Trends and Composition—A Sedimentological-Chemical-Mineralogical Approach to Constrain the Origin of Quaternary Deposits and Landforms—From a Review to a Manual
Abstract
:1. Introduction
- To provide sedimentological (physical) data and reference plots for the mobile or dynamic part of the environment analysis;
- To provide compositional (mineralogical/chemical) data and reference plots for the static part of environment analysis responsible for supergene alteration;
- To determine whether the climate zonation has an influence on the datasets of these environments;
- To determine whether the geological setting (geodynamic setting) has an impact on the datasets of these environments;
- To bridge the gap between a review and a manual.
2. Methodology
3. Geological and Climatic Settings
3.1. The Pre-Mature Category 1
3.2. The Mature Category 2
3.3. The Super-Mature Category 3
3.4. Landscape Formation and Climate Zonation
4. Results—Trends and Compositions
4.1. The Landform Series
4.1.1. Aeolian Processes and Their Landforms
4.1.2. Mass Wasting Processes and Their Landforms
4.1.3. Cryogenic Processes and Their Landforms
4.1.4. Fluvial Processes and Their Landforms
4.1.5. Coastal-Marine Processes and Their Landforms
4.1.6. Lacustrine Processes and Their Landforms
4.1.7. Pedology—From the Ephemeral Lacustrine Environment to the Chemical Sediments—The Issue of Physical-Chemical Markers
4.2. Trend and Compositional Diagrams of Landform Series
4.2.1. The Mineral Assemblages of the Landform Series and Their Sediments
4.2.2. Heavy Mineral Content (Total) vs. Sorting
4.2.3. Silica Content vs. Grain Sphericity
4.2.4. Titanium/Trivalent Iron Ratios vs. Median
4.2.5. Calcareous and Non-Calcareous Argillaceous and Arenaceous Sediments and the Ratio log (SiO2/Al2O3) vs. log (Na2O/K2O)
5. Discussion
5.1. Sedimentological Parameters vs. Composition—A Comparison
5.2. The Parametric Categorization of Landscape Forming Processes
5.2.1. Aeolian Processes
5.2.2. Gravity-Driven Processes
5.2.3. Confined and Unconfined Fluvially Driven Processes
5.2.4. Coastal-Marine Processes
5.2.5. Lacustrine Processes
5.3. Geomorphological-Geodynamic Maturity vs. Environment of Deposition
5.4. Climate vs. Environment of Deposition
5.5. Synopsis—The Present Is the Key to the Past vs. from Review to Manual
6. Conclusions
- A joint sedimentological-chemical-mineralogical investigation of the depositional environment of unconsolidated clastic sediments of the Quaternary forms both the nucleus of a series of global reference sites and a manual to preferentially guide the audience from applied geosciences about how to make further amendments to individual projects of economic and environmental geology (i.e., the E & E issue).
- Trend diagrams and compositional x-y plots can contribute to constraining the development of the entire set of landform series built-up by clastic sedimentary deposits.
- Taking the current joint approach, the full transect, from the fluvial incision and slope retreat high in the mountains, to the reef islands fringing the coastal zone towards the open sea, can be taken as a reference. This joint approach bridges the gap between a true review based only on the existing literature and a hybrid manual based on data gathered from practical field studies in applied geosciences, known as extractive and environmental geology (i.e., the E & E issue, a term coined by the author).
- Climate zonation and crustal maturity directly impact the datasets and, consequently, both exogenous and endogenous “drivers” can be deduced from the compositional (mineralogy and chemistry) and physical (transport and deposition) variations observed in the Quaternary sediments, illustrated by trend and x-y plots, and also applied to the pre-Quaternary target areas.
- Environment analysis, whether an end in itself or used as a supplement to economic/extractive geology and/or anthropogenic and engineering geology, is too complex to allow assumptions and models to be based on the use of stand-alone graphs. It is, however, the only means to create a sound platform for the discussion and application of advanced investigations during a terrain analysis (2-D) or basin analysis (3-D), according to the elaborated flow chart.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer: Berlin/Heidelberg, Germany, 1987; 553p. [Google Scholar]
- Friedman, G.M.; Sanders, J.E.; Kopaska-Merkel, D.C. Principles of Sedimentary Deposits; MacMillan Publishing Company: New York, NY, USA, 1992; 717p. [Google Scholar]
- Wilson, M.A. Macroborings and the evolution of bioerosion. In Trace Fossils: Concepts, Problems, Prospects; Miller, W., III, Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 356–367. [Google Scholar]
- Jensen, S. Paleontology: Reading Behavior from the Rocks. Science 2008, 322, 1051–1052. [Google Scholar] [CrossRef]
- MacEachern, J.; Pemberon, S.G.; Gingras, M.K.; Bann, K.L. Ichnology and Facies Models. In Facies Models 4; James, N., Dalrymple, R.W., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 2010; pp. 19–58. [Google Scholar]
- Reineck, H.E.; Singh, I.B. Depositional Sedimentary Environments: With Reference to Terrigenous Clastics; Springer Science Business Media: New York, NY, USA, 2012; 551p. [Google Scholar]
- Prothero, D.R.; Schwab, F. Sedimentary Geology, 3rd ed.; W.H. Freeman: New York, NY, USA, 2014; 500p. [Google Scholar]
- Udden, J.A. Mechanical composition of clastic sediments. Geol. Soc. Am. Bull. 1914, 25, 655–744. [Google Scholar] [CrossRef]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Krumbein, W.C. The probable error of sampling sediments for mechanical analysis. Am. J. Sci. 1934, 27, 204–214. [Google Scholar] [CrossRef]
- Inman, D.L. Measures for describing the size distribution of sediments. J. Sed. Petr. 1952, 22, 125–145. [Google Scholar]
- Folk, R.L.; Ward, W.C. Brazos River bar: A study in the significance of grain size Parameters. J. Sed. Petr. 1958, 27, 3–26. [Google Scholar] [CrossRef]
- McCommon, R.B. Efficiencies of percentile measures for describing the mean size and sorting of sedimentary particles. J. Geol. 1962, 70, 453–465. [Google Scholar] [CrossRef]
- Passega, R.; Byramjee, R. Grain-size image of clastic deposits. Sedimentology 1969, 13, 233–252. [Google Scholar] [CrossRef]
- Visher, G.S. Grain-size distributions and depositional processes. J. Sediment. Petrol. 1969, 39, 1074–1106. [Google Scholar]
- Tucker, M.E. Sedimentary Rocks in the Field; John Wiley & Sons: Chichester, UK, 1996; 153p. [Google Scholar]
- Bari, Z.; Rajib, M.; Majid, M.; Sayem, H. Textural analyses of the bar sands of the Gorai River: Implications for depositional phase and environment. Jahangirnagar Univ. Environ. Bull. 2012, 1, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Liro, M. Differences in the reconstructions of the depositional environment of overbank sediments performed using the C/M diagram and cumulative curve analyses. Landf. Anal. 2015, 29, 35–40. [Google Scholar] [CrossRef]
- Ma, L.; Wu, J.; Abuduwaili, J. Variation in Aeolian Environments Recorded by the Particle Size Distribution of Lacustrine Sediments in Ebinur Lake, Northwest China; Springer: Berlin/Heidelberg, Germany, 2016; p. 481. [Google Scholar] [CrossRef] [Green Version]
- Warrier, A.K.; Pednekar, H.; Mahesh, B.S.; Mohan, R.; Gazi, S. Sediment grain size and surface textural observations of quartz grains in late Quaternary lacustrine sediments from Schirmacher Oasis, East Antarctica: Paleoenvironmental significance. Polar Sci. 2016, 10, 89–100. [Google Scholar] [CrossRef]
- Wu, X.; Liu, G.; Ji, S. Grain size variation and its environmental significance from Huguangyan Maar Lake, Zhanjiang since the Holocene. J. Lake Sci. 2016, 28, 1115–1122. [Google Scholar]
- Baiyegunhi, C.; Liu, K.; Gwavava, O. Grain size statistics and depositional pattern of the Ecca Group sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa. Open Geosci. 2017, 9, 554–576. [Google Scholar] [CrossRef]
- Kong, H.; Wang, L.; Zhang, H. The variation of grain size distribution in rock granular material in seepage process considering the mechanical–hydrological–chemical coupling effect: Experimental research. R. Soc. Open Sci. 2020, 7, 190590. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.P. River meanders and channel size. J. Hydrol. 1986, 88, 147–164. [Google Scholar] [CrossRef]
- Miall, A.D. The Geology of Fluvial Deposits; Springer: New York, NY, USA, 1996; 582p. [Google Scholar]
- Knighton, D.A. Fluvial Forms and Processes: New Perspective; Arnold: London, UK, 1998; 400p. [Google Scholar]
- Nanson, G.C.; Knighton, A.D. Anabranching rivers: Their cause, character and classification. Earth Surf. Processes Landf. 1996, 21, 217–239. [Google Scholar] [CrossRef]
- Selley, R.C. Applied Sedimentology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2000; 523p. [Google Scholar]
- Chin, A. The periodic nature of step-pool mountain streams. Am. J. Sci. 2002, 302, 144–167. [Google Scholar] [CrossRef] [Green Version]
- Moody, J.A.; Troutman, B.M. Characterization of the spatial variability of channel morphology. Earth Surf. Processes Landf. 2002, 27, 1251–1266. [Google Scholar] [CrossRef]
- Bridge, J.S. Rivers and Floodplains; Whiley-Blackwell: Oxford, UK, 2003; 504p. [Google Scholar]
- Robert, A. River Processes: An Introduction to Fluvial Dynamics; Routledge: Abingdon, UK, 2003; 238p. [Google Scholar]
- Charlton, R. Fundamentals of Fluvial Geomorphology; Routledge: Abingdon, UK, 2014; 214p. [Google Scholar]
- Tricart, J.; Cailleux, A. Introduction to Climatic Geomorphology; Longman: London, UK, 1972; 295p. [Google Scholar]
- Scotese, C.R. Paleomap Project. 2002. Available online: http://www.scotese.com/legend.htm (accessed on 26 October 2021).
