201–212. [Google Scholar]
- Yadav, A.S.; Kolluri, G.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Exploring alternatives to antibiotics as health promoting agents in poultry—A review. J. Exp. Biol. Agri Sci. 2016, 4, 368–383. [Google Scholar]
- Nobakht, A.; Tabatbaei, S.; Khodaei, S. Effects of different sources and levels of vegetable oils on performance, carcass traits and accumulation of vitamin in breast meat of broilers. Cur. Res. J. Biolo. Sci. 2011, 3, 601–605. [Google Scholar]
- Poorghasemi, M.; Seidavi, A.; Qotbi, A.A.; Laudadio, V.; Tufarelli, V. Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian Australas. J Anim Sci. 2013, 26, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Baiao, N.C.; Lara, L.J.C. Oil and fat in broiler nutrition. Braz. J. Poul. Sci. 2005, 7, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.C.; Bermejo, L.L.M.; Loria, K.V. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recommendations. Nutr. Hosp. 2011, 26, 323–329. [Google Scholar]
- Samman, S.; Kung, F.P.; Carter, L.M.; Foster, M.J.; Ahmad, Z.I.; Phuyal, J.L.; Petocz, P. Fatty acid composition of certified organic, conventional and omega-3 eggs. Food Chem. 2009, 116, 911–914. [Google Scholar] [CrossRef]
- Kassis, N.; Drake, S.R.; Beamer, S.K.; Matak, K.E.; Jaczynski, J. Development of nutraceutical egg products with omega-3-rich oils. Food Sci. Technol. 2010, 43, 777–783. [Google Scholar] [CrossRef]
- Sujatha, T.; Narahari, D. Effect of designer diets on egg yolk composition of ‘White Leghorn’ hens. J. Food Sci. Technol. 2011, 48, 494–497. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Abd El-Hack, M.E.; Dhama, K. The practical application of sunflower meal in poultry nutrition. Adv. Anim. Vet. Sci. 2015, 3, 634–648. [Google Scholar] [CrossRef]
- Shiels, M.I. Fatty acids and early human development. Early Hum. Develop. 2007, 83, 761–766. [Google Scholar]
- Richardson, A.J. Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. Int. Rev. Psychiatry 2006, 18, 155–172. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999, 70, 560–569. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; O’Keefe, J.H. Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Heart 2018, 5, e000946. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; El-Sayed, R.; Khater, S.I.; Said, E.N.; El-Mandrawy, S.A.M. Changing dietary n-6: n-3 ratio using different oil sources affects performance, behavior, cytokines mRNA expression and meat fatty acid profile of broiler chickens. Anim. Nutr. 2018, 4, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Al-Zuhairy, M.A.; Jameel, Y.J. Effect of ND vaccine, multivitamins AD3E, and omega-3 on performance and immune response of broilers. Mirror Res. Vet Sci. Anim. 2014, 3, 42–50. [Google Scholar]
- Irving, G.F.; Freund-Levi, Y.; Eriksdotter-Jonhagen, M.; Basun, H.; Brismar, K.; Hjorth, E.; Palmblad, J.; Vessby, B.; Vedin, I.; Wahlund, L.O.; et al. Omega-3 fatty acid supplementation effects on weight and appetite in patients with Alzheimer’s disease: The omega-3 Alzheimer’s disease study. J. Am. Geriatr. Soc. 2009, 57, 11–17. [Google Scholar] [CrossRef]
- Mousa, S.A.; Abdel-Raheem, S.M.; Abdel-Raheem, H.A.; Sadeek, A.L.S. Effect of dietary fat sources and antioxidant types on growth performance and carcass quality of Japanese quails. Int. J. Poult. Sci. 2017, 16, 443–450. [Google Scholar]
- Wu, Y.B.; Li, L.; Wen, Z.G.; Yan, H.J.; Yang, P.L.; Tang, J.; Xie, M.; Hou, S.S. Dual functions of eicosapentaenoic acid-rich microalgae: Enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens. Poult. Sci. 2019, 98, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, P.; Czauderna, M.; Smulikowska, S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim. Feed Sci. Technol. 2017, 223, 42–52. [Google Scholar] [CrossRef]
- Sihvo, H.K.; Immonen, K.; Puolanne, E. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. Vet. Path. 2014, 51, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.A.; Yousaf, M.; Sabri, M.A.; Kamran, Z. Response of laying hens to omega-3 fatty acids for performance and egg quality. Avian Biol. Res. 2012, 5, 1–10. [Google Scholar] [CrossRef]
- Ehr, I.J.; Persia, M.E.; Bobeck, E.A. Comparative omega-3 fatty acid enrichment of egg yolks from first-cycle laying hens fed flaxseed oil or ground flaxseed. Poult. Sci. 2017, 96, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Hamosh, M. Fatty acids and growth and development. In Fatty Acids in Foods and Their Implications; Chow, C.K., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 899–933. [Google Scholar]
