Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioethics
2.2. Location
2.3. Animals and Sampling
2.4. qRT-PCR Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect on Angiogenesis
3.2. Effect on Cell Turnover/Lactogenesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Lamb Ewe-Diet | Time | ACC | FAS | SCD1 | SREBP1c |
---|---|---|---|---|---|
TP-NP | Weaning | 2.42 ± 0.38 | 2.05 ± 0.14 | 1.45 ± 0.03 | 0.67 ± 0.31 |
After weaning | 1.67 ± 0.31 | 1.84 ± 0.28 | 1.77 ± 0.37 | 2.40 ± 0.46 | |
TP-RC | Weaning | 3.29 ± 0.18 | 1.47 ± 1.08 | 1.92 ± 0.03 | 1.59 ± 0.41 |
After weaning | 0.52 ± 0.29 | 0.51 ± 0.07 | 0.64 ± 0.21 | 2.48 ± 0.24 | |
TC-NP | Weaning | 1.06 ± 0.28 | 1.00 ± 0.12 | 1.88 ± 0.73 | 0.66 ± 0.47 |
After weaning | 1.39 ± 0.36 | 1.13 ± 0.66 | 0.83 ± 0.02 | 0.45 ± 0.33 | |
TC-RC | Weaning | 0.70 ± 0.10 | 0.48 ± 0.30 | 0.31 ± 0.12 | 2.86 ± 2.61 |
After weaning | 2.93 ± 0.68 | 2.06 ± 0.01 | 2.37 ± 0.24 | 0.46 ± 0.19 | |
SP-NP | Weaning | 1.49 ± 0.29 | 1.19 ± 0.14 | 1.34 ± 0.18 | 2.68 ± 0.12 |
After weaning | 1.72 ± 0.09 | 1.76 ± 0.51 | 1.26 ± 0.44 | 1.49 ± 0.35 | |
SP-RC | Weaning | 1.06 ± 0.36 | 0.66 ± 0.12 | 3.82 ± 0.22 | 0.51 ± 0.35 |
After weaning | 0.66 ± 0.25 | 0.36 ± 0.21 | 0.54 ± 0.34 | 1.15 ± 0.57 | |
SC-NP | Weaning | 1.62 ± 0.87 | 1.52 ± 0.66 | 0.48 ± 0.64 | 2.15 ± 1.06 |
After weaning | 0.26 ± 0.05 | 0.43 ± 0.10 | 0.37 ± 0.13 | 2.77 ± 2.13 | |
SC-RC | Weaning | 1.31 ± 0.90 | 0.77 ± 0.07 | 0.67 ± 0.05 | 1.17 ± 0.18 |
After weaning | 1.73 ± 0.02 | 1.05 ± 0.66 | 1.26 ± 0.99 | 0.29 ± 0.19 |
References
- Danso, A.S.; Morel, P.C.H.; Kenyon, P.R.; Blair, H.T. Relationships between prenatal ewe traits, milk production, and preweaning performance of twin lambs. J. Anim. Sci. 2016, 94, 3527–3539. [Google Scholar] [CrossRef]
- Dillon, P.; Berry, D.; Evans, R.; Buckley, F.; Horan, B. Consequences of genetic selection for increased milk production in European seasonal pasture based systems of milk production. Livest. Sci. 2006, 99, 141–158. [Google Scholar] [CrossRef]
- Rukkwamsuk, T. A field study on negative energy balance in periparturient dairy cows kept in small- holder farms. Effect on milk production and reproduction. Afr. J. Agric. Res. 2010, 5, 3157–3163. [Google Scholar] [CrossRef]
- Hamann, H.; Horstick, A.; Wessels, A.; Disti, O. Estimation of genetic parameters for test day milk production, somatic cell score and litter size at birth in East Friesian ewes. Livest. Prod. Sci. 2004, 87, 153–160. [Google Scholar] [CrossRef]
- Djonov, V.; Andres, A.C.; Ziemiecki, A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc. Res. Tech. 2001, 52, 182–189. [Google Scholar] [CrossRef]
