Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioethics
2.2. Location
2.3. Animals and Sampling
2.4. qRT-PCR Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect on Angiogenesis
3.2. Effect on Cell Turnover/Lactogenesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Lamb Ewe-Diet | Time | ACC | FAS | SCD1 | SREBP1c |
---|---|---|---|---|---|
TP-NP | Weaning | 2.42 ± 0.38 | 2.05 ± 0.14 | 1.45 ± 0.03 | 0.67 ± 0.31 |
After weaning | 1.67 ± 0.31 | 1.84 ± 0.28 | 1.77 ± 0.37 | 2.40 ± 0.46 | |
TP-RC | Weaning | 3.29 ± 0.18 | 1.47 ± 1.08 | 1.92 ± 0.03 | 1.59 ± 0.41 |
After weaning | 0.52 ± 0.29 | 0.51 ± 0.07 | 0.64 ± 0.21 | 2.48 ± 0.24 | |
TC-NP | Weaning | 1.06 ± 0.28 | 1.00 ± 0.12 | 1.88 ± 0.73 | 0.66 ± 0.47 |
After weaning | 1.39 ± 0.36 | 1.13 ± 0.66 | 0.83 ± 0.02 | 0.45 ± 0.33 | |
TC-RC | Weaning | 0.70 ± 0.10 | 0.48 ± 0.30 | 0.31 ± 0.12 | 2.86 ± 2.61 |
After weaning | 2.93 ± 0.68 | 2.06 ± 0.01 | 2.37 ± 0.24 | 0.46 ± 0.19 | |
SP-NP | Weaning | 1.49 ± 0.29 | 1.19 ± 0.14 | 1.34 ± 0.18 | 2.68 ± 0.12 |
After weaning | 1.72 ± 0.09 | 1.76 ± 0.51 | 1.26 ± 0.44 | 1.49 ± 0.35 | |
SP-RC | Weaning | 1.06 ± 0.36 | 0.66 ± 0.12 | 3.82 ± 0.22 | 0.51 ± 0.35 |
After weaning | 0.66 ± 0.25 | 0.36 ± 0.21 | 0.54 ± 0.34 | 1.15 ± 0.57 | |
SC-NP | Weaning | 1.62 ± 0.87 | 1.52 ± 0.66 | 0.48 ± 0.64 | 2.15 ± 1.06 |
After weaning | 0.26 ± 0.05 | 0.43 ± 0.10 | 0.37 ± 0.13 | 2.77 ± 2.13 | |
SC-RC | Weaning | 1.31 ± 0.90 | 0.77 ± 0.07 | 0.67 ± 0.05 | 1.17 ± 0.18 |
After weaning | 1.73 ± 0.02 | 1.05 ± 0.66 | 1.26 ± 0.99 | 0.29 ± 0.19 |
References
- Danso, A.S.; Morel, P.C.H.; Kenyon, P.R.; Blair, H.T. Relationships between prenatal ewe traits, milk production, and preweaning performance of twin lambs. J. Anim. Sci. 2016, 94, 3527–3539. [Google Scholar] [CrossRef]
- Dillon, P.; Berry, D.; Evans, R.; Buckley, F.; Horan, B. Consequences of genetic selection for increased milk production in European seasonal pasture based systems of milk production. Livest. Sci. 2006, 99, 141–158. [Google Scholar] [CrossRef]
- Rukkwamsuk, T. A field study on negative energy balance in periparturient dairy cows kept in small- holder farms. Effect on milk production and reproduction. Afr. J. Agric. Res. 2010, 5, 3157–3163. [Google Scholar] [CrossRef]
- Hamann, H.; Horstick, A.; Wessels, A.; Disti, O. Estimation of genetic parameters for test day milk production, somatic cell score and litter size at birth in East Friesian ewes. Livest. Prod. Sci. 2004, 87, 153–160. [Google Scholar] [CrossRef]
- Djonov, V.; Andres, A.C.; Ziemiecki, A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc. Res. Tech. 2001, 52, 182–189. [Google Scholar] [CrossRef]