- Dill, H.G. Residual clay deposits on basement rocks: The impact of climate and the geological setting on supergene argillitization in the Bohemian Massif (Central Europe) and across the globe. Earth Sci. Rev. 2017, 165, 1–58. [Google Scholar] [CrossRef]
- Dill, H.G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Sci. Rev. 2010, 100, 1–420. [Google Scholar] [CrossRef]
- Dill, H.G. A geological and mineralogical review of clay mineral deposits and phyllosilicate ore guides in Central Europe—A function of geodynamics and climate change. Ore Geol. Rev. 2020, 119, 103304. [Google Scholar] [CrossRef]
- Dill, H.G.; Kaufhold, S.; Techmer, A.; Baritz, R.; Moussadek, R. A joint study in geomorphology, pedology and sedimentology of a Mesoeuropean landscape in the Meseta and Atlas Foreland (NW Morocco). A function of parent lithology, geodynamics and climate. J. Afr. Earth Sci. 2019, 158, 103531. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A.; Goldmann, S.; Kaufhold, S.; Bîrgăoanu, D. Coastal landforms of “Meso-Afro-American” and “Neo-American” landscapes in the periglacial South Atlantic Ocean: With special reference to the clast orientation, morphology, and granulometry of continental and marine sediments. J. S. Am. Earth Sci. 2020, 98, 102385. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A.; Balaban, S.-I.; Ufer, K.; Gómez Tapias, J.; Bîrgăoanu, D.; Cramer, T. The “badland trilogy” of the Desierto de la Tatacoa, Upper Magdalena Valley, Colombia, a result of geodynamics and climate: With a review of badland landscapes. Catena 2020, 194, 104696. [Google Scholar] [CrossRef]
- Gordon, B.L. In Defense of Uniformitarianism. Perspect. Sci. Christ. Faith 2013, 65, 79–86. [Google Scholar]
- Dill, H.G.; Buzatu, A.; Balaban, S.-I. Coastal morphology and heavy mineral accumulation in an upper-macrotidal environment—A geological-mineralogical approach from source to trap site in a natural placer laboratory (Channel Islands, Great Britain). Ore Geol. Rev. 2021, 138, 104311. [Google Scholar] [CrossRef]
- Summerfield, M.A. Global Geomorphology; John Wiley & Sons Inc.: New York, NY, USA, 1991; 537p. [Google Scholar]
- Russian Academy of Sciences Institute of Geography. Resources and Environment. In World Atlas I and II—Wien; Austrian Institute of East and Southeast European Studies: Hölzel, Vienna, 1998. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen–Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Gómez, J.; Montes, N.E.; Nivia, Á.; Diederix, H. Geological Map of Colombia 2015. Scale 1:1,000.000; Servicio Geológico Colombiano: Bogotá, Colombia, 2015.
- Buchely, F.; Gómez, L.; Buitrago, J.; Cristancho, A.; Moreno, M.; Romero, O.; Hincapié, G.; Castro, F.; Ramos, J.; Casas, R.; et al. Geología de la Plancha 324 Tello Escala 1:100.000; Memoria Explicativa, INGEOMINAS; Colombian Geological Survey: Bogotá, Colombia, 2015; 152p.
- Steck, A.; Spring, L.; Vannay, J.-C.; Masson, H.; Stutz, E.; Bucher, H.; Marchant, R.; Tièche, J.C. Geological transect across the Northwestern Himalaya in eastern Ladakh and Lahul (A Model for the continental collision of India and Asia). Eclogae Geol. Helv. 1993, 86, 219–263. [Google Scholar]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev. 2006, 76, 1–13. [Google Scholar] [CrossRef]
- Greenway, M.E. The Geology of the Falkland Islands; Scientific Report; British Antarctic Survey: London, UK, 1972; Volume 76, pp. 1–42. [Google Scholar]
- Stone, P. The Geology of the Falkland Islands. NERC Open Research Archive, 2010. Available online: nora.nerc.ac.uk/10862/1/DepositsArticle-FI.pdf (accessed on 26 October 2021).
- Cocks, L.R.M.; Torsvik, T.H. European geography in a global context from the Vendean to the end of the Paleozoic. In European Lithosphere Dynamics, Geological Society of London Memoirs; Gee, D.G., Stephenson, R.A., Eds.; The Geological Society: Bath, UK, 2006; Volume 32, pp. 83–95. [Google Scholar]
- Elvevold, S.; Dallmann, W.; Blomeier, D. Geology of Svalbard; Norwegian Polar Institute/Norsk Polarinstitutt: Tromsø, Norway, 2007; 36p. [Google Scholar]
- Matte, P. The Variscan collage and orogeny (480 ± 290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 2001, 13, 122–128. [Google Scholar] [CrossRef]
- McCann, T. The Geology of Central Europe: Precambrian and Palaeozoic: 1; Special Volume; The Geological Society of London: London, UK, 2008; 748p. [Google Scholar]
- Golonka, J.; Embry, A.; Krobicki, M. Late Triassic Global Plate Tectonics. In The Late Triassic World. Topics in Geobiology 46; Tanner, L., Ed.; Springer International: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- McCann, T. The Geology of Central Europe: Mesozoic and Cenozoic: 2; Special Volume; The Geological Society of London: London, UK, 2008; 700p. [Google Scholar]
- Gutiérrez, M.; Gutiérrez, F. Climatic Geomorphology. Treatise Geomorphol. 2013, 13, 115–131. [Google Scholar]
- Dèzes, P.; Schmid, S.M.; Ziegler, P.A. Evolution of the European Cenozoic Rift System: Interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 2004, 389, 1–33. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Muhs, D.R. Loess deposits, origins and properties. In Encyclopedia of Quaternary Science; Elias, S.A., Ed.; Elsevier: Amsterdam, The Nerherland, 2007; pp. 1405–1418. [Google Scholar]
- Lancaster, N. Dune Dynamics and Morphology. In Arid Zone Geomorphology; Thomas, A.S.G., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 487–516. [Google Scholar]
- Mountney, N.P. A stratigraphic model to account for complexity in aeolian dune and interdune successions. Sedimentology 2012, 59, 964–989. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, J.P.; Clemmensen, L.B.; Lancaster, N.; Mountney, N.P.; Veiga, G.D. Archean to Recent aeolian sand systems and their sedimentary record: Current understanding and future prospects. Sedimentology 2014, 61, 1487–1534. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A. From the aeolian landform to the aeolian mineral deposit in the present and its use as an ore guide in the past. Constraints from mineralogy, chemistry and sediment petrography. Ore Geol. Rev. 2021, 104490. [Google Scholar] [CrossRef]
- Bastian, L.V. Residual soil mineralogy and dune subdivision, Swan Coastal Plain, Western Australia. Aust. J. Earth Sci. 1996, 43, 31–44. [Google Scholar] [CrossRef]
- Newsome, D. Origin of sandplains in Western Australia: A review of the debate and some recent findings. Aust. J. Earth Sci. 2000, 47, 695–706. [Google Scholar] [CrossRef]
- Andreucci, S.; Clemmensen, L.B.; Pascucci, V. Transgressive dune formation along a cliffed coast at 75 ka in Sardinia, Western Mediterranean: A record of sea level fall and increased windiness. Terra Nova 2010, 22, 424–433. [Google Scholar] [CrossRef]
- Noppradit, P.; Schmidt, C.; Dürrast, H.; Zöller, L. Late Quaternary evolution of Songkhla Coast, Southern Thailand, revealed by OSL Dating. Chiang Mai J. Sci. 2019, 46, 152–164. [Google Scholar]
- Schuster, R.L.; Highland, L.M. Overview of the Effects of Mass Wasting on the Natural Environment. Environ. Eng. Geosci. 2007, 13, 25–44. [Google Scholar] [CrossRef]
- Boelhouwers, J. Relict periglacial slope deposits in the Hex River Mountains, South Africa: Observations and Palaeoenvironmental Implications. Geomorphology 1999, 30, 245–258. [Google Scholar] [CrossRef]
- Paasche, Ø.; Strømsøe, J.R.; Dahl, S.E.; Linge, H. Weathering characteristics of arctic islands in northern Norway. Geomorphology 2006, 82, 430–452. [Google Scholar] [CrossRef]
- Hartvich, F.; Vilímek, V. Selected landforms and their significance in the analysis of the slope origin in the Losenice river valley, Šumava Mts. Acta Geodyn. Geomater 2008, 151, 275–296. [Google Scholar]
- Nieuwenhuijzen, M.E.; Van Steijn, H. Alpine debris flows and their sedimentary properties. A case study from the French Alps. Permafr. Periglac. Process. 1990, 1, 111–128. [Google Scholar] [CrossRef]