- Agenäs, S.; Nielsen, M.O.; Safayi, S.; Knight, C. Timming of mammary angiogénesis: A posible explanation for post partum apoptosis in the bovine udder? Lactation Research in mammals and humans: The mammary gland in health and disease. In Proceedings of the from a Symposium, Uppsala, Sweden, 7–8 December 2010. [Google Scholar]
- Thurston, G. Role of angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res. 2003, 314, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Safayi, S.; Theil, P.K.; Elbrønd, L.; Hou, V.S.; Engbæk, M.; Nørgaard, J.V.; Sejrsen, K.; Nielsen, M.O. Mammary remodeling in primiparous and multiparous dairy goats during lactation. J. Dairy Sci. 2010, 93, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Gutierrez, E.; Overton, T.; Butler, W.; Bauman, D. Dietary suplements of two doses of calcium salts of conjugated linoleic acid during the transition period and early lactation. J. Dairy Sci. 2005, 88, 1078–1089. [Google Scholar] [CrossRef]
- Odens, L.; Burgos, R.; Innocenti, M.; Van Baale, M.J.; Baumgard, L.H. Effects of varying doses of suplemental conjugated linoleic acido n production and energetic variables during the transition period. J. Dairy Sci. 2007, 90, 293–305. [Google Scholar] [CrossRef]
- Thatcher, W.; Santos, J.; Silvestre, F.; Kim, I.; Staples, C. Perspective on physiological/endocrine and nutritional factors influencing fertility in postpartum dairy cows. Reprod. Domest. Anim. 2010, 45, 2–14. [Google Scholar] [CrossRef]
- Caroprese, M.; Marzano, A.; Marino, R.; Gliatta, G.; Muscio, A.; Sevi, A. Flaxseed supplementation improves fatty acid profile of cow milk. J. Dairy Sci. 2010, 93, 2580–2588. [Google Scholar] [CrossRef] [PubMed]
- Or-Rashid, M.M.; Fisher, R.; Karrow, N.; AlZahal, O.; McBride, B.W. Fatty acid profile of colostrum and milk of ewes supplemented with fish meal and the subsequent plasma fatty acid status of their lambs. J. Anim. Sci. 2010, 88, 2092–2102. [Google Scholar] [CrossRef] [PubMed]
- Zachut, M.; Arieli, A.; Lehrer, H.; Livshitz, L.; Yakoby, S.; Moallem, U. Effects of increased supplementation of n-3 fatty acids to transition dairy cows on performance and fatty acid profile in plasma, adipose tissue and milk fat. J. Dairy Sci. 2010, 93, 5877–5889. [Google Scholar] [CrossRef]
- Capper, J.L.; Wilkinson, R.G.; Mackenzie, A.M.; Sinclair, L.A. Polyunsaturated fatty acid supplementation during pregnancy alters neonatal behavior in sheep. J. Nutr. 2006, 136, 397–403. [Google Scholar] [CrossRef]