- Agenäs, S.; Nielsen, M.O.; Safayi, S.; Knight, C. Timming of mammary angiogénesis: A posible explanation for post partum apoptosis in the bovine udder? Lactation Research in mammals and humans: The mammary gland in health and disease. In Proceedings of the from a Symposium, Uppsala, Sweden, 7–8 December 2010. [Google Scholar]
- Thurston, G. Role of angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res. 2003, 314, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Safayi, S.; Theil, P.K.; Elbrønd, L.; Hou, V.S.; Engbæk, M.; Nørgaard, J.V.; Sejrsen, K.; Nielsen, M.O. Mammary remodeling in primiparous and multiparous dairy goats during lactation. J. Dairy Sci. 2010, 93, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Gutierrez, E.; Overton, T.; Butler, W.; Bauman, D. Dietary suplements of two doses of calcium salts of conjugated linoleic acid during the transition period and early lactation. J. Dairy Sci. 2005, 88, 1078–1089. [Google Scholar] [CrossRef]
- Odens, L.; Burgos, R.; Innocenti, M.; Van Baale, M.J.; Baumgard, L.H. Effects of varying doses of suplemental conjugated linoleic acido n production and energetic variables during the transition period. J. Dairy Sci. 2007, 90, 293–305. [Google Scholar] [CrossRef]
- Thatcher, W.; Santos, J.; Silvestre, F.; Kim, I.; Staples, C. Perspective on physiological/endocrine and nutritional factors influencing fertility in postpartum dairy cows. Reprod. Domest. Anim. 2010, 45, 2–14. [Google Scholar] [CrossRef]
- Caroprese, M.; Marzano, A.; Marino, R.; Gliatta, G.; Muscio, A.; Sevi, A. Flaxseed supplementation improves fatty acid profile of cow milk. J. Dairy Sci. 2010, 93, 2580–2588. [Google Scholar] [CrossRef] [PubMed]
- Or-Rashid, M.M.; Fisher, R.; Karrow, N.; AlZahal, O.; McBride, B.W. Fatty acid profile of colostrum and milk of ewes supplemented with fish meal and the subsequent plasma fatty acid status of their lambs. J. Anim. Sci. 2010, 88, 2092–2102. [Google Scholar] [CrossRef] [PubMed]
- Zachut, M.; Arieli, A.; Lehrer, H.; Livshitz, L.; Yakoby, S.; Moallem, U. Effects of increased supplementation of n-3 fatty acids to transition dairy cows on performance and fatty acid profile in plasma, adipose tissue and milk fat. J. Dairy Sci. 2010, 93, 5877–5889. [Google Scholar] [CrossRef]
- Capper, J.L.; Wilkinson, R.G.; Mackenzie, A.M.; Sinclair, L.A. Polyunsaturated fatty acid supplementation during pregnancy alters neonatal behavior in sheep. J. Nutr. 2006, 136, 397–403. [Google Scholar] [CrossRef]