- Horrocks, L.; Yeo, Y. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 1999, 40, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Ebeid, T.; Eid, Y.; Saleh, A.; Abd El-Hamid, H. Ovarian follicular development, lipid peroxidation, antioxidative status and immune response in laying hens fed fish oil-supplemented diets to produce n-3-enriched eggs. Animal 2008, 2, 84–91. [Google Scholar] [CrossRef]
- Yalcin, H.; Unal, M.K. The enrichment of hen eggs with ω-3 fatty acids. J. Med. Food 2010, 13, 610–614. [Google Scholar] [CrossRef]
- Cherian, G. Egg quality and yolk polyunsaturated fatty acid status in relation to broiler breeder hen age and dietary n-3 oils. Poult. Sci. 2008, 87, 1131–1137. [Google Scholar] [CrossRef]
- Kralik, G.; Škrtić, Z.; Suchý, P.; Straková, E.; Gajčević, Z. Feeding fish oil and linseed oil to laying hens to increase the n-3 PUFA of egg yolk. Acta Veterinaria Brno 2008, 77, 561–568. [Google Scholar] [CrossRef]
- Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.; Lordelo, M.M.; Alves, S.P.; Bessa, R.J.B.; Costa, P.; Lemos, J.P.C.; Ferreira, L.M.A.; Fontes, C.M.G.A.; Prates, J.A.M. Direct supplementation of diet is the most efficient way of enriching broiler meat with n-3 long-chain polyunsaturated fatty acids. Br. Poult. Sci. 2013, 54, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ferrer, S.; Baucells, M.D.; Barroeta, A.C.; Grashorn, M.A. n-3 enrichment of chicken meat. 2. Use of precursors of long-chain polyunsaturated fatty acids: Linseed Oil. Poult. Sci. 2001, 80, 753–761. [Google Scholar] [PubMed]
- Buitendach, G.C.; De Witt, F.H.; Hugo, A.; Van Der Merwe, H.J.; Fair, M.D. Effect of dietary fatty acid saturation on egg production at end-of-lay. S. Afr. J. Anim. Sci. 2013, 43, 126–131. [Google Scholar]
- Cachaldora, P.; Garcia-Rebollar, P.; Alvarez, C.; De Blas, J.C.; Mendez, J. Effect of type and level of fish oil supplementation on yolk fat composition and n-3 fatty acid retention efficiency in laying hens. Br. Poult. Sci. 2006, 47, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Cachaldora, P.; Garcia-Rebollar, P.; Alvarez, C.; De Blas, J.C.; Mendez, J. Effect of type and level of basal fat and level of fish oil supplementation on yolk fat composition and n-3 fatty acids deposition efficiency in laying hens. Anim. Feed Sci. Technol. 2008, 141, 104–114. [Google Scholar] [CrossRef]
- Shang, X.G.; Wang, F.L.; Li, D.F.; Yin, J.D.; Li, J.Y. Effects of dietary conjugated linoleic acid on the productivity of laying hens and egg quality during refrigerated storage. Poult. Sci. 2004, 83, 1688–1695. [Google Scholar] [CrossRef]
- Yin, J.D.; Shang, X.G.; Li, D.F.; Wang, F.L.; Guan, Y.F.; Wang, Z.Y. Effects of dietary conjugated linoleic acid on the fatty acid profile and cholesterol content of egg yolks from different breeds of layers. Poult. Sci. 2008, 87, 284–290. [Google Scholar] [CrossRef]
- López-Ferrer, S.; Baucells, M.D.; Barroeta, A.C.; Grashorn, M.A. n-3 enrichment of chicken meat. 1. Use of very long-chain fatty acids in chicken diets and their influence on meat quality: Fish oil. Poult. Sci. 2001, 80, 741–752. [Google Scholar] [CrossRef]
- Donaldson, J.; Madziva, M.T.; Erlwanger, K.H. The effects of high-fat diets composed of different animal and vegetable fat sources on the health status and tissue lipid profiles of male Japanese quail (Coturnix coturnix japonica). Asian Australas. J. Anim. Sci. 2017, 30, 700–711. [Google Scholar] [CrossRef]
- Smith, M.; Soisuvan, K.; Miller, L. Evaluation of dietary calcium level and fat source on growth performance and mineral utilization of heat-distressed broilers. Poult. Sci. 2003, 2, 32–37. [Google Scholar]
- Jalali, S.M.A.; Rabiei, R.; Kheiri, F. Effects of dietary soybean and sunflower oils with and without L-carnitine supplementation on growth performance and blood biochemical parameters of broiler chicks. Arch. Anim. Breed. 2015, 58, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, N.R.; Loh, T.C.; Akit, H.; Sazili, A.Q.; Foo, H.L.; Kareem, K.Y.; Mohamad, R.; Rahim, R.A. Effects of dietary oil sources, calcium and phosphorus levels on growth performance, carcass characteristics and bone quality of broiler chickens. J. App. Anim. Res. 2017, 45, 423–429. [Google Scholar] [CrossRef]
- Fébel, H.; Mezes, M.; Palfy, T.; Herman, A.; Gundel, J.; Lugasi, A.; Balogh, K.; Kocsis, I.; Blazovics, A. Effect of dietary fatty acid pattern on growth, body fat composition and antioxidant parameters in broilers. J. Anim. Physiol. Anim. Nutr. 2008, 92, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Ebeid, T.; Fayoud, A.; Abou El-Soud, S.; Eid, Y.; El-Habbak, M. The effect of omega-3 enriched meat production on lipid peroxidation, antioxidative status, immune response and tibia bone characteristics in Japanese quail. Czech J. Anim. Sci. 2011, 56, 314–324. [Google Scholar] [CrossRef]