- Gallardo, M.A.; Pulido, R.; Gallo, C. Fatty acid composition of Longissimus dorsi muscle of Suffolk Down lambs fed on different dryland forages. Chil. J. Agric. Res. 2011, 71, 566–571. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Winters, A.L.; Scollan, N.D.; Dewhurst, R.J.; Theodorou, M.K.; Minchin, F.R. Plant-mediated lipolysis and proteolysis in red clover with different polyphenol oxidase activities. J. Sci. Food Agric. 2004, 84, 1639–1645. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Delaby, L.; Moloney, A.; Boland, T.; Lewis, E. Nutritive value of forage legumes used for grazing and silage. Ir. J. Agric. Food Res. 2009, 48, 167–187. [Google Scholar]
- Wu, G.Y.; Bazer, F.W.; Cudd, T.A.; Meininger, C.J.; Spencer, T.E. Maternal nutrition and fetal development. J. Nutr. 2004, 134, 2169–2172. [Google Scholar] [CrossRef]
- Symonds, M.E.; Stephenson, T.; Gardner, D.S.; Budge, H. Long-term effects of nutritional programming of the embryo and fetus: Mechanisms and critical windows. Reprod. Fertil. Dev. 2007, 19, 53–63. [Google Scholar] [CrossRef]
- Cárcamo, J.G.; Arias-Darraz, L.; Alvear, C.; Williams, P.; Gallardo, M.A. Effect of the diet and type of pregnancy on plasma metabolic response in sheep and its further effect on the lamb performance. Trop. Anim. Health Prod. 2019, 51, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Cvek, K.; Dahlborn, K. Evolution of the mammary capillary network and carbonic anhydrase activity throughout lactation and during somatotropin treatment in goats. J. Dairy Res. 2010, 77, 368–375. [Google Scholar] [CrossRef]
- Gallardo, M.A.; Cárcamo, J.G.; Hiller, B.; Nuernberg, G.; Nuernberg, K.; Dannenberger, D. Expression of lipid metabolism related genes in subcutaneous adipose tissue from Chilota lambs grazing on two different pasture types. Eur. J. Lipid Sci. Technol. 2015, 17, 23–30. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Knight, C.H. The importance of cell division in udder development and lactation. Livest. Prod. Sci. 2000, 66, 169–176. [Google Scholar] [CrossRef]
- Boutinaud, M.; Guinard-Flament, J.; Jammes, H. The number and activity of mammary epithelial cells, determining factors for milk production. Reprod. Nutr. Dev. 2004, 44, 499–508. [Google Scholar] [CrossRef]
- Anderson, R.R. Mammary-gland growth in sheep. J. Anim. Sci. 1975, 41, 118–123. [Google Scholar] [CrossRef]
- Capuco, A.V.; Ellis, S.E.; Hale, S.A.; Long, E.; Erdman, RA.; Zhao, X.; Paape, M.J. Lactation persistency: Insights from mammary cell proliferation studies. J. Anim. Sci. 2003, 81, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Hennighausen, L.; Robinson, G.W. Information networks in the mammary gland. Nat. Rev. Mol. Cell Biol. 2005, 6, 715–725. [Google Scholar] [CrossRef]