- Gallardo, M.A.; Pulido, R.; Gallo, C. Fatty acid composition of Longissimus dorsi muscle of Suffolk Down lambs fed on different dryland forages. Chil. J. Agric. Res. 2011, 71, 566–571. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Winters, A.L.; Scollan, N.D.; Dewhurst, R.J.; Theodorou, M.K.; Minchin, F.R. Plant-mediated lipolysis and proteolysis in red clover with different polyphenol oxidase activities. J. Sci. Food Agric. 2004, 84, 1639–1645. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Delaby, L.; Moloney, A.; Boland, T.; Lewis, E. Nutritive value of forage legumes used for grazing and silage. Ir. J. Agric. Food Res. 2009, 48, 167–187. [Google Scholar]
- Wu, G.Y.; Bazer, F.W.; Cudd, T.A.; Meininger, C.J.; Spencer, T.E. Maternal nutrition and fetal development. J. Nutr. 2004, 134, 2169–2172. [Google Scholar] [CrossRef]
- Symonds, M.E.; Stephenson, T.; Gardner, D.S.; Budge, H. Long-term effects of nutritional programming of the embryo and fetus: Mechanisms and critical windows. Reprod. Fertil. Dev. 2007, 19, 53–63. [Google Scholar] [CrossRef]
- Cárcamo, J.G.; Arias-Darraz, L.; Alvear, C.; Williams, P.; Gallardo, M.A. Effect of the diet and type of pregnancy on plasma metabolic response in sheep and its further effect on the lamb performance. Trop. Anim. Health Prod. 2019, 51, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Cvek, K.; Dahlborn, K. Evolution of the mammary capillary network and carbonic anhydrase activity throughout lactation and during somatotropin treatment in goats. J. Dairy Res. 2010, 77, 368–375. [Google Scholar] [CrossRef]
- Gallardo, M.A.; Cárcamo, J.G.; Hiller, B.; Nuernberg, G.; Nuernberg, K.; Dannenberger, D. Expression of lipid metabolism related genes in subcutaneous adipose tissue from Chilota lambs grazing on two different pasture types. Eur. J. Lipid Sci. Technol. 2015, 17, 23–30. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Knight, C.H. The importance of cell division in udder development and lactation. Livest. Prod. Sci. 2000, 66, 169–176. [Google Scholar] [CrossRef]
- Boutinaud, M.; Guinard-Flament, J.; Jammes, H. The number and activity of mammary epithelial cells, determining factors for milk production. Reprod. Nutr. Dev. 2004, 44, 499–508. [Google Scholar] [CrossRef]
- Anderson, R.R. Mammary-gland growth in sheep. J. Anim. Sci. 1975, 41, 118–123. [Google Scholar] [CrossRef]
- Capuco, A.V.; Ellis, S.E.; Hale, S.A.; Long, E.; Erdman, RA.; Zhao, X.; Paape, M.J. Lactation persistency: Insights from mammary cell proliferation studies. J. Anim. Sci. 2003, 81, 18–31. [Google Scholar] [CrossRef]