- Raj Manohar, G.; Edwin, S.C. Effect of dietary omega-3 PUFA rich sources on growth performance of Japanese quail. Int. J. Sci. Env. Technol. 2015, 4, 393–399. [Google Scholar]
- Qi, K.K.; Chen, J.L.; Zhao, G.P.; Zheng, M.Q.; Wen, J. Effect of dietary ω6/ω3 on growth performance, carcass traits, meat quality and fatty acid profiles of Beijing-you chicken. J. Anim. Physiol. Anim. Nutr. 2010, 94, 474–485. [Google Scholar] [CrossRef]
- Puthpongsiriporn, U.; Scheideler, S.E. Effects of dietary ratio of linoleic to linolenic acid on performance, antibody production, and in vitro lymphocyte proliferation in two strains of leghorn pullet chicks. Poult. Sci. 2005, 84, 846–857. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Omega-3 enriched eggs: The influence of dietary alpha-linolenic fatty acid source on egg production and composition. Can. J. Anim. Sci. 2001, 81, 355–362. [Google Scholar] [CrossRef]
- Crespo, N.; Esteve-Garcia, E. Dietary polyunsaturated fatty acids decrease fat deposition in separable fat depots but not in the remainder carcass. Poult. Sci. 2002, 81, 512–518. [Google Scholar] [CrossRef]
- Newman, R.E.; Bryden, W.L.; Fleck, E.; Ashes, J.R.; Buttemer, W.A.; Storlien, L.H.; Downing, J.A. Dietary n-3 and n-6 fatty acids alter avian metabolism: Metabolism and abdominal fat deposition. Br. J. Nutr. 2002, 88, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ferrini, G.; Baucells, M.D.; Esteve-Garcia, E.; Barroeta, A.C. Dietary polyunsaturated fat reduces skin fat as well as abdominal fat in broiler chickens. Poult. Sci. 2008, 87, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Zollitsch, W.; Knaus, W.; Aichinger, F.; Lettner, F. Effects of different dietary fat sources on performance and carcass characteristics of broilers. Anim. Feed Sci. Technol. 1997, 66, 63–73. [Google Scholar] [CrossRef]
- Huo, W.; Li, M.; Wang, J.; Wang, Z.; Huang, Y.; Chen, W. On growth performance, nutrient digestibility, blood T lymphocyte subsets, and cardiac antioxidant status of broilers. Anim. Nutr. 2019, 5, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Elwan, H.A.; Elnesr, S.S.; Mohany, M.; Al-Rejaie, S.S. The effects of dietary tomato powder (Solanum lycopersicum L.) supplementation on the haematological, immunological, serum biochemical and antioxidant parameters of growing rabbits. J. Anim. Physiol. Anim. Nutr. 2019, 103, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, N.; Kalpana, D.; Cho, J.Y.; Lee, Y.S. Chemical composition and antioxidant capacity of the aqueous extract of Phellodendronamurense. J. Forest. Res. 2018, 29, 1041–1048. [Google Scholar] [CrossRef]
- Changxing, L.; Dongfang, D.; Lixue, Z.; Saeed, M.; Alagawany, M.; Farag, M.R.; Chenling, M.; Jianhua, L. Heracleum persicum: Chemical composition, biological activities and potential uses in poultry nutrition. World. Poult. Sci. J. 2019, 75, 207–217. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, D.; Zhao, J.; Chen, X. Fish red blood cells express immune genes and responses. Aquac. Fish 2018, 3, 14–21. [Google Scholar] [CrossRef]
- Wang, Y.W.; Field, C.J.; Sim, J.S. Dietary polyunsaturated fatty acids alter lymphocyte subset proportion and proliferation, serum IgG concentration and immune tissue development in chicks. Poult. Sci. 2000, 80, 1741–1748. [Google Scholar] [CrossRef]
- Yuming, G.; Chen, S.; Xia, Z.; Yuan, J. Effects of different types of polyunsaturated fatty acids on immune function and PGE2 synthesis by peripheral blood leukocytes of laying hens. Anim. Feed Sci. Technol. 2004, 116, 249–257. [Google Scholar]
- Al-Khalifa, H.; Givens, D.; Rymer, C.; Yaqoob, P. Effect of n-3 fatty acids on immune function in broiler chickens. Poult. Sci. 2012, 91, 74–88. [Google Scholar] [CrossRef]
- Jameel, Y.J.; Sahib, A.M.; Husain, M.A. Effect of dietary omega-3 fatty acid on antibody production against Newcastle disease in broilers. Int. J. Sci. Nat. 2015, 6, 23–27. [Google Scholar]
- Fritsche, K.L.; Cassity, N.A.; Huang, S.C. Effect of dietary fats on the fatty acid compositions of serum and immune tissues in chickens. Poult. Sci. 1991, 70, 1213–1222. [Google Scholar] [CrossRef]
- Cherian, G. Essential fatty acids and early life programming in meat-type birds. World Poult. Sci. 2011, 67, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.W.; Sunwoo, H.; Cherian, G.; Sim, J.S. Maternal dietary ratio of linoleic acid to alpha-linolenic acid affects the passive immunity of hatching chicks. Poult. Sci. 2004, 83, 2039–2043. [Google Scholar] [CrossRef]