- Paten, A.M.; Duncan, E.J.; Pain, S.J.; Peterson, S.W.; Kenyon, P.R.; Blair, H.T.; Dearden, P.K. Functional development of the adult ovine mammary gland insights from gene expression Profiling. BMC Genom. 2015, 16, e748. [Google Scholar] [CrossRef] [PubMed]
- Colitti, M.; Farinacci, M. Cell turnover and gene activities in sheep mammary glands prior to lambing to involution. Tissue Cell 2009, 41, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Pepper, M.S.; Baetens, D.; Mandriota, S.J.; Di Sanza, C.; Oikemus, S.; Lane, T.F.; Soriano, J.V.; Montesano, R. Regulation of VEGF and VEGF receptor expression in the rodent mammary gland during pregnancy, lactation, and involution. Dev. Dyn. 2000, 218, 507–524. [Google Scholar] [CrossRef]
- Norgaard, J.V.; Nielsen, M.O.; Theil, P.K.; Sorensen, M.T.; Safayi, S.; Sejrsen, K. Development of mammary glands of fat sheep submitted to restricted feeding during late pregnancy. Small Rumin. Res. 2008, 76, 155–165. [Google Scholar] [CrossRef]
- Caja, G.; Salama, A.A.K.; Such, X. Omitting the dry-off period negatively affects colostrum and milk yield in dairy goats. J. Dairy Sci. 2006, 89, 4220–4228. [Google Scholar] [CrossRef]
- Dai, W.; Wang, Q.; Zhao, F.; Liu, J.; Liu, H. Understanding the regulatory mechanisms of milk production using integrative transcriptomic and proteomic analyses: Improving inefficient utilization of crop by- products as forage in dairy industry. BMC Genom. 2018, 19, e403. [Google Scholar] [CrossRef] [PubMed]
- Faulconnier, Y.; Bernard, L.; Boby, C.; Domagalski, J.; Chilliard, Y.; Leroux, C. Extruded linseed alone or in combination with fish oil modifies mammary gene expression profiles in lactating goats. Animal 2018, 12, 1564–1575. [Google Scholar] [CrossRef] [PubMed]
- Castro-Carrera, T.; Frutos, P.; Leroux, C.; Chilliard, Y.; Hervás, G.; Belenguer, A.; Bernard, L.; Toral, P.G. Dietary sunflower oil modulates milk fatty acid composition without major changes in adipose and mammary tissue fatty acid profile or related gene mRNA abundance in sheep. Animal 2014, 9, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Zidi, A.; Casas, E.; Amills, M.; Jordana, J.; Carrizosa, J.; Urrutia, B.; Serradilla, J.M. Genetic variation at the caprine lactalbumin, alpha (LALBA) gene and its association with milk lactose concentration. Anim. Genet. 2014, 45, 609–613. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Flemetakis, E.; Kouri, E.D.; Karalias, G.; Sotirakoglou, K.; Zervas, G. The effect of long term under- and over-feeding on the expression of six major milk protein genes in the mammary tissue of sheep. J. Dairy Res. 2015, 82, 257–264. [Google Scholar] [CrossRef]