- Stock, J.D.; Montgomery, D.R.; Collins, B.D.; Dietrich, W.E.; Sklar, L. Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by rivers and debris flows. Bull. Geol. Soc. Am. 2005, 117, 174–194. [Google Scholar] [CrossRef]
- Wilson, P.; Bentley, M.J.; Schnabel, C.; Clark, R.; Xu, S. Stone run (block stream) formation in the Falkland Islands over several cold stages, deduced from cosmogenic isotope (10Be and 26Al) surface exposure dating. J. Quat. Sci. 2008, 23, 461–473. [Google Scholar] [CrossRef]
- Wilson, P. Block/Rock Streams. Encycl. Quat. Sci. 2013, 3, 514–522. [Google Scholar]
- Sumner, P.D.; Meiklejohn, K.I.; Nel, W.; Hedding, D.W. Thermal attributes of rock weathering: Zonal or azonal? A comparison of rock temperatures in different environments. Polar Geogr. 2004, 28, 79–92. [Google Scholar] [CrossRef]
- Menzies, J. Glacial Geomorphology. Earth Syst. Environ. Sci. 2018, 8, 1–16. [Google Scholar] [CrossRef]
- Domack, E.W.; Powel, L.R. Modern glaciomarine environments and sediments: Antarctic perspective. In Past Glacial Environments, 2nd ed.; Menzies, J., van der Meer, J.J.M., Eds.; Elsevier Ltd.: London, UK, 2018; pp. 181–272. [Google Scholar]
- Stucki, M.D.; Schlunegger, F. Identification of erosional mechanisms during past glaciations based on a bedrock surface model of the central European alps. Earth Planet. Sci. Lett. 2013, 384, 57–70. [Google Scholar] [CrossRef]
- Lutgens, F.K.; Tarbuck, E.J.; Tasa, D.G. Essentials of Geology; Pearson, H., Ed.; Pearson Education: New York, NY, USA, 2014; 608p. [Google Scholar]
- Ehlers, J.; Astakhov, V.; Gibbard, P.L.; Mangerud, J.; Svendsen, J.I. Late Pleistocene Glaciations; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1085–1095. [Google Scholar]
- Harris, C.; Smith, J.S. Modelling gelifluction processes: The significance of frost heave and slope gradient. In Proceedings of the Permafrost, Phillips, Springman & Arenson; Swets & Zeitlinger: Lisse, The Netherlands, 2003; pp. 355–360. [Google Scholar]
- Shean, D.E.; Head, J.W.; Marchant, D.R. Shallow seismic surveys and ice thickness estimates of the Mullins Valley debris-covered glacier, McMurdo Dry Valleys, Antarctica. Antarct. Sci. 2007, 19, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Orwin, J.F.; Lamoureux, S.F.; Warburton, J.; Beylich, A. A framework for characterizing fluvial sediment fluxes from source to sink in cold environments. Geogr. Ann. 2010, 92A, 155–176. [Google Scholar] [CrossRef]
- Berthling, I.; Schomacker, A.; Benediktsson, I.Ö. The glacial and periglacial research frontier—Where from here? In Treatise on Geomorphology; Shroder, J., Giardino, R., Harbor, J., Eds.; Glacial and Periglacial Geomorphology; Academic Press: San Diego, CA, USA, 2013; Volume 8, pp. 479–499. [Google Scholar]
- Dill, H.G.; Balaban, S.-I.; Buzatu, A.; Bornemann, A.; Techmer, A. The Quaternary volcanogenic landscape and volcaniclastic sediments of the Netherlands Antilles—Markers for an in-active volcanic arc. Int. J. Earth Sci. 2021, 1–24. [Google Scholar] [CrossRef]
- Gupta, A. Large Rivers: Geomorphology and Management; Wiley: Hoboken, NJ, USA, 2008; 712p. [Google Scholar]
- Thorndycraft, V.R.; Gerardo Benito, K.J. Gregory. Fluvial geomorphology: A perspective on current status and methods. Geomorphology 2008, 98, 2–12. [Google Scholar] [CrossRef]
- Wohl, H. Time and the rivers flowing: Fluvial geomorphology since 1960. Geomorphology 2014, 216, 263–282. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Piégay, H. Tools in Fluvial Geomorphology (Advancing River Restoration and Management), 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; 560p. [Google Scholar]
- Schlunegger, F.; Garefalakis, P. Clast imbrication in coarse-grained mountain streams and stratigraphic archives as indicator of deposition in upper flow regime conditions. Earth Surf. Dynam. 2018, 6, 743–761. [Google Scholar] [CrossRef] [Green Version]
- Puig, J.M.; Cabello, P.; Howell, J.; Arbués, P. Three-dimensional characterization of sedimentary heterogeneity and its impact on subsurface flow behavior through the braided-to-meandering fluvial deposits of the Castissent Formation (late Ypresian, Tremp-Graus Basin, Spain). Mar. Pet. Geol. 2019, 103, 661–680. [Google Scholar] [CrossRef] [Green Version]
- Tooth, S.; McCarthy, T.S. Anabranching in mixed bedrock-alluvial rivers: The example of the Orange River above Augrabies Falls, Northern Cape Province, South Africa. Geomorphology 2004, 57, 235–262. [Google Scholar] [CrossRef]
- Hori, K.; Saito, Y. Classification, Architecture, and Evolution of Large-river Deltas. Large Rivers: Geomorphology and Management; Gupta, A., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 75–96. [Google Scholar]
- Gibbard, P.L.; Lewin, J. River incision and terrace formation in the Late Cenozoic of Europe. Tectonophysics 2009, 474, 41–55. [Google Scholar] [CrossRef]
- Magilligan, F.J.; Buraas, E.M.; Renshaw, C.E. The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding. Geomorphology 2015, 228, 175–188. [Google Scholar] [CrossRef]
- Smith, J.A.; Baeck, M.L.; Yang, L.; Signell, J.; Morin, E.; Goodrich, D.C. The Paroxysmal Precipitation of the Desert: Flash Floods in the Southwestern United States. Water Resour. Res. 2019, 55, 10218–10247. [Google Scholar] [CrossRef]
- North, C.P.; Nanson, G.C.; Fagan, S.D. Recognition of the sedimentary architecture of dryland anabranching (anastomosing) rivers. J. Sediment. Res. 2007, 77, 925–938. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A.; Balaban, S.-I.; Ufer, K.; Techmer, A.; Schedlinsky, W.; Füssl, M. The transition of very coarse-grained meandering to straight fluvial drainage systems in a tectonized foreland-basement landscape during the Holocene (SE Germany)—A joint geomorphological-geological study. Geomorphology 2020, 370, 107364. [Google Scholar] [CrossRef]
- Twidale, C.R.; Vital-Romani, J.R. Landforms and Geology of the Granite Terrains; Balkema: Leiden, UK, 2005; 344p. [Google Scholar]
- Migoń, P. Granite Landscapes of the World. In Geomorphological Landscapes of the World 22; Oxford University Press: Oxford, UK, 2006; 416p. [Google Scholar]
- Twidale, C.R. Bornhardts and associated fracture patterns. Rev. Asoc. Geol. Argent. 2007, 62, 139–153. [Google Scholar]
- Godard, A.; Lagasquie, J.-J. Basement Regions; Springer: New York, NY, USA; London, UK, 2012; 324p. [Google Scholar]
- Dill, H.G. An overview of the pegmatitic landscape from the pole to the equator—Applied geomorphology and ore guides. Ore Geol. Rev. 2017, 91, 795–823. [Google Scholar] [CrossRef]
- Ringrose, S.; Matheson, W.; Seely, M.; Cassidy, L.; Coetzee, S.; Kemosidile, T. Aspects of floodplain deposition in semi-arid ephemeral rivers, examples from the Kuiseb river valley, central Namibia. Trans. R. S. S. Afr. 2014, 69, 187–193. [Google Scholar] [CrossRef]
- Harvey, A.M.; Mather, A.E.; Stokes, M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics Geological Society Special Publication 251, 1st ed.; Geological Society: London, UK, 2005; 256p. [Google Scholar]
- De Luca, D.A.; Destefanis, E.; Forno, M.G.; Lasagna, M.; Masciocco, L. The genesis and the hydrogeological features of the Turin Po Plain fontanili, typical lowland springs in Northern Italy. Bull. Eng. Geol. Environ. 2014, 73, 409–427. [Google Scholar] [CrossRef]
- Church, M. Geomorphic thresholds in riverine landscapes. Freshw. Biol. 2002, 47, 541–557. [Google Scholar] [CrossRef] [Green Version]
- Castillo, C.; Gómez, J.A. A century of gully erosion research: Urgency, complexity and study approaches. Earth Sci. Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Dill, H.G.; Ludwig, R.-R.; Kathewera, A.; Mwenelupembe, J. A lithofacies terrain model for the Blantyre Region: Implications for the interpretation of palaeosavanna depositional systems and for environmental geology and economic geology in southern Malawi. J. Afr. Earth Sci. 2005, 41, 341–393. [Google Scholar] [CrossRef]