- Hennighausen, L.; Robinson, G.W. Information networks in the mammary gland. Nat. Rev. Mol. Cell Biol. 2005, 6, 715–725. [Google Scholar] [CrossRef]
- Paten, A.M.; Duncan, E.J.; Pain, S.J.; Peterson, S.W.; Kenyon, P.R.; Blair, H.T.; Dearden, P.K. Functional development of the adult ovine mammary gland insights from gene expression Profiling. BMC Genom. 2015, 16, e748. [Google Scholar] [CrossRef] [PubMed]
- Colitti, M.; Farinacci, M. Cell turnover and gene activities in sheep mammary glands prior to lambing to involution. Tissue Cell 2009, 41, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Pepper, M.S.; Baetens, D.; Mandriota, S.J.; Di Sanza, C.; Oikemus, S.; Lane, T.F.; Soriano, J.V.; Montesano, R. Regulation of VEGF and VEGF receptor expression in the rodent mammary gland during pregnancy, lactation, and involution. Dev. Dyn. 2000, 218, 507–524. [Google Scholar] [CrossRef]
- Norgaard, J.V.; Nielsen, M.O.; Theil, P.K.; Sorensen, M.T.; Safayi, S.; Sejrsen, K. Development of mammary glands of fat sheep submitted to restricted feeding during late pregnancy. Small Rumin. Res. 2008, 76, 155–165. [Google Scholar] [CrossRef]
- Caja, G.; Salama, A.A.K.; Such, X. Omitting the dry-off period negatively affects colostrum and milk yield in dairy goats. J. Dairy Sci. 2006, 89, 4220–4228. [Google Scholar] [CrossRef]
- Dai, W.; Wang, Q.; Zhao, F.; Liu, J.; Liu, H. Understanding the regulatory mechanisms of milk production using integrative transcriptomic and proteomic analyses: Improving inefficient utilization of crop by- products as forage in dairy industry. BMC Genom. 2018, 19, e403. [Google Scholar] [CrossRef] [PubMed]
- Faulconnier, Y.; Bernard, L.; Boby, C.; Domagalski, J.; Chilliard, Y.; Leroux, C. Extruded linseed alone or in combination with fish oil modifies mammary gene expression profiles in lactating goats. Animal 2018, 12, 1564–1575. [Google Scholar] [CrossRef] [PubMed]
- Castro-Carrera, T.; Frutos, P.; Leroux, C.; Chilliard, Y.; Hervás, G.; Belenguer, A.; Bernard, L.; Toral, P.G. Dietary sunflower oil modulates milk fatty acid composition without major changes in adipose and mammary tissue fatty acid profile or related gene mRNA abundance in sheep. Animal 2014, 9, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Zidi, A.; Casas, E.; Amills, M.; Jordana, J.; Carrizosa, J.; Urrutia, B.; Serradilla, J.M. Genetic variation at the caprine lactalbumin, alpha (LALBA) gene and its association with milk lactose concentration. Anim. Genet. 2014, 45, 609–613. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Flemetakis, E.; Kouri, E.D.; Karalias, G.; Sotirakoglou, K.; Zervas, G. The effect of long term under- and over-feeding on the expression of six major milk protein genes in the mammary tissue of sheep. J. Dairy Res. 2015, 82, 257–264. [Google Scholar] [CrossRef]