- Lékó, A.H.; Cservenák, M.; Dobolyi, Á. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats. Growth Horm. IGF Res. 2017, 37, 7–12. [Google Scholar] [CrossRef]
- Ahlin, C.; Lundgren, C.; Embretsén-Varo, E.; Jirstrom, K.; Blomqvist, C.; Fjallskog, M. High expression of cyclin D1 is associated to high proliferation rate and increased risk of mortality in women with ER-positive but not in ER-negative breast cancers. Breast Cancer Treat. 2017, 164, 667–678. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Flemetakis, E.; Kalloniati, C.; Papadomichelakis, G.; Katinakis, P.; Zervas, G. Sheep and goats differences in CLA and fatty acids milk fat content in relation with mRNA stearoyl-CoA desaturase and lipogenic genes expression in their mammary gland. J. Dairy Res. 2009, 76, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Thomson, P.C.; Sheehy, P.A.; Raadsma, H.W. Comparative transcriptome analyses reveal conserved and distinct mechanisms in ovine and bovine lactation. Funct. Integr. Genom. 2013, 13, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Peñagaricano, F.; Wang, X.; Rosa, G.J.M.; Radunz, A.E.; Khatib, H. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC Genom. 2014, 15, e1034. [Google Scholar] [CrossRef] [PubMed]
Gene | Accession | Forward Primer Sequence | Amplicon |
---|---|---|---|
Angiogenesis | Reverse Primer Sequence | ||
CAIV | XM_012186664.1 | F: AGCGCTTTGCCATGGAGATACA | 148 |
R: AGGGGCTGGAAGTTCACATTCTTG | |||
VEGF | NM_001025110.1 | F: TGCTCTACCTTCACCATGCCAA | 101 |
R: GCGCTGGTAGACATCCATGAACTT | |||
VEGFR1 (FTL1) | XM_015098156.1 | F: AGGTGACCTGCTTCAAGCCAAT | 106 |
R: GAAGGCAGGTGTCGAGTACGTAAA | |||
VEGFR2 (KDR) | NM_001278565.1 | F: AAGACGCTGACTTGCTTTGGGA | 150 |
R: AAATGGGAAGAGCACGCAACCT | |||
ANGPT1 | XM_004011787.3 | F: GCACCCTCATGCATTCTTGTCA | 140 |
R: ACCCTTTCCTCTACCCTATCTGCT | |||
ANGPT2 | XM_004021671.3 | F: GAGACCTGCTCCCAAAGCAGTAAA | 145 |
R: TCACTGAGTGATGCGGGTTCAA | |||
MKI67 | XM_015103501.1 | F: TGCAGACTTTGGCACAAACGAC | 143 |
R: AGTTTTAGCAGGACGCCTGGAA | |||
TBXAS1 | XM_012177234.2 | F: CATCTTCCTCATTGCTGGCTACGA | 143 |
R: AGTACTCAGGGGCTGGATGTTTCT | |||
Cell turnover | |||
LALBA | NM_001009797.1 | F: TGCCACCCAGGCTGAACAATTA | 106 |
R: AAATGCGGTACAGACCCATTCAGG | |||
BAX | XM_015100639.1 | F: CTAAGACCTGGTGTAGCCAAGCAA | 103 |
R: TCGAACCCATGTTCCCTGCATT | |||
BCL2 | XM_012103831.2 | F: ATGCGGCCCCTGTTTGATTTCT | 112 |
R: GTGGACTTCACTTATGGCCCAGAT | |||