- Wang, Y.W.; Ajuyah, A.O.; Sunwoo, H.H.; Cherian, G.; Sim, J.S. Maternal dietary n-3 fatty acids alter the spleen fatty acid composition and bovine serum albumin-induced wing web swelling in broilers. Poult. Sci. 2002, 81, 1722–1727. [Google Scholar] [CrossRef]
- Al-Mayah, A.A.S. Effect of fish oil on humoral immunity of broiler chicks. Basrah J. Vet. Res. 2009, 8, 23–32. [Google Scholar] [CrossRef]
- Fouad, A.M.; El-Senousey, H.K. Nutritional factors affecting abdominal fat deposition in poultry: A review. Asian Australas. J. Anim. Sci. 2014, 27, 1057–1068. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, B.; Guo, Y.; Jiao, P.; Long, F. Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens. Poult. Sci. 2010, 89, 254–260. [Google Scholar] [CrossRef]
- Chen, W.; Wang, J.P.; Huang, Y.Q. Effects of dietary n-6: n-3 polyunsaturated fatty acid ratio on cardiac antioxidative status, T-cell and cytokine mRNA expression in the thymus, and blood T lymphocyte subsets of broilers. Livest. Sci. 2012, 150, 114–120. [Google Scholar] [CrossRef]
- Maroufyan, E.; Kasim, A.; Ebrahimi, M.; Loh, T.C.; Bejo, M.H.; Zerihun, H.; Hosseni, F.; Goh, Y.M.; Farjam, A.S. Omega-3 polyunsaturated fatty acids enrichment alters performance and immune response in infectious bursal disease challenged broilers. Lipids Health Dis. 2012, 25, 15. [Google Scholar] [CrossRef]
- Kassis, N.M.; Gigliotti, J.C.; Beamer, S.K.; Tou, J.C.; Jaczynski, J. Characterisation of lipids and antioxidant capacity of novel nutraceutical egg products developed with omega-3-rich oils. J. Sci. Food Agri. 2012, 92, 66–73. [Google Scholar] [CrossRef]
- Fraeye, I.; Bruneel, C.; Lemahieu, C.; Buyse, J.; Muylaert, K.; Foubert, I. Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Res. Int. 2012, 48, 961–969. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Dhama, K.; Patra, A. Nutritional significance and health benefits of designer eggs. World’s Poult. Sci. J. 2018, 74, 317–330. [Google Scholar] [CrossRef]
- Juturu, V. Omega-3 fatty acids and the cardiometabolic syndrome. J. Cardiometab. Syndr. 2008, 3, 244–253. [Google Scholar] [CrossRef]
- Galobart, J.; Barroeta, A.C.; Baucells, M.D.; Guardiola, F. Lipid oxidation in fresh and spray-dried eggs enriched with omega-3 and omega-6 polyunsaturated fatty acids during storage as affected by dietary vitamin E and canthaxanthin supplementation. Poult. Sci. 2001, 80, 327–337. [Google Scholar] [CrossRef]
- Ren, Y.; Perez, T.I.; Zuidhof, M.J.; Renema, R.A.; Wu, J. Oxidative stability of omega-3 polyunsaturated fatty acids enriched eggs. J. Agri. Food Chem. 2013, 61, 11595–11602. [Google Scholar] [CrossRef]
- Schneiderová, D.; Zelenka, J.; Mrkvicová, E. Poultry meat production as a functional food with a voluntary n-6 and n-3 polyunsaturated fatty acids ratio. Czech J. Anim. Sci. 2007, 52, 203–213. [Google Scholar] [CrossRef]
- Ahmad, S.; Yousaf, M.; Kamran, Z.; Sohail, M.U. Production of n-3 pufa enriched eggs by feeding various dietary ratios of n-6 to n-3 fatty acids and vitamin a levels to the laying hens in hot climate. J. Poult. Sci. 2014, 51, 213–219. [Google Scholar]
- Ceylan, N.; Ciftçi, I.; Mızrak, C.; Kahraman, Z.; Efil, H. Influence of different dietary oil sources on performance and fatty acid profile of egg yolk in laying hens. J. Anim. Feed Sci. 2011, 20, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Filardi, R.; Junqueira, O.M.; de Laurentiz, A.C.; Casartelli, E.M.; Aparecida Rodrigues, E.; Francelino Araujo, L. Influence of different fat sources on the performance, egg quality, and lipid profile of egg yolks of commercial layers in the second laying cycle. J. Appl. Poult. Res. 2005, 258, 264. [Google Scholar] [CrossRef]
- Schiavone, A.; Marzoni, M.; Castillo, A.; Nery, J.; Romboli, I. Dietary lipid sources and vitamin E affect fatty acid composition or lipid stability of breast meat from Muscovy duck. Can. J. Anim. Sci. 2010, 90, 371–378. [Google Scholar] [CrossRef]
- Kishawy, A.T.; Amer, S.A.; Abd El-Hack, M.E.; Saadeldin, I.M.; Swelum, A.A. The impact of dietary linseed oil and pomegranate peel extract on broiler growth, carcass traits, serum lipid profile, and meat fatty acid, phenol, and flavonoid contents. Asian Australas. J. Anim. Sci. 2019, 32, 1161–1171. [Google Scholar] [CrossRef]
- Jung, S.; Choe, J.H.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, C. Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 2010, 86, 520–526. [Google Scholar] [CrossRef]
- Mohamed, L.A.; El-Hindawy, M.M.; Alagawany, M.; Salah, A.S.; El-Sayed, S.A. Effect of low- or high-CP diet with cold-pressed oil supplementation on growth, immunity and antioxidant indices of growing quail. J. Anim. Physiol. Anim. Nutr. 2019, 1–8. [Google Scholar] [CrossRef]