- Lékó, A.H.; Cservenák, M.; Dobolyi, Á. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats. Growth Horm. IGF Res. 2017, 37, 7–12. [Google Scholar] [CrossRef]
- Ahlin, C.; Lundgren, C.; Embretsén-Varo, E.; Jirstrom, K.; Blomqvist, C.; Fjallskog, M. High expression of cyclin D1 is associated to high proliferation rate and increased risk of mortality in women with ER-positive but not in ER-negative breast cancers. Breast Cancer Treat. 2017, 164, 667–678. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Flemetakis, E.; Kalloniati, C.; Papadomichelakis, G.; Katinakis, P.; Zervas, G. Sheep and goats differences in CLA and fatty acids milk fat content in relation with mRNA stearoyl-CoA desaturase and lipogenic genes expression in their mammary gland. J. Dairy Res. 2009, 76, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Thomson, P.C.; Sheehy, P.A.; Raadsma, H.W. Comparative transcriptome analyses reveal conserved and distinct mechanisms in ovine and bovine lactation. Funct. Integr. Genom. 2013, 13, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Peñagaricano, F.; Wang, X.; Rosa, G.J.M.; Radunz, A.E.; Khatib, H. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC Genom. 2014, 15, e1034. [Google Scholar] [CrossRef] [PubMed]
Gene | Accession | Forward Primer Sequence | Amplicon |
---|---|---|---|
Angiogenesis | Reverse Primer Sequence | ||
CAIV | XM_012186664.1 | F: AGCGCTTTGCCATGGAGATACA | 148 |
R: AGGGGCTGGAAGTTCACATTCTTG | |||
VEGF | NM_001025110.1 | F: TGCTCTACCTTCACCATGCCAA | 101 |
R: GCGCTGGTAGACATCCATGAACTT | |||
VEGFR1 (FTL1) | XM_015098156.1 | F: AGGTGACCTGCTTCAAGCCAAT | 106 |
R: GAAGGCAGGTGTCGAGTACGTAAA | |||
VEGFR2 (KDR) | NM_001278565.1 | F: AAGACGCTGACTTGCTTTGGGA | 150 |
R: AAATGGGAAGAGCACGCAACCT | |||
ANGPT1 | XM_004011787.3 | F: GCACCCTCATGCATTCTTGTCA | 140 |
R: ACCCTTTCCTCTACCCTATCTGCT | |||
ANGPT2 | XM_004021671.3 | F: GAGACCTGCTCCCAAAGCAGTAAA | 145 |
R: TCACTGAGTGATGCGGGTTCAA | |||
MKI67 | XM_015103501.1 | F: TGCAGACTTTGGCACAAACGAC | 143 |
R: AGTTTTAGCAGGACGCCTGGAA | |||
TBXAS1 | XM_012177234.2 | F: CATCTTCCTCATTGCTGGCTACGA | 143 |
R: AGTACTCAGGGGCTGGATGTTTCT | |||
Cell turnover | |||
LALBA | NM_001009797.1 | F: TGCCACCCAGGCTGAACAATTA | 106 |
R: AAATGCGGTACAGACCCATTCAGG | |||
BAX | XM_015100639.1 | F: CTAAGACCTGGTGTAGCCAAGCAA | 103 |
R: TCGAACCCATGTTCCCTGCATT | |||
BCL2 | XM_012103831.2 | F: ATGCGGCCCCTGTTTGATTTCT | 112 |
R: GTGGACTTCACTTATGGCCCAGAT | |||