CCND1 | XM_015102997.1 | F: ACGACTTCATCGAGCACTTCCTCT | 127 |
R: GGTGGGTTGGAAATGAACTTCACG | |||
IGF1 | XM_012159642.2 | F: CCAGACTTTGCACTTCAGAAGC | 106 |
R: GATGTGACTGGCATCTTCACCT | |||
IGF1R | XM_012098367.2 | F: CGAGATCCTGTACATTCGCACCAA | 100 |
R: GTTCCACTTCACGATCAGCTGAGA | |||
IGFBP1 | NM_001145177.1 | F: CAGCGATGAGGCCACAGATACAAA | 117 |
R: CTGGACTCGGTCATCAAGTGGAAA | |||
IGFBP3 | NM_001159276.1 | F: AGGTTGACTACGAGTCTCAGAGCA | 122 |
R: CAGGAACTTGAGGTCGTTCAGTGT | |||
IGFBP5 | NM_001129733.1 | F: TGCGTGGACAAGTATGGGATGAAG | 103 |
R: AGGGGACGCATCACTCAACATT | |||
LPT | XM_004008038.3 | F: ATCCCACTCACCAGCATGCAAA | 145 |
R: CTACCAAGTGCAAGCACAGTTAGC | |||
LPTR | NM_001009763.1 | F: TTGGATGGCCTAGGAATCTGGAGT | 105 |
R: GTTAGACCCAACCGCTGTCAGAAT | |||
LTF | NM_001024862.1 | F: GGTTATTCTGGTGCCTTCAAGTGC | 119 |
R: AGAAGCTCATACTGGTCCCTGTCA | |||
CYP19A | NM_001123000.1 | F: AACACGTCCACATAGCCCAAGT | 80 |
R: ACCATCTGTGCTGATTCCATCACC | |||
TGFB1 | NM_001009400.1 | F: GCACGTGGAGCTGTACCAGAAATA | 116 |
R: GCACAACTCCAGTGACGTCAAA | |||
TGFB1R1 | XM_012120354.2 | F: CCAAGGAAAACCAGCCATAGCTCA | 118 |
R: TGTGGCCGAATCATGCCTTACT | |||
TGFB1R2 | XM_012099307.2 | F: CCTTACAAAGCATGTGGGCTTGAC | 132 |
R: CCTGCACTGTAGGCGGATTCTTTA | |||
ACTIN | NM_001009784.1 | F: TGAAGTGTGACGTGGACATCCGTA | 108 |
R: AGGTGATCTCCTTCTGCATCCTGT |
Experimental Treatment 1 | CAIV | VEGF | VEGFR1 | VEGFR2 | ANGPT1 | ANGPT2 | MK167 | TBXAS1 |
---|---|---|---|---|---|---|---|---|
Time 1 | ||||||||
TP | 1.33 ± 0.35 | 0.58 ± 0.07 | 0.41 ± 0.06 | 0.43 b ± 0.05 | 0.31 b± 0.05 | 0.40 b ± 0.11 | 0.36 b ± 0.12 | 0.48 ± 0.09 |
TC | 4.81 ± 2.24 | 1.69 ± 0.63 | 2.00 ± 0.35 | 1.89 a ± 0.18 | 4.05 a ± 1.25 | 2.35 a ± 0.10 | 2.11 a ± 0.28 | 2.56 ± 0.76 |
SP | 1.56 ± 0.91 | 1.45 ± 0.23 | 1.83 ± 0.79 | 1.39 a ± 0.17 | 1.48 a,b ± 0.47 | 0.90 b ± 0.27 | 1.12 a,b ± 0.38 A | 1.01 ± 0.35 |
SC | 1.77 ± 1.32 | 1.03 ± 0.18 | 1.34 ± 0.52 | 1.15 a ± 0.30 | 1.08 b ± 0.38 | 1.51 a,b ± 0.36 A | 1.61 a ± 0.29 | 1.38 ± 0.40 |
p groups 2 | 0.33 | 0.17 | 0.14 | 0.004 | 0.01 | 0.001 | 0.004 | 0.06 |
Time 2 | ||||||||
TP | 1.73 a ± 0.28 | 1.43 ± 0.39 | 1.58 ± 0.88 | 1.03 ± 0.32 | 1.19 ± 0.48 | 1.31 ± 0.53 | 1.02 ± 0.42 | 1.38 ± 0.45 |
TC | 1.01 a,b ± 0.20 | 1.40 ± 0.13 | 1.37 ± 0.30 | 1.05 ± 0.04 | 1.48 ± 0.26 | 1.34 ± 0.14 | 1.59 ± 0.49 | 1.75 ± 0.66 |
SP | 1.52 a,b ± 0.28 | 1.20 ± 0.03 | 1.16 ± 0.13 | 1.74 ± 0.24 | 1.98 ± 0.57 | 1.51 ± 0.27 | 1.55 ± 0.32 A | 1.29 ± 0.21 |
SC | 0.66 b ± 0.13 | 0.74 ± 0.17 | 0.99 ± 0.26 | 0.85 ± 0.16 | 0.63 ± 0.13 | 0.69 ± 0.12 B | 2.95 ± 2.13 | 0.64 ± 0.07 |
p groups | 0.014 | 0.14 | 0.83 | 0.07 | 0.10 | 0.25 | 0.76 | 0.27 |