- Baucells, M.D.; Crespo, N.A.C.; Barroeta, S.; Ferrer, L.; Grashorn, M.A. Incorporation of different polyunsaturated fatty acids into eggs. Poult. Sci. 2000, 79, 51–59. [Google Scholar] [CrossRef]
- Shunthwal, J.; Sheoran, N. Influence of linseed oil feeding on performance and fatty acid composition of muscles in broiler chicks. Pharma Innov. J. 2017, 6, 268–273. [Google Scholar]
- Zsédely, E.; Tóth, T.; Eiban, C.S.; Virág, G.Y.; Fábián, J.; Schmidt, J. Effect of dietary vegetable oil (sunflower, linseed) and vitamin E supplementation on the fatty acids composition, oxidative stability and quality of rabbit meat. In Proceedings of the 9th World Rabbit Congress, Verona, Italy, 10–13 June 2008; pp. 1473–1477. [Google Scholar]
- Hulan, H.W.; Ackman, R.G.; Ratnayake, W.M.N.; Proudfoot, F.G. n-3 fatty acid levels and performance of broilers chickens fed redfish meal or redfish oil. Can. J. Anim. Sci. 1988, 68, 533–547. [Google Scholar] [CrossRef]
- Rymer, C.; Givens, D. n−3 fatty acid enrichment of edible tissue of poultry: A review. Lipids 2005, 40, 121–130. [Google Scholar] [CrossRef]
- Givens, D.; Gibbs, R.A. Current intakes of EPA and DHA in European populations and the potential of animalderived foods to increase them. Proc. Nutr. Soc. 2008, 67, 273–280. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Amaral, A.B.; Silva, M.V.D.; Lannes, S.C.D.S. Lipid oxidation in meat: Mechanisms and protective factors–a review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Ribeiro, T.; Lordelo, M.M.; Costa, P.; Alves, S.P.; Benevides, W.S.; Bessa, R.J.B.; Lemos, J.P.C.; Pinto, R.M.A.; Ferreira, L.M.A.; Fontes, C.M.G.A.; et al. Effect of reduced dietary protein and supplementation with a docosahexaenoic acid product on broiler performance and meat quality. Br. Poult. Sci. 2014, 55, 752–765. [Google Scholar] [CrossRef]
- Oken, E.; Kleinman, K.P.; Olsen, S.F.; Rich-Edwards, J.W.; Gillman, M.W. Associations of seafood and elongated n-3 fatty acid intake with fetal growth and length of gestation: Results from a us pregnancy cohort. Am. J. Epidemiol. 2004, 160, 774–783. [Google Scholar] [CrossRef]
- Gonzalez-Esquerra, R.; Leeson, S. Effects of menhaden oil and flaxseed in broiler diets on sensory quality and lipid composition of poultry meat. Br. Poult. Sci. 2000, 41, 481–488. [Google Scholar] [CrossRef]
- Leeson, S.; Atteh, J. Utilization of fats and fatty acids by turkey poults. Poult. Sci. 1995, 74, 2003–2010. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J. Commercial Poultry Production; University Books: Guelph, ON, Canada, 2005. [Google Scholar]
- Sun, D.; Krishnan, A.; Zaman, K.; Lawrence, R.; Bhattacharya, A.; Fernandes, G. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized rats. J. Bone Min. Res. 2003, 18, 1206–1216. [Google Scholar] [CrossRef]
- Baird, H.T.; Eggett, D.L.; Fullmer, S. Varying ratios of omega-6: Omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens. Poult. Sci. 2008, 87, 323–328. [Google Scholar] [CrossRef]
- Lau, B.Y.Y.; Cohen, D.J.A.; Ward, W.E.; Ma, D.W.L. Investigating the role of polyunsaturated fatty acids in bone development using animal models. Molecules 2013, 18, 14203–14227. [Google Scholar] [CrossRef]
- Yair, R.; Shahar, R.; Uni, Z. In ovo feeding with minerals and vitamin D3 improves bone properties in hatchlings and mature broilers. Poult. Sci. 2015, 94, 2695–2707. [Google Scholar] [CrossRef]
- Hopcroft, R.L.; Cowieson, A.J.; Muir, W.I.; Groves, P.J. Changes to mineral levels in the yolk of meat chicken embryos during incubation. Poult. Sci. 2018, 98, 1511–1516. [Google Scholar] [CrossRef]
- Yair, R.; Uni, Z. Content and uptake of minerals in the yolk of broiler embryos during incubation and effect of nutrient enrichment. Poult. Sci. 2011, 90, 1523–1531. [Google Scholar] [CrossRef]
- Kelso, K.A.; Cerolini, S.; Noble, R.C.; Sparks, N.H.C.; Speake, B.K. Lipid and antioxidant changes in semen of broiler fowl from 25 to 60 weeks of age. J. Rep. 1996, 106, 201–206. [Google Scholar] [CrossRef]
- Kelso, K.A.; Cerolini, S.; Speake, B.K.; Gavalchini, L.G.; Noble, R.C. Effects of dietary supplementation with alpha-linolenic acid on the phospholipids fatty acid composition and quality of spermatozoa in cockerel from 24–72 weeks of age. J. Rep. 1997, 110, 53–59. [Google Scholar] [CrossRef]
- Cerolini, S.; Surai, P.; Ggavalchini, L.G.M.; Noble, R.C. Effect of n3 and n6 fatty acid supplemented diet and vitamin E level on semen quality in cockerels. Br. Poult. Sci. 2000, 41, 8–10. [Google Scholar] [CrossRef]
- Hudson, P.; Wilson, J. Effects of dietary menhaden oil on fertility and sperm quality of broiler breeder males. J. App. Poult. Res. 2003, 12, 341–347. [Google Scholar] [CrossRef]