- Bashforth, A.R.; Drábková, J.; Opluštil, S.; Gibling, M.R.; Falcon-Lang, H.J. Landscape gradients and patchiness in Riparian vegetation on a Middle Pennsylvanian braided-river plain prone to flood disturbance (Nýřany Member, Central and Western Bohemian Basin, Czech Republic). Rev. Palaeobot. Palynol. 2011, 163, 153–189. [Google Scholar] [CrossRef]
- Finkl, C.W. Coastal classification: Systematic approaches to consider in the development of a comprehensive system. J. Coast. Res. 2004, 20, 166–213. [Google Scholar] [CrossRef]
- Short, A.D. Australian beach systems: Nature and distribution. J. Coast. Res. 2006, 22, 11–27. [Google Scholar] [CrossRef]
- Bird, E.C.F. Coastal Geomorphology: An Introduction; John Wiley & Sons: Chichester, UK, 2008; 411p. [Google Scholar]
- Masselink, G.; Hughes, M.G.; Knight, J. An Introduction to Coastal Processes and Geomorphology; Hodder Education: London, UK, 2011; 416p. [Google Scholar]
- Viles, H.; Spencer, T. Coastal Problems: Geomorphology, Ecology and Society at the Coast; Routledge: London, UK, 2016; 360p. [Google Scholar]
- Worldtides. 2020. Available online: https://www.worldtides.info/ (accessed on 26 October 2021).
- Davies, J.L. A morphogenic approach to world shorelines. Zeit. Geomorph. 1964, 8, 27–42. [Google Scholar] [CrossRef]
- Hayes, M.O. Barrier island morphology as a function of wave and tide regime. In Barrier Islands from the Gulf of St. Lawrence to the Gulf of Mexico; Leatherman, S.P., Ed.; Academic Press: New York, NY, USA, 1979; pp. 1–29. [Google Scholar]
- Davis, R.A., Jr.; Dalrymple, R.W. Principles of Tidal Sedimentology; Springer: New York, NY, USA, 2011; p. 621. [Google Scholar]
- Hayes, M.O.; FitzGerald, D.M. Origin, evolution, and classification of tidal inlets. J. Coast. Res. 2013, 69, 14–33. [Google Scholar] [CrossRef]
- Boyd, R.; Dalrymple, R.; Zaitlin, B.A. Classification of clastic coastal depositional environments. Sediment. Geol. 1992, 80, 139–150. [Google Scholar] [CrossRef]
- Dalrymple, R.W. Tidal depositional systems. In Facies Models 4; James, N.P., Dalrymple, R.W., Eds.; Geological Association of Canada: St. John′s, NL, Canada, 2010; pp. 201–232. [Google Scholar]
- Stephenson, W.J.; Thornton, L.E. Australian rock coasts: Review and prospects. Aust. Geogr. 2005, 36, 95–115. [Google Scholar] [CrossRef] [Green Version]
- Granja, H.M. Rocky Coast. In Coastal Zones and Estuaries; Isla, F.I., Iribane, O., Eds.; Eolss Publishers: Oxford, UK, 2009; pp. 135–162. [Google Scholar]
- Flemming, B.W.; Hertweck, G. Tidal flats and barrier systems of continental Europe: A selective overview. Senckenbergiana Marit. 1994, 24, 1–209. [Google Scholar]
- Bartholdy, J.; Christiansen, C.; Kunzendorf, H. Long term variations in back barrier salt marsh deposition on the Skallingen peninsula. The Danish Wadden Sea. Mar. Geol. 2004, 203, 1–21. [Google Scholar] [CrossRef]
- Madsen, A.T.; Murray, A.S.; Andersen, T.J.; Pejrup, M. Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene—Reflections of local sea level changes? The Wadden Sea, Denmark. Mar. Geol. 2007, 242, 221–233. [Google Scholar] [CrossRef]
- Dill, H.G.; Ufer, K.; Bornemann, A.; Techmer, A.; Buzatu, A. From the strand plain to the reef: A sedimentological–geomorphological study of a Holocene coast affected by mud diapirism (Archipélago Rosario-Barú, Colombia). Mar. Geol. 2019, 415, 105953. [Google Scholar] [CrossRef]
- Käärd, A.; Raukas, A. Geological conditions, environmental situation and development possibilities of the Paldiski Northern Harbour, north-western Estonia. Geologija 2013, 54, 89–99. [Google Scholar] [CrossRef]
- Cendales, H.; Zea, S.; Diaz, J.M. Geomorfología y unidades ecológicas del complejo arrecifal de Islas del Rosario e Isla Barú (Mar Caribe, Colombia). Rev. Acad. Colomb. Cienc. 2002, 26, 497–510. [Google Scholar]
- Gischler, E.; Lomando, A.J.; Hudson, J.H.; Holmes, C.W. Last interglacial reef growth beneath Belize barrier and isolated platform reefs. Geology 2000, 28, 387–390. [Google Scholar] [CrossRef]
- Scott, J.J.; Buatois, L.A.; Mángano, M.G. Chapter 13—Lacustrine Environments. Dev. Sedimentol. 2012, 64, 379–417. [Google Scholar]
- Warren, J. Evaporites. In Encyclopedia of Geochemistry; White, W.M., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Whitford, W.G.; Duval, B.D. Section 4.9 Ephemeral Ponds and Lakes. In Ecology of Desert Systems, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019; 473p. [Google Scholar]
- Goudie, A.S.; Pye, K. Chemical Sediments and Geomorphology-Precipitates and Residua in the Near-Surface Environment; Academic Press: London, UK, 1983; 439p. [Google Scholar]
- Wilson, R.C.L. Residual deposits. In Surface Related Weathering Processes and Materials; Geological Society Special Publication 11; Blackwell: London, UK, 1983; 258p. [Google Scholar]
- Goudie, A.S.; Viles, H.A. The frequency and magnitude concept in relation to rock weathering. Zeit. Geomorph. 1999, 115, 175–189. [Google Scholar] [CrossRef]
- Kistler, R.B.; Helvaci, C. Boron and borates. Ind. Miner. Rocks 1994, 6, 171–186. [Google Scholar]
- Dill, H.G.; Khadka, D.R.; Khanal, R.; Dohrmann, R.; Melcher, F.; Busch, K. Infilling of the Younger Kathmandu-Banepa intermontane lake basin during the Late Quaternary (Lesser Himalaya, Nepal): A sedimentological study. J. Quat. Sci. 2003, 18, 41–60. [Google Scholar] [CrossRef]
- Golitsyn, A.; Courel, L.; Debriette, P. A fault-related coalification anomaly in the Blanzy-Montceau coal basin (Massif Central, France). Int. J. Coal Geol. 1997, 33, 209–228. [Google Scholar] [CrossRef]
- Mostovaya, A.; Hawkes, J.A.; Dittmar, T.; Tranvik, L.J. Molecular Determinants of Dissolved Organic Matter Reactivity in Lake Water. Front. Earth Sci. 2017, 18, 106. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, B.; Jiang, X.; Chen, J.; Wang, S. Characteristics and Source of Dissolved Organic Matter in Lake Hulun, A Large Shallow Eutrophic Steppe Lake in Northern China. Water 2020, 12, 953. [Google Scholar] [CrossRef] [Green Version]
- Staesche, U. Natur und Landschaft zwischen Küste und Harz. Akad. Geowiss. Hann. 2002, 20, 46–53. [Google Scholar]
- Dill, H.G.; Khishigsuren, S.; Majigsuren, Y.; Myagmarsuren, S.; Bulgamaa, J. Geomorphological studies along a transect from the taiga to the desert in Central Mongolia-Evolution of landforms in the mid-latitude continental interior as a function of climate and vegetation. J. Asian Earth Sci. 2006, 27, 241–264. [Google Scholar] [CrossRef]
- Ringrose, S.; Harris, C.; Huntsman-Mapila, P.; Vink, B.W.; Diskins, S.; Vanderpost, C.; Matheson, W. Origins of strandline duricrusts around the Makgadikgadi Pans (Botswana Kalahari) as deduced from their chemical and isotope composition. Sediment. Geol. 2009, 219, 262–279. [Google Scholar] [CrossRef]
- Dill, H.G.; Dohrmann, R.; Kaufhold, S.; Techmer, A. Provenance analysis and thermo-dynamic studies of multi-type Holocene duricrusts (1700 BC) in the Sua Salt Pan, NE Botswana. J. Afr. Earth Sci. 2014, 96, 79–98. [Google Scholar] [CrossRef]
- García-Veigas, J.; Rosell, L.; Zak, I.; Playà, E.; Ayora, C.; Starinsky, A. Evidence of potash salt formation in the Pliocene Sedom Lagoon (Dead Sea Rift, Israel). Chem. Geol. 2009, 265, 499–511. [Google Scholar] [CrossRef]
- Hamzehpour, N.; Eghbal, M.K.; Abasiyana, S.M.A.; Dill, H.G. Pedogenic evidence of Urmia Lake’s maximum expansion in the late Quaternary. Catena 2018, 171, 398–415. [Google Scholar] [CrossRef]
- Lal, R. Encyclopedia of Soil Science, 2nd ed.Taylor & Francis Ltd.: London, UK, 2005; 1600 p. [Google Scholar]
- USDA. United States Department of Agriculture and Natural Resources; National Resources Inventory: Washington, DC, USA, 2005.