Time 3 | ||||||||
TP | 1.44 ± 0.45 | 1.31 ± 0.37 | 1.04 a,b ± 0.12 | 1.00 ± 0.22 | 0.90 b ± 0.23 | 0.96 ± 0.17 | 2.61 ± 1.04 | 1.24 ± 0.45 |
TC | 2.28 ± 0.67 | 1.99 ± 0.59 | 2.21 a ± 0.44 | 1.84 ± 0.37 | 2.01 a ± 0.25 | 2.45 ± 0.69 | 3.91 ± 1.81 | 3.13 ± 0.74 |
SP | 0.94 ± 0.15 | 0.94 ± 0.50 | 0.78 b ± 0.24 | 0.94 ± 0.19 | 0.89 b ± 0.44 | 1.40 ± 0.96 | 0.22 ± 0.06 B | 2.66 ± 2.40 |
SC | 0.80 ± 0.43 | 0.81 ± 0.08 | 0.88 b ± 0.20 | 0.84 ± 0.18 | 0.94 b ± 0.15 | 0.71 ± 0.11 B | 0.94 ± 0.25 | 0.78 ± 0.25 |
p groups | 0.18 | 0.19 | 0.01 | 0.06 | 0.01 | 0.10 | 0.12 | 0.28 |
P times 3 | ||||||||
TP | 0.73 | 0.17 | 0.32 | 0.16 | 0.18 | 0.19 | 0.09 | 0.23 |
TC | 0.18 | 0.72 | 0.23 | 0.06 | 0.08 | 0.15 | 0.33 | 0.43 |
SP | 0.68 | 0.56 | 0.36 | 0.08 | 0.36 | 0.75 | 0.04 | 0.69 |
SC | 0.58 | 0.38 | 0.64 | 0.55 | 0.43 | 0.04 | 0.53 | 0.17 |
Exp. Treat 1 | LALBA | BAX | BCL2 | CCND1 | IGF1 | IGF1R | IGFBP3 | IGFBP5 | LPT | LPTR | LTF | TGFB1 | TGFB1R1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time 1 | |||||||||||||
TP | 2.74 ± 1.96 | 1.18 ± 0.30 | 0.91 b ± 0.23 B | 1.01 ± 0.18 | 0.71 b ± 0.12 B | 1.24 ± 0.14 | 0.63 b ± 0.15 B | 1.11 ± 0.07 AB | 1.02 ± 0.38 B | 1.56 ± 0.55 | 1.72 ± 1.03 | 1.04 a,b ± 0.07 B | 1.53 a ± 0.21 |
TC | 1.18 ± 0.27 B | 3.14 ± 0.99 | 2.43 a ± 0.11 A | 1.38 ± 0.07 B | 2.69 a ± 0.28 AB | 1.33 ± 0.56 B | 3.11 a ± 1.04 | 2.03 ± 0.38 B | 2.61 ± 1.04 | 1.36 ± 0.45 | 1.74 ± 0.11 | 0.73 b ± 0.07 | 0.97 a, b ± 0.04 |
SP | 0.40 ± 0.21 | 0.92 ± 0.42 | 0.73 b ± 0.09 | 0.66 ± 0.10 | 0.85 b ± 0.26 | 1.06 ± 0.39 | 0.81 a,b ± 0.12 | 0.71 ± 0.15 | 2.19 ± 1.38 | 1.05 ± 0.27 | 0.62 ± 0.17 | 1.47 a ± 0.14 A | 1.02 a,b ± 0.12 |
SC | 2.38 ± 0.94 | 0.90 ± 0.46 | 0.89 b ± 0.23 | 1.15 ± 0.21 A | 0.85 b ± 0.18 | 1.02 ± 0.33 | 0.86 a,b ± 0.12 | 0.87 ± 0.33 | 1.48 ± 0.92 | 1.09 ± 0.28 | 2.39 ± 1.67 | 1.07 a,b ± 0.10 | 0.81 b ± 0.08 |
p Groups 2 | 0.53 | 0.06 | 0.0002 | 0.08 | 0.0001 | 0.92 | 0.01 | 0.06 | 0.63 | 0.80 | 0.79 | 0.002 | 0.008 |
Time 2 | |||||||||||||
TP | 1.82 a ± 0.28 | 1.35 ± 0.19 | 1.61 a ± 0.13 A | 1.71 a ± 0.10 | 1.88 a ± 0.35 A | 2.02 a ± 0.24 | 1.50 a,b ± 0.33 A | 1.94 a ± 0.38 A | 5.86 a ± 1.10 A | 1.72 ± 0.54 | 3.02 ± 2.07 | 1.29 ± 0.09 AB | 1.51 ± 0.27 |
TC | 1.51 a ± 0.19 AB | 1.37 ± 0.23 | 1.38 a ± 0.11 B | 1.42 a ± 0.31 B | 1.28 a,b ± 0.16 B | 1.36 a,b ± 0.23 B | 2.00 a ± 0.43 | 1.39 a ± 0.28 B | 0.53 b ± 0.18 | 1.10 ± 0.17 | 2.93 ± 1.27 | 0.97 ± 0.05 | 1.05 ± 0.07 |
SP | 1.70 a ± 0.25 | 0.53 ± 0.14 | 0.80 b ± 0.13 | 0.63 b ± 0.06 | 0.73 b ± 0.15 | 0.66 b ± 0.05 | 0.85 b ± 0.22 | 0.87 b ± 0.13 | 1.31 b ± 0.42 | 0.84 ± 0.12 | 1.46 ± 1.02 | 0.89 ± 0.06 B | 0.76 ± 0.21 |