CCND1 | XM_015102997.1 | F: ACGACTTCATCGAGCACTTCCTCT | 127 |
R: GGTGGGTTGGAAATGAACTTCACG | |||
IGF1 | XM_012159642.2 | F: CCAGACTTTGCACTTCAGAAGC | 106 |
R: GATGTGACTGGCATCTTCACCT | |||
IGF1R | XM_012098367.2 | F: CGAGATCCTGTACATTCGCACCAA | 100 |
R: GTTCCACTTCACGATCAGCTGAGA | |||
IGFBP1 | NM_001145177.1 | F: CAGCGATGAGGCCACAGATACAAA | 117 |
R: CTGGACTCGGTCATCAAGTGGAAA | |||
IGFBP3 | NM_001159276.1 | F: AGGTTGACTACGAGTCTCAGAGCA | 122 |
R: CAGGAACTTGAGGTCGTTCAGTGT | |||
IGFBP5 | NM_001129733.1 | F: TGCGTGGACAAGTATGGGATGAAG | 103 |
R: AGGGGACGCATCACTCAACATT | |||
LPT | XM_004008038.3 | F: ATCCCACTCACCAGCATGCAAA | 145 |
R: CTACCAAGTGCAAGCACAGTTAGC | |||
LPTR | NM_001009763.1 | F: TTGGATGGCCTAGGAATCTGGAGT | 105 |
R: GTTAGACCCAACCGCTGTCAGAAT | |||
LTF | NM_001024862.1 | F: GGTTATTCTGGTGCCTTCAAGTGC | 119 |
R: AGAAGCTCATACTGGTCCCTGTCA | |||
CYP19A | NM_001123000.1 | F: AACACGTCCACATAGCCCAAGT | 80 |
R: ACCATCTGTGCTGATTCCATCACC | |||
TGFB1 | NM_001009400.1 | F: GCACGTGGAGCTGTACCAGAAATA | 116 |
R: GCACAACTCCAGTGACGTCAAA | |||
TGFB1R1 | XM_012120354.2 | F: CCAAGGAAAACCAGCCATAGCTCA | 118 |
R: TGTGGCCGAATCATGCCTTACT | |||
TGFB1R2 | XM_012099307.2 | F: CCTTACAAAGCATGTGGGCTTGAC | 132 |
R: CCTGCACTGTAGGCGGATTCTTTA | |||
ACTIN | NM_001009784.1 | F: TGAAGTGTGACGTGGACATCCGTA | 108 |
R: AGGTGATCTCCTTCTGCATCCTGT |
Experimental Treatment 1 | CAIV | VEGF | VEGFR1 | VEGFR2 | ANGPT1 | ANGPT2 | MK167 | TBXAS1 |
---|---|---|---|---|---|---|---|---|
Time 1 | ||||||||
TP | 1.33 ± 0.35 | 0.58 ± 0.07 | 0.41 ± 0.06 | 0.43 b ± 0.05 | 0.31 b± 0.05 | 0.40 b ± 0.11 | 0.36 b ± 0.12 | 0.48 ± 0.09 |
TC | 4.81 ± 2.24 | 1.69 ± 0.63 | 2.00 ± 0.35 | 1.89 a ± 0.18 | 4.05 a ± 1.25 | 2.35 a ± 0.10 | 2.11 a ± 0.28 | 2.56 ± 0.76 |
SP | 1.56 ± 0.91 | 1.45 ± 0.23 | 1.83 ± 0.79 | 1.39 a ± 0.17 | 1.48 a,b ± 0.47 | 0.90 b ± 0.27 | 1.12 a,b ± 0.38 A | 1.01 ± 0.35 |
SC | 1.77 ± 1.32 | 1.03 ± 0.18 | 1.34 ± 0.52 | 1.15 a ± 0.30 | 1.08 b ± 0.38 | 1.51 a,b ± 0.36 A | 1.61 a ± 0.29 | 1.38 ± 0.40 |
p groups 2 | 0.33 | 0.17 | 0.14 | 0.004 | 0.01 | 0.001 | 0.004 | 0.06 |
Time 2 | ||||||||
TP | 1.73 a ± 0.28 | 1.43 ± 0.39 | 1.58 ± 0.88 | 1.03 ± 0.32 | 1.19 ± 0.48 | 1.31 ± 0.53 | 1.02 ± 0.42 | 1.38 ± 0.45 |
TC | 1.01 a,b ± 0.20 | 1.40 ± 0.13 | 1.37 ± 0.30 | 1.05 ± 0.04 | 1.48 ± 0.26 | 1.34 ± 0.14 | 1.59 ± 0.49 | 1.75 ± 0.66 |
SP | 1.52 a,b ± 0.28 | 1.20 ± 0.03 | 1.16 ± 0.13 | 1.74 ± 0.24 | 1.98 ± 0.57 | 1.51 ± 0.27 | 1.55 ± 0.32 A | 1.29 ± 0.21 |
SC | 0.66 b ± 0.13 | 0.74 ± 0.17 | 0.99 ± 0.26 | 0.85 ± 0.16 | 0.63 ± 0.13 | 0.69 ± 0.12 B | 2.95 ± 2.13 | 0.64 ± 0.07 |
p groups | 0.014 | 0.14 | 0.83 | 0.07 | 0.10 | 0.25 | 0.76 | 0.27 |