- Whitesand, E.P. Some relationships between the classification of rocks by geologists and the classification of soils by soil scientists. Soil Sci. Soc. Proc. 1953, 17, 138–142. [Google Scholar]
- Gray, J.; Murphy, B. Parent material and world soil distribution. In Proceedings of the 17th WCSS, Bangkok, Thailand, 14–22 August 2002. [Google Scholar]
- British Geological Survey (BGS). The Soil-Parent Material Database (SPM-v4): A User Guide. Landuse and Development Programme and Information Products; Open Report OR/08/034; British Geological Survey: Nottingham, UK, 2009. [Google Scholar]
- Schuler, U.; Baritz, R.; Willer, J.; Dijkshorn, K.; Dill, H.G. A Revised Approach to Classify Parent Material for Soil Maping; SOTER Version 1.3; Federal Institute for Geosciences and Natural Resources (BGR): Hannover, Germany, 2011; 129p. [Google Scholar]
- Dill, H.G. The geology of aluminium phosphates and sulphates of the alunite supergoup: A review. Earth Sci. Rev. 2001, 53, 35–93. [Google Scholar] [CrossRef]
- Dill, H.G.; Weber, B.; Botz, R. Metalliferous duricrusts (“orecretes”)—Markers of weathering: A mineralogical and climatic-geomorphological approach to supergene Pb-Zn- Cu-Sb-P mineralization on different parent materials. Neues Jahrb. Mineral. Abh. 2013, 190, 123–195. [Google Scholar] [CrossRef]
- Morton, A.C. Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Miner. 1984, 19, 287–308. [Google Scholar] [CrossRef]
- Nickel, E. Stability of heavy minerals. Experimental dissolution of light and heavy minerals in comparison with weathering and intrastratal solution. Contrib. Sediment. Geol. 1973, 1, 11–68. [Google Scholar]
- Meinhold, G. Rutile and its applications in earth sciences. Earth-Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Grey, I.E.; Steinike, K.; MacRae, C.M. Kleberite, Fe 3+Ti6O11(OH)5, a new ilmenite alteration product, from Königshain, northeast Germany. Mineral. Mag. 2013, 77, 45–55. [Google Scholar] [CrossRef]
- Mücke, A.; Bhadra Chaudhuri, J.N. The continuous alteration of ilmenite through pseudorutile to leucoxene. Ore Geol. Rev. 1991, 6, 25–44. [Google Scholar] [CrossRef]
- Dietz, V. Experiments on the influence of transport on shape and roundness of heavy minerals. Contrib. Sediment. Geol. 1973, 1, 69–102. [Google Scholar]
- Dill, H.G.; Ludwig, R.-R. Geomorphological-sedimentological studies of landform types and modern placer deposits in the savanna (Southern Malawi). Ore Geol. Rev. 2008, 33, 411–434. [Google Scholar] [CrossRef]
- Ruiz, F.; Gonzalez-Regalado, M.L.; Borrego, J.; Morales, J.A.; Pendon, J.G.; Munoz, J.M. Stratigraphic sequence, elemental concentrations and heavy metal pollution in Holocene sediments from the Tint–Odiel Estuary, south-western Spain. Environ. Geol. 1998, 34, 270–278. [Google Scholar] [CrossRef]
- Tornos, F. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geol. Rev. 2005, 28, 259–307. [Google Scholar] [CrossRef]
- Mellado, D.; González Clavijo, E.; Tornos, F.; Conde, C. Geología y estructura de la Mina de Río Tinto (Faja Pirítica Ibérica, España). Geogaceta 2006, 40, 231–234. [Google Scholar]
- Sanchez España, F.J.; Lopez Pamo, E.; Santofimia, E. The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite belt (Odiel Basin, Huelva, Spain): Field and laboratory rates. J. Geochem. Explor. 2007, 92, 120–132. [Google Scholar] [CrossRef]
- Davis, R.A., Jr.; Welty, A.T.; Borrego, J.; Morales, J.A.; Pendon, G.; Ryan, J.G. Rio Tinto estuary (Spain): 5000 years of pollution. Environ. Geol. 2000, 39, 1107–1116. [Google Scholar] [CrossRef]
- Dergachev, A.L.; Eremin, N.I.; Sergeeva, N.E. Volcanogenic massive sulfide deposits of ophiolite associations. Mosc. Univ. Geol. Bull. 2010, 65, 265–272. [Google Scholar] [CrossRef]
- Illenberger, W.K. Pebble shape (and size?). J. Sediment. Res. 1991, 61, 756–767. [Google Scholar]
- Powers, M.C. A New Roundness Scale for Sedimentary Particles. J. Sed. Petrol. 1953, 23, 117–119. [Google Scholar] [CrossRef]
- Powers, M.C. Comparison Chart for Estimating Roundness and Sphericity. AGI Data Sheet 1982, 18, 1. [Google Scholar]
- Hubert, J.F. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J. Sediment. Petrol. 1962, 32, 440–450. [Google Scholar]
- Klementová, M.; Rieder, M. Exsolution in Niobian rutile from the pegmatite deposit at Greenbushes, Australia. Can. Mineral. 2004, 42, 1859–1870. [Google Scholar] [CrossRef]
- Coleman, M. Microbial processes: Controls on the shape and composition of carbonate concretions. Mar. Geol. 1993, 113, 127–140. [Google Scholar] [CrossRef]
- Bertran, P.; Hétu, B.; Texier, J.-P.; Van Steijn, H. Fabric characteristics of subaerial slope deposits. Sedimentology 1997, 44, 1–16. [Google Scholar] [CrossRef]
- Millar, S.W.; Nelson, F.E. Sampling-surface orientation and clast macrofabric in periglacial colluviums. Earth surface processes and landforms. Earth Surf. Processes Landf. 2001, 26, 523–529. [Google Scholar] [CrossRef]
- Krejci-Graf, K. Geochemical diagnosis of facies. Geol. Soc. Yorks. Proc. 1964, 34, 469–521. [Google Scholar] [CrossRef]
- Krejci-Graf, K. Geochemical facies of sediments. Soil Sci. 1975, 119, 20–23. [Google Scholar] [CrossRef]
- Roesler, H.J.; Lange, H.; Pilot, J. Analyse der geochemischen Ablagerungsbedingungen von Sedimenten. Freiberg. Forsch. C 1971, 178, 9–30. [Google Scholar]
- Bjoerlykke, K. Depositional history and geochemical composition of lower Paleozoic epicontinental sediments from the Oslo region. Nor. Geol. Undersøkelse 1974, 305, 1–81. [Google Scholar]
- Berner, R.A.; Raiswell, R. C/S method for distinguishing fresh water from marine sedimentary rock. Geology 1984, 12, 365–368. [Google Scholar] [CrossRef]
- Dill, H.G. Metallogenesis of the Early Paleozoic Graptolite Shales from the Graefenthal Horst (Germany). Econ. Geol. 1986, 81, 889–903. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Hoffmann, P.; Ricken, W.; Schwark, L.; Leythaeuser, D. Carbon-sulphur-iron relationships and δ13C of organic matter for late Albian sedimentary rocks from the North Atlantic Ocean: Palaeoceanographic implications. Palaeogeogr. Palaeoclimat. Palaeoecol. 2000, 163, 97–113. [Google Scholar] [CrossRef]
- Dypvik, H.; Harris, N. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios. Chem. Geol. 2001, 181, 131–146. [Google Scholar] [CrossRef]
- Dypvik, H.; Smelror, M.; Sandbakken, P.T.; Salvigsen, O.; Kalleson, E. Traces of the marine Mjølnir impact event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 241, 621–636. [Google Scholar] [CrossRef]