SC | 0.77 b ± 0.20 | 1.23 ± 0.30 | 0.66 b ± 0.09 | 0.82 b ± 0.16 AB | 0.72 b ± 0.10 | 0.82 b ± 0.24 | 0.70 b ± 0.21 | 0.57 b ± 0.08 | 1.41 b ± 0.38 | 1.07 ± 0.30 | 1.63 ± 0.77 | 0.97 ± 0.15 | 1.05 ± 0.26 |
p Groups | 0.021 | 0.14 | 0.0001 | 0.007 | 0.005 | 0.005 | 0.03 | 0.008 | 0.0002 | 0.38 | 0.77 | 0.10 | 0.23 |
Time 3 | |||||||||||||
TP | 1.09 b ± 0.26 | 1.70 b ± 0.34 | 1.26 b ± 0.13 AB | 1.40 a,b ± 0.27 | 1.89 b ± 0.19 A | 1.93 a,b ± 0.44 | 0.65 b ± 0.09 B | 0.85 b ± 0.12 B | 2.61 ± 0.93 AB | 1.33 ± 0.36 | 1.44 ± 0.38 | 1.75 a ± 0.17 A | 1.24 ± 0.35 |
TC | 2.36 a ± 0.28 A | 2.89 a ± 0.37 | 3.02 a ± 0.35 A | 2.64 a ± 0.50 A | 3.23 a ± 0.54 A | 3.45 a ± 0.66 A | 4.91 a ± 1.16 | 4.82 a ± 0.88 A | 1.41 ± 0.35 | 1.17 ± 0.19 | 1.47 ± 0.48 | 0.90 b ± 0.09 | 1.03 ± 0.16 |
SP | 1.05 b ± 0.52 | 0.66 b,c ± 0.19 | 0.82 b ± 0.36 | 0.61 b ± 0.07 | 0.57 b,c ± 0.15 | 0.49 b ± 0.19 | 0.60 b ± 0.04 | 0.52 b ± 0.05 | 2.41 ± 1.26 | 0.76 ± 0.18 | 1.63 ± 0.74 | 0.97 b ± 0.13 B | 1.11 ± 0.34 |
SC | 1.17 b ± 0.26 | 0.48 c ± 0.07 | 0.46 b ± 0.04 | 0.54 b ± 0.06 B | 0.41 c ± 0.06 | 0.45 b ± 0.06 | 0.64 b ± 0.11 | 0.53 b ± 0.06 | 0.84 ± 0.15 | 1.29 ± 0.33 | 1.06 ± 0.52 | 0.77 b ± 0.08 | 0.97 ± 0.05 |
p Groups | 0.036 | 0.0001 | <0.0001 | 0.0008 | 0.0001 | 0.0005 | 0.0004 | <0.0001 | 0.23 | 0.60 | 0.87 | 0.0002 | 0.83 |
P times 3 | |||||||||||||
TP | 0.62 | 0.45 | 0.048 | 0.09 | 0.009 | 0.18 | 0.02 | 0.02 | 0.009 | 0.85 | 0.68 | 0.006 | 0.73 |
TC | 0.023 | 0.14 | 0.0017 | 0.04 | 0.011 | 0.027 | 0.13 | 0.005 | 0.12 | 0.83 | 0.41 | 0.11 | 0.87 |
SP | 0.10 | 0.61 | 0.96 | 0.92 | 0.61 | 0.31 | 0.47 | 0.18 | 0.75 | 0.58 | 0.59 | 0.02 | 0.58 |
SC | 0.16 | 0.28 | 0.14 | 0.049 | 0.06 | 0.26 | 0.58 | 0.43 | 0.73 | 0.84 | 0.69 | 0.22 | 0.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo, M.; Cárcamo, J.G.; Arias-Darraz, L.; Alvear, C. Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland. Animals 2019, 9, 589. https://doi.org/10.3390/ani9090589
Gallardo M, Cárcamo JG, Arias-Darraz L, Alvear C. Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland. Animals. 2019; 9(9):589. https://doi.org/10.3390/ani9090589
Chicago/Turabian StyleGallardo, María, Juan G. Cárcamo, Luis Arias-Darraz, and Carlos Alvear. 2019. "Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland" Animals 9, no. 9: 589. https://doi.org/10.3390/ani9090589
APA StyleGallardo, M., Cárcamo, J. G., Arias-Darraz, L., & Alvear, C. (2019). Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland. Animals, 9(9), 589. https://doi.org/10.3390/ani9090589