Time 3 | ||||||||
TP | 1.44 ± 0.45 | 1.31 ± 0.37 | 1.04 a,b ± 0.12 | 1.00 ± 0.22 | 0.90 b ± 0.23 | 0.96 ± 0.17 | 2.61 ± 1.04 | 1.24 ± 0.45 |
TC | 2.28 ± 0.67 | 1.99 ± 0.59 | 2.21 a ± 0.44 | 1.84 ± 0.37 | 2.01 a ± 0.25 | 2.45 ± 0.69 | 3.91 ± 1.81 | 3.13 ± 0.74 |
SP | 0.94 ± 0.15 | 0.94 ± 0.50 | 0.78 b ± 0.24 | 0.94 ± 0.19 | 0.89 b ± 0.44 | 1.40 ± 0.96 | 0.22 ± 0.06 B | 2.66 ± 2.40 |
SC | 0.80 ± 0.43 | 0.81 ± 0.08 | 0.88 b ± 0.20 | 0.84 ± 0.18 | 0.94 b ± 0.15 | 0.71 ± 0.11 B | 0.94 ± 0.25 | 0.78 ± 0.25 |
p groups | 0.18 | 0.19 | 0.01 | 0.06 | 0.01 | 0.10 | 0.12 | 0.28 |
P times 3 | ||||||||
TP | 0.73 | 0.17 | 0.32 | 0.16 | 0.18 | 0.19 | 0.09 | 0.23 |
TC | 0.18 | 0.72 | 0.23 | 0.06 | 0.08 | 0.15 | 0.33 | 0.43 |
SP | 0.68 | 0.56 | 0.36 | 0.08 | 0.36 | 0.75 | 0.04 | 0.69 |
SC | 0.58 | 0.38 | 0.64 | 0.55 | 0.43 | 0.04 | 0.53 | 0.17 |
Exp. Treat 1 | LALBA | BAX | BCL2 | CCND1 | IGF1 | IGF1R | IGFBP3 | IGFBP5 | LPT | LPTR | LTF | TGFB1 | TGFB1R1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time 1 | |||||||||||||
TP | 2.74 ± 1.96 | 1.18 ± 0.30 | 0.91 b ± 0.23 B | 1.01 ± 0.18 | 0.71 b ± 0.12 B | 1.24 ± 0.14 | 0.63 b ± 0.15 B | 1.11 ± 0.07 AB | 1.02 ± 0.38 B | 1.56 ± 0.55 | 1.72 ± 1.03 | 1.04 a,b ± 0.07 B | 1.53 a ± 0.21 |
TC | 1.18 ± 0.27 B | 3.14 ± 0.99 | 2.43 a ± 0.11 A | 1.38 ± 0.07 B | 2.69 a ± 0.28 AB | 1.33 ± 0.56 B | 3.11 a ± 1.04 | 2.03 ± 0.38 B | 2.61 ± 1.04 | 1.36 ± 0.45 | 1.74 ± 0.11 | 0.73 b ± 0.07 | 0.97 a, b ± 0.04 |
SP | 0.40 ± 0.21 | 0.92 ± 0.42 | 0.73 b ± 0.09 | 0.66 ± 0.10 | 0.85 b ± 0.26 | 1.06 ± 0.39 | 0.81 a,b ± 0.12 | 0.71 ± 0.15 | 2.19 ± 1.38 | 1.05 ± 0.27 | 0.62 ± 0.17 | 1.47 a ± 0.14 A | 1.02 a,b ± 0.12 |
SC | 2.38 ± 0.94 | 0.90 ± 0.46 | 0.89 b ± 0.23 | 1.15 ± 0.21 A | 0.85 b ± 0.18 | 1.02 ± 0.33 | 0.86 a,b ± 0.12 | 0.87 ± 0.33 | 1.48 ± 0.92 | 1.09 ± 0.28 | 2.39 ± 1.67 | 1.07 a,b ± 0.10 | 0.81 b ± 0.08 |
p Groups 2 | 0.53 | 0.06 | 0.0002 | 0.08 | 0.0001 | 0.92 | 0.01 | 0.06 | 0.63 | 0.80 | 0.79 | 0.002 | 0.008 |
Time 2 | |||||||||||||
TP | 1.82 a ± 0.28 | 1.35 ± 0.19 | 1.61 a ± 0.13 A | 1.71 a ± 0.10 | 1.88 a ± 0.35 A | 2.02 a ± 0.24 | 1.50 a,b ± 0.33 A | 1.94 a ± 0.38 A | 5.86 a ± 1.10 A | 1.72 ± 0.54 | 3.02 ± 2.07 | 1.29 ± 0.09 AB | 1.51 ± 0.27 |
TC | 1.51 a ± 0.19 AB | 1.37 ± 0.23 | 1.38 a ± 0.11 B | 1.42 a ± 0.31 B | 1.28 a,b ± 0.16 B | 1.36 a,b ± 0.23 B | 2.00 a ± 0.43 | 1.39 a ± 0.28 B | 0.53 b ± 0.18 | 1.10 ± 0.17 | 2.93 ± 1.27 | 0.97 ± 0.05 | 1.05 ± 0.07 |
SP | 1.70 a ± 0.25 | 0.53 ± 0.14 | 0.80 b ± 0.13 | 0.63 b ± 0.06 | 0.73 b ± 0.15 | 0.66 b ± 0.05 | 0.85 b ± 0.22 | 0.87 b ± 0.13 | 1.31 b ± 0.42 | 0.84 ± 0.12 | 1.46 ± 1.02 | 0.89 ± 0.06 B | 0.76 ± 0.21 |