- Dypvik, H.; Riber, L.; Burca, F.; Rüther, D.; Jargvoll, D.; Nagy, J.; Jochmann, M. The Paleocene–Eocene thermal maximum (PETM) in Svalbard—Clay mineral and geochemical signals. Palaeogeogr. Palaeoclimatol. Paleoecol. 2011, 302, 156–169. [Google Scholar] [CrossRef]
- Szczepanik, P.; Witkowska, M.; Sawłowicz, Z. Geochemistry of Middle Jurassic mudstones (Kraków–Czêstochowa area, southern Poland): Interpretation of the depositional redox conditions. Geol. Quart. 2007, 51, 57–66. [Google Scholar]
- Warner, E. Geochemical Facies Analysis; Elsevier: Amsterdam, The Netherlands, 2012; 158p. [Google Scholar]
- Monroe, J.S.; Wicander, R. The Changing Earth: Exploring Geology and Evolution, 6th ed.; Cengage Learning, Inc.: Boston, MA, USA, 2011; 720p. [Google Scholar]
- Andre, M.F.; Hall, K.; Bertran, P.; Arocena, J. Stone runs in the Falkland Islands: Periglacial or tropical. Geomorphology 2008, 95, 524–543. [Google Scholar] [CrossRef]
- Ballantyne, C.K. A general model of autochthonous blockfield evolution. Permafr. Periglac. Processes 2010, 21, 289–300. [Google Scholar] [CrossRef]
- Bennett, M.R.; Glasser, N.F. Glacial Geology. In Ice Sheets and Landforms; Wiley-Blackwell: Chichester, UK, 2009; 385p. [Google Scholar]
- Benn, D.I.; Evans, D.J.A. Glaciers and Glaciation; Hodder Education: London, UK, 2010; 802p. [Google Scholar]
- Glennie, K.W. The Desert of Southeast Arabia; GeoArabia: Manama, Bahrain, 2005; 215p. [Google Scholar]
- Czuba, J.A.; Foufoula-Georgiou, E. Dynamic connectivity in a fluvial network for identifying hotspots of geomorphic change. Water Resour. Res. 2015, 51, 1401–1421. [Google Scholar] [CrossRef]
- Håkanson, L. Lake environments. In Environmental Sedimentology; Perry, C., Taylor, K., Eds.; Chapter 4; Blackwell Publishing: Oxford, UK, 2007; pp. 109–143. [Google Scholar]
- Messager, E.; Belmecheri, S.; Von Grafenstein, U.; Nomade, S.; Ollivier, V.; Voinchet, P.; Puaud, S.; Courtin-Nomade, A.; Guillou, H.; Mgeladze, A.; et al. Late Quaternary record of the vegetation and catchment-related changes from Lake Paravani (Javakheti, South Caucasus). Quat. Sci. Rev. 2013, 77, 125–140. [Google Scholar] [CrossRef]
- Hogg, S.E. Sheetfloods, sheetwash, sheetflow, or ... ? Earth-Sci. Rev. 1982, 18, 59–76. [Google Scholar] [CrossRef]
- Silva, P.G.; Bardají, T.; Calmel-Avila, M.; Goy, J.L.; Zazo, C. Transition from alluvial to fluvial systems in the 500 Guadalentín Depression (SE Spain) during the Holocene: Lorca Fan versus Guadalentín River. Geomorphology 2008, 100, 140–153. [Google Scholar] [CrossRef]
- Ortega, J.A.; Garzón, G. Geomorphological and sedimentological analysis of flash-flood deposits. The case of the 1997 Rivillas flood (Spain). Geomorphology 2009, 112, 1–14. [Google Scholar] [CrossRef]
- Špitalar, M.; Gourley, J.J.; Lutoff, C.; Kirstetter, P.-E.; Brilly, M.; Carr, N. Analysis of flash flood parameters and human impacts in the US from 2006 to 2012. J. Hydrol. 2014, 519, 863–870. [Google Scholar] [CrossRef]
- Gerhard, L.C. Origin and evolution of the Candlelight Reef-Sand Cay System, St. Croix. Atoll Res. Bull. 1981, 242, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Calhoun, R.S.; Field, M.E. Sand composition and transport history on a fringing coral reef, Molokai, Hawaii. J. Coast. Res. 2008, 245, 1151–1160. [Google Scholar] [CrossRef]
- Harris, D.L.; Webster, J.M.; De Carli, E.V.; Vila-Concejo, A. Geomorphology and morphodynamics of a sand apron, One Tree Reef, southern Great Barrier Reef. Journal of Coastal Research, SI 64. In Proceedings of the 11th International Coastal Symposium), Szczecin, Poland, 9–13 May 2011. [Google Scholar]
- Salvador, O.; Calvo, J.P.; del-Cura, M.Á.; Alonso-Zarza, A.; Hoyos, M. Lacustrine Facies Analysis. In Lacustrine Facies Analysis, Sedimentology Spec; Blackwell Science Publications: London, UK, 1991; Volume 13, pp. 39–55. [Google Scholar]
- Maddy, D. Uplift-driven valley incision and river terrace formation in Southern England. J. Quat. Sci. 1997, 12, 539–545. [Google Scholar] [CrossRef]
- Antoine, P.; Lautridou, J.P.; Laurent, M. Long-Term Fluvial archives in NW France: Response of the Seine and Somme Rivers to Tectonic movements, Climatic variations and Sea level changes. Geomorphology 2000, 33, 183–207. [Google Scholar] [CrossRef]
- Olszak, J. Evolution of fluvial terraces in response to climate change and tectonic uplift during the Pleistocene: Evidence from Kamienica and Ochotnica River valleys (Polish Outer Carpathians). Geomorphology 2011, 129, 71–78. [Google Scholar] [CrossRef]
- Avsin, N.; Vandenberghe, J.; van Balen, R.; Kiyak, N.; Öztürk, T. Tectonic and climatic controls on Quaternary fluvial processes and river terrace formation in a Mediterranean setting, the Göksu River, southern Turkey. Quat. Res. 2019, 91, 533–547. [Google Scholar] [CrossRef]
- Sun, J.; Li, S.-H.; Muhs, D.R.; Li, B. Loess sedimentation in Tibet: Provenance, processes, and link with Quaternary glaciations. Quat. Sci. Rev. 2007, 26, 2265–2280. [Google Scholar] [CrossRef] [Green Version]
- Warren, J. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Sci. Rev. 2010, 98, 217–268. [Google Scholar] [CrossRef]
- Kusky, T.M.; Abdelsalam, M.; Stern, R.J.; Tucker, R.D. (Eds.) Evolution of the East African and related orogens, and the assembly of Gondwana. Precambrian Res. 2003, 123, 82–85. [Google Scholar]
- Fort, M. Glaciers and mass wasting processes: Their influence on the shaping of the Kali Gandaki valley (higher Himalaya of Nepal). Quat. Int. 2000, 65, 101–119. [Google Scholar] [CrossRef]
- Geertsema, M.; Chiarle, M. Chapter 7.22 Mass-Movement Causes: Glacier Thinning. Treatise Geomorphol. 2013, 7, 217–222. [Google Scholar]
- Berg, A.; Findell, K.; Lintner, B.; Giannini, A.; Seneviratne, S.I.; van den Hurk, B.; Lorenz, R.; Pitman, A.; Hagemann, S.; Meier, A.; et al. Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Chang. 2016, 6, 869–874. [Google Scholar] [CrossRef]
- Montaño, N.M.; Ayala, F.; Bullock, S.H.; Briones, O.; García-Oliva, F.; García-Sánchez, R.; Maya, Y.; Perroni, Y.; Siebe CTapia-Torres, Y. Almacenes y flujos de carbono en ecosistemas áridos y semiáridos de México: Síntesis y perspectivas. Rev. Terra Latinoam. 2016, 34, 39–59. [Google Scholar]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z.; et al. Dryland climate change: Recent progress and challenges. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Pontifes, P.A.; García-Meneses, P.M.; Gómez-Aíza, L.; Monterroso-Rivas, A.I.; Caso-Chávez, M. Land use/land cover change and extreme climatic events in the arid and semi-arid ecoregions of Mexico. Atmósfera 2018, 31, 355–372. [Google Scholar] [CrossRef] [Green Version]