- Bongalhardo, D.C.; Leeson, S.; Buhr, M.M. Dietary lipids differentially affect membranes from different areas of rooster sperm. Poult. Sci. 2009, 88, 1060–1069. [Google Scholar] [CrossRef]
- Blesbois, E.; Grasseau, I.; Seigneurin, F. Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction 2005, 129, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, K.E.; Hofmo, P.O.; Tverdal, A.; Miller, R.R. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction 2006, 131, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Zaniboni, L.; Cerolini, S. Liquid storage of turkey semen: Changes in quality parameters, lipid composition and susceptibility to induced in vitro peroxidation in control, n-3 fatty acids and alpha tocopherol rich spermatozoa. Anim. Reprod. Sci. 2009, 112, 51–65. [Google Scholar] [CrossRef]
- Al-Daraji, H.J.; Al-Mashadani, H.A.; Al-Hayani, W.K.; Al-Hassani, A.S.; Mirza, H.A. Effect of n-3 and n-6 fatty acid supplemented diets on semen quality in Japanese quail (Coturnix coturnix japonica). Int. J. Poult. Sci. 2010, 9, 656–663. [Google Scholar] [CrossRef]
- Al-Daraji, H.J. Sperm-egg penetration in laying breeder flocks: A technique for the prediction of fertility. Br. Poult. Sci. 2001, 42, 266–270. [Google Scholar] [CrossRef]
- Al-Daraji, H.J. Studies of the semen characteristics of certain breeds of Iraqi cocks. Iraqi J. Agric. Sci. 2002, 33, 257–262. [Google Scholar]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Krawczyk, J.; Szczurek, W.; Puchała, M.; Józefiak, D. Effect of selected feed additives on egg performance and eggshell quality in laying hens fed a diet with standard or decreased calcium content. Ann. Anim. Sci. 2018, 18, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Gakhar, N.; Goldberg, E.; Jing, M.; Gibson, R.; House, J.D. Effect of feeding hemp seed and hemp seed oil on laying hen performance and egg yolk fatty acid content: Evidence of their safety and efficacy for laying hen diets. Poult. Sci. 2012, 91, 701–711. [Google Scholar] [CrossRef]
- Shahid, S.; Chand, N.; Khan, R.U.; Suhail, S.M.; Khan, N.A. Alternations in cholesterol and fatty acids composition in egg yolk of Rhode Island Red x Fyoumi Hens fed with hemp seeds (Cannabis sativa L.). J. Chem. 2015, 2015, 6. [Google Scholar] [CrossRef]
- Neijat, M.; Suh, M.; Neufeld, J.; House, J.D. Hempseed products fed to hens effectively increased n 3 polyunsaturated fatty acids in total lipids, triacylglycerol and phospholipid of egg yolk. Lipids 2016, 51, 601–614. [Google Scholar] [CrossRef]
- Mattioli, S.; Dal Bosco, A.; Martino, M.; Ruggeri, S.; Marconi, O.; Sileoni, V.; Falcinelli, B.; Castellini, C.; Benincasa, P. Alfalfa and flax sprouts supplementation enriches the content of bioactive compounds and lowers the cholesterol in hen egg. J. Funct. Foods. 2016, 22, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Park, N.; Lee, T.K.; Nguyen, T.T.H.; An, E.B.; Kim, N.M.; You, Y.H.; Park, T.S.; Kim, D. The effect of fermented buckwheat on producing l-carnitine-and γ-aminobutyric acid (GABA)-enriched designer eggs. J. Sci. Food Agric. 2017, 97, 2891–2897. [Google Scholar] [CrossRef]
- Lokhande, A.; Ingale, S.L.; Lee, S.H.; Sen, S.; Khong, C.; Chae, B.J.; Kwon, I.K. Effects of dietary supplementation with Gynuraprocumbens (Merr.) on egg yolk cholesterol, excreta microflora and laying hen performance. Br. Poult. Sci. 2014, 55, 524–531. [Google Scholar] [CrossRef]
- Elkin, R.G.; Ying, Y.; Harvatine, K.J. Feeding laying hens stearidonic acid-enriched soybean oil, as compared to flaxseed oil, more efficiently enriches eggs with very long-chain n-3 polyunsaturated fatty acids. J. Agric. Food Chem. 2015, 63, 2789–2797. [Google Scholar] [CrossRef]
- Petrovic, M.; Gacic, M.; Karacic, V.; Gottsteinc, Z.; Mazijac, H.; Medic, H. Enrichment of eggs in n-3 poly unsaturated fatty acids by feeding hens with different amount of linseed oil in diet. Food Chem. 2012, 135, 1563–1568. [Google Scholar] [CrossRef]
- Herzallah, S. Enrichment of conjugated linoleic acid (CLA) in hen eggs and broiler chickens meat by lactic acid bacteria. Br. Poult. Sci. 2013, 54, 747–752. [Google Scholar] [CrossRef]
- Kostogrys, R.B.; Filipiak-Florkiewicz, A.; Dereń, K.; Drahun, A.; Czyżyńska-Cichoń, I.; Cieślik, E.; Szymczyk, B.; Franczyk-Żarów, M. Effect of dietary pomegranate seed oil on laying hen performance and physicochemical properties of eggs. Food Chem. 2017, 221, 1096–1103. [Google Scholar] [CrossRef]
- Park, J.H.; Upadhaya, S.D.; Kim, I.H. Effect of dietary marine microalgae (Schizochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian Australas. J. Anim. Sci. 2015, 28, 391–397. [Google Scholar] [CrossRef]