SC | 0.77 b ± 0.20 | 1.23 ± 0.30 | 0.66 b ± 0.09 | 0.82 b ± 0.16 AB | 0.72 b ± 0.10 | 0.82 b ± 0.24 | 0.70 b ± 0.21 | 0.57 b ± 0.08 | 1.41 b ± 0.38 | 1.07 ± 0.30 | 1.63 ± 0.77 | 0.97 ± 0.15 | 1.05 ± 0.26 |
p Groups | 0.021 | 0.14 | 0.0001 | 0.007 | 0.005 | 0.005 | 0.03 | 0.008 | 0.0002 | 0.38 | 0.77 | 0.10 | 0.23 |
Time 3 | |||||||||||||
TP | 1.09 b ± 0.26 | 1.70 b ± 0.34 | 1.26 b ± 0.13 AB | 1.40 a,b ± 0.27 | 1.89 b ± 0.19 A | 1.93 a,b ± 0.44 | 0.65 b ± 0.09 B | 0.85 b ± 0.12 B | 2.61 ± 0.93 AB | 1.33 ± 0.36 | 1.44 ± 0.38 | 1.75 a ± 0.17 A | 1.24 ± 0.35 |
TC | 2.36 a ± 0.28 A | 2.89 a ± 0.37 | 3.02 a ± 0.35 A | 2.64 a ± 0.50 A | 3.23 a ± 0.54 A | 3.45 a ± 0.66 A | 4.91 a ± 1.16 | 4.82 a ± 0.88 A | 1.41 ± 0.35 | 1.17 ± 0.19 | 1.47 ± 0.48 | 0.90 b ± 0.09 | 1.03 ± 0.16 |
SP | 1.05 b ± 0.52 | 0.66 b,c ± 0.19 | 0.82 b ± 0.36 | 0.61 b ± 0.07 | 0.57 b,c ± 0.15 | 0.49 b ± 0.19 | 0.60 b ± 0.04 | 0.52 b ± 0.05 | 2.41 ± 1.26 | 0.76 ± 0.18 | 1.63 ± 0.74 | 0.97 b ± 0.13 B | 1.11 ± 0.34 |
SC | 1.17 b ± 0.26 | 0.48 c ± 0.07 | 0.46 b ± 0.04 | 0.54 b ± 0.06 B | 0.41 c ± 0.06 | 0.45 b ± 0.06 | 0.64 b ± 0.11 | 0.53 b ± 0.06 | 0.84 ± 0.15 | 1.29 ± 0.33 | 1.06 ± 0.52 | 0.77 b ± 0.08 | 0.97 ± 0.05 |
p Groups | 0.036 | 0.0001 | <0.0001 | 0.0008 | 0.0001 | 0.0005 | 0.0004 | <0.0001 | 0.23 | 0.60 | 0.87 | 0.0002 | 0.83 |
P times 3 | |||||||||||||
TP | 0.62 | 0.45 | 0.048 | 0.09 | 0.009 | 0.18 | 0.02 | 0.02 | 0.009 | 0.85 | 0.68 | 0.006 | 0.73 |
TC | 0.023 | 0.14 | 0.0017 | 0.04 | 0.011 | 0.027 | 0.13 | 0.005 | 0.12 | 0.83 | 0.41 | 0.11 | 0.87 |
SP | 0.10 | 0.61 | 0.96 | 0.92 | 0.61 | 0.31 | 0.47 | 0.18 | 0.75 | 0.58 | 0.59 | 0.02 | 0.58 |
SC | 0.16 | 0.28 | 0.14 | 0.049 | 0.06 | 0.26 | 0.58 | 0.43 | 0.73 | 0.84 | 0.69 | 0.22 | 0.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo, M.; Cárcamo, J.G.; Arias-Darraz, L.; Alvear, C. Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland. Animals 2019, 9, 589. https://doi.org/10.3390/ani9090589
Gallardo M, Cárcamo JG, Arias-Darraz L, Alvear C. Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland. Animals. 2019; 9(9):589. https://doi.org/10.3390/ani9090589
Chicago/Turabian StyleGallardo, María, Juan G. Cárcamo, Luis Arias-Darraz, and Carlos Alvear. 2019. "Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland" Animals 9, no. 9: 589. https://doi.org/10.3390/ani9090589
APA StyleGallardo, M., Cárcamo, J. G., Arias-Darraz, L., & Alvear, C. (2019). Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland. Animals, 9(9), 589. https://doi.org/10.3390/ani9090589