- Zeeberg, J.J. The European sand belt in eastern Europe—and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 1998, 27, 127–139. [Google Scholar] [CrossRef]
- De Boer, W.M. The Parabolic Dune Area North of Horstwalde (Brandenburg): A Geotope in Need of Conservation in the Central Baruth Ice-Marginal Valley; Aeolian Processes in Different Landscape, Zones; Dulias, R., Pełka-Goṡciniak, J., Eds.; Faculty of Earth Sciences, University of Silesia; The Association of Polish Geomorphologists: Sosnowiec, Poland, 2000; pp. 59–70. [Google Scholar]
- Kharin, G.S.; Kharin, S.G. Geological structure and composition of the Curonian Spit (Baltic Sea). Lithol. Miner. Resour. 2006, 42, 317–323. [Google Scholar] [CrossRef]
- Mol, J.; Vandenberghe, J.; Kasse, C. River response to variations of periglacial climate. Geomorphology 2000, 33, 131–148. [Google Scholar] [CrossRef]
- Bridgland, D.; Westaway, R. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon. Geomorphology 2008, 98, 285–315. [Google Scholar] [CrossRef] [Green Version]
- Chalov, S.; Ermakova, G. Fluvial response to climate change: A case study of northern Russian rivers. Cold Region Hydrology in a Changing Climate. In Proceedings of the Symposium H02, IUGG2011, Melbourne, Australia, 28 June–July 2011; Volume 346, pp. 111–119. [Google Scholar]
- Vandenberghe, J. River terraces as a response to climatic forcing: Formation processes, sedimentary characteristics and sites for human occupation. Quat. Int. 2015, 370, 3–11. [Google Scholar] [CrossRef]
- Wang, X.; Vandenberghe, J.; Yi, S.; Van Balen, R.; Lu, H. Climate-dependent fluvial architecture and processes on a suborbital timescale in areas of rapid tectonic uplift: An example from the NE Tibetan plateau. Glob. Planet. Change 2015, 133, 318–329. [Google Scholar] [CrossRef]
- Hutchinson, J.N. A small-scale field check on the Fisher-Lehmann and Bakker-Le Heux cliff degradation models. Earth Surf. Proc. Land. 1998, 23, 913–926. [Google Scholar] [CrossRef]
- Maynard, J.B. Geochemistry of Sedimentary Ore Deposits; Springer: New York, NY, USA, 1983; 320p. [Google Scholar]
- Robb, L. Introduction to Ore-Forming Processes; Blackwell Publishers: Hoboken, NJ, USA, 2004; 426p. [Google Scholar]
- Laznicka, P. Giant Metallic Deposits: Future Sources of Industrial Metals; Springer: Berlin/Heidelberg, Germany, 2005; 732p. [Google Scholar]
- Dill, H.G. Diagenetic and epigenetic mineralization in Central Europe related to surfaces and depositional systems of sequence stratigraphic relevance. In Linking Diagenesis to Sequence Stratigraphy of Sedimentary Rocks; Ketzer, M., Morad, S., De Ros, L.F., Eds.; Special Publication; International Association of Sedimentologists (IAS): Prague, Czech Republic, 2012; Volume 45, pp. 151–182. [Google Scholar]
- Pohl, W.L. Economic Geology: Principles and Practice; Wiley-Blackwell: Hoboken, NJ, USA, 2011; 680p. [Google Scholar]
Maturity Categories | Pre-Mature (Category 1) | Mature (Category 2) | Super-Mature (Category 3) |
---|---|---|---|
Geodynamic setting | Moderately eroded and active mountain belts of Late Mesozoic to Cenozoic age (e.g., Andes) including island arcs with high altitude mountains and no etch planation | Highly eroded mountain belts of Paleozoic and Early Mesozoic age (e.g., Hercynian/Variscan Mountain Ridges) with moderately high mountains intersected by continental grabens with moderately widespread erosional and depositional plains and only fossil etch plains | Deeply eroded cratons of Precambrian age (e.g., Guyana Shield) intersected by continental grabens and volcanic arcs at the edge with active etch planation |
Chemical weathering | Absent (only slightly altered parent material) moderate argillitization | Argillitization >> duricrusts | Duricrusts ≅ argillitization |
Country—Site | Basics | Landscape—Forming Processes | ||||||
---|---|---|---|---|---|---|---|---|
Koeppen Climate | Crustal maturity | Aeolian 1 | Mass Wasting 2.1–2.2 | Cryogenic-Glacial 3 | Fluvial 4.1–4.6 | Coastal-Marine 5.1–5.2 | Lacustrine 6.1–6.3 | |
Altiplano (BO) | Cw | 1 | ||||||
Antarctic Peninsula | ET/EF | 1 | ||||||
Austria | Cf | 2 | ||||||
Bahia Blanca (RG) | CA | 3 | ||||||
Bahrein | Bah | 1 | ||||||
Belize | Am | 1 | ||||||
Botswana | Bush | 3 | ||||||
Brand-se-Baai | BW | 3 | ||||||
Canary I. (ES) | BW/Cs | 1 | ||||||
Cape Verde | BW/BS | 1 | ||||||
Caribbean I. | Af/Aw | 1 | ||||||
Cartagena de India (CO) | Aw | 1 | ||||||
Channel I. (GB) | Cf | 2 | ||||||
Denmark | Cf | 2 | ||||||
Desierto de la Tatacoa (CO) | As/Aw | 1 | ||||||
Dominican Republic | Aw | 1 | ||||||
Elephant I. | ET | 2 | ||||||
Falkland I. (GB) | ET/Cf | 2 | ||||||
Germany | Cf | 2 | ||||||
Honduras | Am | 1 | ||||||
Iceland | ET/Cf | 1 | ||||||
Isla Baru (CO) | Af/Aw | 1 | ||||||
Jamaica | Af/Aw | 1 | ||||||
Jordan | BS/BW | 3 | ||||||
Latvia | Df | 2 | ||||||
Lesser Antilles | Aw | 1 | ||||||
Malawi | Aw | 3 | ||||||
Mexico | Aw/BS | 1 | ||||||
Mongolia | BSk | 2 | ||||||
Montserrat (ES) | Cfa | 1 | ||||||
Morocco | Bsh | 2 | ||||||
Namib Desert | BW | 3 | ||||||
Nepal | Cw | 1 | ||||||
Netherlands Antilles (NL) | Bsh | 1 | ||||||
Norway | Df/ET | 2 | ||||||
Oman | Bwh | 3 | ||||||
Orkney I. (GB) | Cfb | 2 | ||||||
Qatar | Bwh | 1 | ||||||
South Shetland I. | ET | 1 | ||||||
South Georgia I. (GB) | ET | 2 | ||||||
Spitzbergen (N) | ET | 2 | ||||||
Tahiti-Moorea (F) | Af | 1 | ||||||
Tanzania (mainland) (EAT) | Aw/BS | 1 | ||||||
Tasmania (AUS) | Cfb | 2 | ||||||
Tierra de Fuego (RG) | ET | 1 | ||||||
Tunisia | Cs | 1 | ||||||
UAE United Arab Emirates | Bw | 1 | ||||||
Zanzibar I. (EAT) | Am | 1 | ||||||
Estonia | Df | 2 | ||||||
Ganges Estuary (BD) | Aw | 1 | ||||||
Georgia | Cfa | 1 | ||||||
Lancelin Area (AUS) | Csa | 3 | ||||||
Mississippi Delta (USA) | Cfb | 2 | ||||||
Neuquen Basin (RA) | Bwk | 1 | ||||||
Rocky Mts. (CAN) | ET | 1 | ||||||
San Juan Valley (RA) | Bwk | 1 | ||||||
Villa de Leyva (CO) | CfB | 1 |
A Equatorial Climates Tmin≥ +18°C |
As Equatorial savannah with dry summer Pmin < 60 mm in summer |
Aw Equatorial savannah with dry winter Pmin < 60 mm in winter |
Af Equatorial rainforest, fully humid Pmin ≥ 60 mm |
Am Equatorial monsoon Pann ≥ 25 (100−Pmin) |
B Arid Climates Pann < 10 Pth |
BS Steppe climate Pann > 5 Pth |
Bsh Hot steppe Tann ≥ +18 °C |
Bsk Cold steppe Tann < +18 °C |
BW Desert climate Pann ≤ 5 Pth |
BWh Hot desert Tann ≥ +18 °C |
BWk Cold desert Tann < +18 °C |