- El-Katcha, M.I.; El-Kholy, M.E.; Soltan, M.A.; El-Gayar, A.H. Effect of dietary omega-3 to omega-6 ratio on growth performance, immune response, carcass traits and meat fatty acids profile of broiler chickens. J. Poult. Sci. 2014, 2, 71–94. [Google Scholar]
- Lemahieu, C.; Bruneel, C.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysisgalbana, fish oil and DHA Gold) on n-3 LC-PUFA enrichment (efficiency) in the egg yolk. J. Funct. Foods 2015, 19, 821–827. [Google Scholar] [CrossRef]
- Lemahieu, C.; Bruneel, C.; Termote-Verhalle, R.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chem. 2013, 14, 4051–4059. [Google Scholar] [CrossRef]
- Scollan, N.D.; Price, E.M.; Morgan, S.A.; Huws, S.A.; Shingfield, K.J. Can we improve the nutritional quality of meat? Proc. Nutr. Soc. 2017, 76, 603–618. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.; Yatao, X.; Hassan, F.U.; Arain, M.A.; Abd El-Hack, M.E.; Noreldin, A.E.; Sun, C. Influence of graded levels of l-theanine dietary supplementation on growth performance, carcass traits, meat quality, organs histomorphometry, blood chemistry and immune response of broiler chickens. Int. J. Mol. Sci. 2018, 19, 462. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, C.; Ding, Z.; Huang, H.; Sun, Y. Effects of simultaneous supplementation of laying hens with α-linolenic acid and eicosapentaenoic acid/docosahexaenoic acid resources on egg quality and n-3 fatty acid profile. Asian Australas. J. Anim. Sci. 2017, 30, 973–978. [Google Scholar] [CrossRef]
Author/s | Supplements | Results |
---|---|---|
[88] | Linoleic acid to α-linolenic acid ratio from 20:1 to 1:2 | Increased ALA from 0.95 to 5.09% of fatty acid, EPA from 0.07 to 0.31% of fatty acids, DHA from 0.44 to 3.54% of fatty acids, and n6/n3 from 9.37 to 1.31. |
[124] | Calcium in diet (3.2 and 3.7%), sodium butyrate, probiotic, herbal blend or chitosan | Chitosan increased eggshell thickness, strength, and decreased cholesterol in yolk; herbal extract increased eggshell thickness and had no effect on performance, egg shell quality, fatty acid, and lipid profile. |
[125] | * Hemp seed (Cannabis sativa) (100 to 200 g/kg diet) | Increased EPA (0.2 versus 0.9 to 1.2% of fatty acids) and DHA (17.1 versus 39.2 to 47.4% of fatty acids)—decreased n6 to n3 fatty acid ratio (44.9 versus 4.92 to 11.7). |
[125] | * Hemp oil (40 and 120 g/kg diet) | Increased EPA (0.3 versus 1.2 to 3.2% of fatty acids), DHA (17.1 versus 40.9 to 48.1% of fatty acids) and ALA (15.8 versus 58.7 to 192% of fatty acids). |
[126] | * Hemp seed (Cannabis sativa) (150–250 g/kg diet) | Decreased cholesterol linearly with maximum reduction of 32% (281 versus 191 mg/egg) Increased EPA + DHA from 1.33 mg to 5.76 mg/g of unsaturated fatty acids. |
[127] | * Hemp seed (Cannabis sativa) (100 to 300 g/kg diet) | Increased EPA (0 versus 1.12 to 2.66% of fatty acids) and DHA (16.2 versus 41 to 41.3% of fatty acids)—decreased n6 to n3 fatty acid ratio (44.9 versus 4.92 to 11.7). |
[127] | * Hemp oil (45 and 90 g/kg diet) | Increased EPA (0 versus 1.35 to 2.13% of fatty acids) and DHA (15.8 versus 39.3 to 43.6% of fatty acids). |
[127] | ** Medicago sativa (Alfalfa sprouts) 40 g/d | Decreased cholesterol by 9.5% in the egg. Improved isolariciresinol by 220% and daidzein by 173%. Improved EPA by 109%, DHA by 22% and LNA by 22% and also increased many other antioxidant significantly. |
[128] | Flax sprouts (Linum usitatissimum) 40 g/d | Decreased cholesterol by 8.7%. Increased isolariciresinol by 142% and daidzein by 327%. Enhanced EPA by 64%, DHA by 91% and LNA by 55%. Increased many other antioxidants significantly. |
[129] | *** Fermented buckwheat extract (Fagopyrum esculentum) 16 g/kg diet for 4 weeks | Enriched L-carnitine (13.6%) and GABA (8.4%) in the egg yolk. |
[130] | Gynura procumbens (Lour) plant (2.5 to 7.5 g/kg) | Lowered total cholesterol by 12% in the egg yolk. |
[131] | Stearidonic acid-enriched soybean oil (50 g/kg diet) | Improved EPA (1 versus 10 mg), DHA (46 versus 84 mg) and total ω-3fatty acids (94 versus 244 mg) per egg yolk. |
[131] | **** Fish oil (50 g/kg diet) | Increased EPA (1 versus 56 mg), DHA (46 versus 211 mg) and total n-3 fatty acids (94 versus 340 mg) per egg yolk. |
[131] | ***** Flaxseed oil (50 g/kg diet) | Improved EPA (1 versus 6 mg), DHA (46 versus 72 mg) and total ω-3fatty acids (94 versus 376 mg) per egg yolk. |
[132] | ***** Flaxseed oil (10 to 40/kg diet) | Increased EPA (0 versus 0.01 to 0.7% of fatty acid) and DHA (0.74 versus 1.25 to 1.72% of fatty acid) content. Decreased n6/n3 fatty acid (13.3 versus 6.8 to 2.3). |
[133] | Feeding of Lacobacillus reuteri (10(6) CFU/mL of bacteria to 1-d-old broiler chickens weekly for 6 weeks) | Enhanced conjugated linoleic acid concentration in eggs (0.16 to 1.1 mg/g fat at 4–5 week of supplementation). |