C Warm Temperate Climates −3 °C < Tmin < +18 °C |
Cs Warm temperate climate with dry summer Psmin < Pwmin, Pwmax > 3 Psmin and Psmin < 40 mm |
Cw Warm temperate climate with dry winter Pwmin < Psmin and Psmax > 10 Pwmin |
Cf Warm temperate climate, fully humid neither Cs nor Cw |
D Snow Climates Tmin≤ −3 °C |
Dw Snow climate with dry winter Pwmin < Psmin and Psmax > 10 Pwmin |
Ds Snow climate with dry summer Psmin < Pwmin, Pwmax > 3 Psmin and Psmin < 40 mm |
Df Snow climate, fully humid neither Ds nor Dw |
E Polar Climates Tmax < +10 °C |
ET Tundra climate 0 °C ≤ Tmax < +10 °C |
EF Frost climate Tmax < 0 °C |
Landscape-Forming Processes 1st Order Level | Aeolian | Mass Wasting | Cryogenic | Alluvial-Fluvial | Coastal-Marine | Lacustrine |
---|---|---|---|---|---|---|
Type-Code of the Landform Series (LFS) | 1 | 2 | 3 | 4.1–4.6 | 5.1–5.2 | 6.1–6.3 |
Depositional and erosional landforms 2nd order level | -sand ridges and hills -sand sheets -loess sheets -barchan dunes -transverse dunes -star dunes -parabolic dunes -longitudinal dunes -“sand sea” -hillslope and mountain flank sands sheets + dune -nebkhas -cliff-front dunes -aeolian ramp deposits -tombolo -salt pans (deflation area) -sabkhas (deflation area) -wadi (deflation area) -ventifacts -mushroom rocks -desert pavement -desert varnish -serir to hamada | -talus creep -soil creep -solifluction sheets -block stream -landslide (in place grading into sliding blocks) -rock block slide -rock fall -mass flow -debris flow -earth/mud flow -pediments (colluvial part) -forested mountains with rounded tops, -palisades and boulder strewn tops-blockfield, blockmeer/felsenmeer -monadnocks -tors (woolsacks) -tafoni + oricangas | -cirque glacier and lips -lateral, ground and terminal moraines -sanders -glacial lakes -kames -ice wedge-cryoturbation -dragged and distorted pocket fills -heave-induced stationary periglacial debris -lobes of solifluctuation + gelifluctuation -pattern grounds -U-shaped valleys -cirques/kars (in places with mass wasting products) -nivation cirques -striae -whalebacks, -roches moutonnées -ventifacts | -large-and-shallow valleys on Peneplains -alluvial fans and flood plains, -pediments unconfined flash and sheet floods -straight to low -sinuosity streams -single and multiple channels, non-alluvial to alluvial (longitudinal bars Islands) -braided streams (longitudinal >> transverse) -anabranching streams -meandering stream (coarse gr.to finer gr.) with oxbow lakes, cut-off lakes, chutes, cuspate and mega ripples -flood plains (active – abandoned/terraces) -stacked pattern of terraces within the basement + foreland -intermediate sediment trap -fluvial delta -ephemeral streams (wadis) -ridge-and-rill topography -triangular hill slopes, -gorges, gullies and ravines -V-shaped valleys -pools -riffles -cascades -steps -mesas -buttes -caves -potholes | -tide-dominated low-relief -coast with inclined shore platform -tidal flat (in places, with biogenic structures, e.g., worm burrows, wave ripple bedding) -tidal channels -tidal inlets -beach ridges (plus runnels and berms) -wave-dominated low-relief-coast with inclined shore platform -bay-type beach -gravelly beach -barrier sands/ -rock fall -rock block slide -debris wash -fossil strandlines -emerged strandlines -lagoons (+mangrove swamps) -washover fans -low-relief fjord -beach fjord (U-shaped valley) -high relief rocky coast with plunging cliffs -beach scarps (active—fossil) -stacked patterns of -erosional wave-cut raised marine terraces) -headland cliff, -stacks + stumps -buttresses and groove -rocky tidal flats (wave-cut platform) -abandoned cliff (with raised notches and terraces) -erosional reef platforms | -lacustrine perennial -lacustrine ephemeral -fluvial-lacustrine -oxbow lakes -cut-off lakes -sealed-off lagoons -mud flats -crater lakes -salinas -subaerial mud volcanoes -see coastal erosional processes for perennial lakes |
Environment-Land-Forming Processes See Table 4 and Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9 | LFS Code See Table 4 | Maturity Textural “Transport & Deposition” | Maturity Compositional | Maturity (Geomorphological-Geodynamical) | Climate Zonation | ||
---|---|---|---|---|---|---|---|
Sediment Load “Density” → Max → High Sediment Weight | Oxidation State “Eh” → Max → >0 | Carbonate Content (Mean) “pH” → Max → >7 (Biodetritus LFS 5) | See Table 1 and Figure 3 | See Table 3 and Figure 1 | |||
Aeolian | 1.0 | Low mature | 30 | 60–75 | 29 | 3→2→1 | See Figure 16a |
Mass wasting—slow motion | 2.1 | Immature | 31 | 48–52 | 10 | 2→1→3 | See Figure 16a |
Mass wasting—fast motion | 2.2 | Immature | 31 | 48–52 | 30 | 2→1→3 | See Figure 16a |
Cryogenic-glacial | 3.0 | Immature | 31 | 48–52 | 5 | 2→1→3 | See Figure 16a |
Fluvial-braided | 4.1 | Submature | 35 | 52–58 | 9 | 2→1→3 | See Figure 16b |
Fluvial-meandering/high sinuosity | 4.2 | Low mature | 65 | 45–54 | 6 | 2→1→3 | See Figure 16b |
Fluvial-straight/low sinuosity | 4.3 | Submature | 63 | 52–56 | 8 | 2→1→3 | See Figure 16b |
Fluvial-unconfined flow | 4.4 | Low mature | 100 | 60–71 | 9 | 2→1→3 | See Figure 16b |
Fluvial-ephemeral (wadi) | 4.5 | Submature | 40 | 39–56 | 26 | 2→1→3 | See Figure 16b |
Fluvial-deltaic | 4.6 | High mature | 57 | 61–65 | 34 | 2→1→3 | See Figure 16b |
Coastal-marine tide-dominated | 5.1 | Submature | 20 | 44–78 | 23 | 2→1→3 | See Figure 16b |
Coastal-marine wave-dominated | 5.2 | Immature | 60 | 49–56 | 42 | 2→1→3 | See Figure 16b |
Lacustrine-fluvial (marginal facies) | 6.1 | Low mature | 70 | 39–66 | 6 | 3→1→2 | See Figure 16b |
Lacustrine-perennial | 6.2 | High mature | 20 | 52–98 | 15 | 3→1→2 | See Figure 16b |
Lacustrine-ephemeral | 6.3 | Low mature | 20 | 32–56 | 50 | 3→1→2 | See Figure 16b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dill, H.G. Trends and Composition—A Sedimentological-Chemical-Mineralogical Approach to Constrain the Origin of Quaternary Deposits and Landforms—From a Review to a Manual. Geosciences 2022, 12, 24. https://doi.org/10.3390/geosciences12010024
Dill HG. Trends and Composition—A Sedimentological-Chemical-Mineralogical Approach to Constrain the Origin of Quaternary Deposits and Landforms—From a Review to a Manual. Geosciences. 2022; 12(1):24. https://doi.org/10.3390/geosciences12010024
Chicago/Turabian StyleDill, Harald G. 2022. "Trends and Composition—A Sedimentological-Chemical-Mineralogical Approach to Constrain the Origin of Quaternary Deposits and Landforms—From a Review to a Manual" Geosciences 12, no. 1: 24. https://doi.org/10.3390/geosciences12010024