[134] | Pomegranate seed oil, used as a source of punicic acid (5–15 g/kg diet) | Pomegranate seed oil, used as a source of punicic acid (0.5 to 1.5% level. Improved EPA and DHA content in eggs). |
[135] | Microalgae (Schizochytrium) powder (5 and 10 g/kg diet) | Increased DHA, but not EPA. |
[136] | Addition of PUFA at a ratio of ω-3: ω-6(1:5) | Reduced the cholesterol level of breast meat. |
[137] | Increasing doses (0. 3 to 4 g/kg n3-PUFA from microalgae Isochrysis galbana) | Increased n3 long-chain PUFA in egg yolk linearly from 14.7 to 129 mg Transfer efficiency was maximum (53%) at 0.12% level of supplementation with lowest efficiency (28%) at 0.4% level. |
[138] | Different n3-PUFA supplementation (0.56% extruded flaxseed, 2.03% Isochrysis galbana, 0.68% fish oil, and 0.44% DHA Gold) | The lowest enrichment efficiency (6%) was observed with flaxseed (α-linolenic acid source). Fish oil, microalgae and DHA Gold had enrichment efficiencies of about 55%, 30% and 45%, respectively. |
[139] | Microalgae, Phaeodactylum tricornutum, Nannochloropsis oculata, Isochrysis galbana and Chlorella fusca (25 mg and 250 mg extra n-3 PUFA per 100 g feed) | The highest efficiency of ω-3long-PUFA enrichment was obtained by supplementation of Phaeodactylum and Isochrysis. Yolk color shifted from yellow to a more intense red color with supplementation of Phaeodactylum, Nannochloropsis and Isochrysis. |
[140] | PUFA in diet | Meat fat content and composition, meat quality and shelf life, nutritive value. |
[141] | Basal diet + 100 mg l-theanine/kg diet; basal diet + 200 mg l-theanine/kg diet; and basal diet + 300 mg l-theanine/kg diet. | Intermediate level of l-theanine (200 mg/kg diet) showed better results in terms of body weight gain (BWG), feed consumption (FC), and feed conversion ratio (FCR). Visceral weight and meat color improved, cholesterol decreased HDL increased, and antioxidant status improved. Higher levels have l-theanine deleterious effects. |
[142] | Feeding laying hens with alpha-linolenic acid (ALA) resources [flax (10%), perilla (10%), and Eucommia ulmoides (10%) and eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) resources (Schizochytrium sp.) (1.5%) | Combination of microalgae and perilla seeds increased ALA from 19.7 to 202.5 mg/egg and EPA + DHA from 27.5 to 159.7 mg/egg. n-3 PUFA enrichment was 379.6 mg/yolk. Combination feeding increased ALA, EPA, and DHA content. |
[143] | Feeding linseed (4.5%) + tomato-red pepper mix (1 + 1%) | Linseed decreased palmitic acid (25.41% to 23.43%) and stearic acid (14.75% to 12.52%), no effect on α-Linolenic acid, and increased eicosapentaenoic acid (EPA) (0.011% to 0.047%) and docosahexaenoic acid (DHA) (1.94% to 2.73%). Linseed combined with tomato-red pepper mix did not affect these parameters. |
[144] | Feeding wheat-soybean meal basal diet along with sunflower oil (SO), animal oil (AO), linseed oil (LO), or menhaden fish oil (FO)@ 5% (wt/wt) | Significantly lower splenocyte proliferative response to ConA has been noted in chicks fed LO or FO than the chicks fed SO or AO. Significantly lower splenocyte response to PWM has been noted in chicks fed AO, LO, and FO than fed with SO. Significantly lower thymus lymphocyte proliferation in response to ConA in chicks fed AO, LO, and FO than in the chicks fed SO. Proportion of IgM + lymphocytes in spleen increased in both chicks fed LO and FO, however serum IgG concentration increased in FO-fed chicks only. Significant increase in CD8 + T-lymphocytes percentage has been noted in LO-fed chicks. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; Khurana, S.K.; et al. Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health. Animals 2019, 9, 573. https://doi.org/10.3390/ani9080573
Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Taha AE, Tiwari R, Yatoo MI, Bhatt P, Khurana SK, et al. Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health. Animals. 2019; 9(8):573. https://doi.org/10.3390/ani9080573
Chicago/Turabian StyleAlagawany, Mahmoud, Shaaban S. Elnesr, Mayada R. Farag, Mohamed E. Abd El-Hack, Asmaa F. Khafaga, Ayman E. Taha, Ruchi Tiwari, Mohd. Iqbal Yatoo, Prakash Bhatt, Sandip Kumar Khurana, and et al. 2019. "Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health" Animals 9, no. 8: 573. https://doi.org/10.3390/ani9080573
APA StyleAlagawany, M., Elnesr, S. S., Farag, M. R., Abd El-Hack, M. E., Khafaga, A. F., Taha, A. E., Tiwari, R., Yatoo, M. I., Bhatt, P., Khurana, S. K., & Dhama, K. (2019). Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health. Animals, 9(8), 573. https://doi.org/10.3390/ani9080573