Mapping Seafloor Sediment Distributions Using Public Geospatial Data and Machine Learning to Support Regional Offshore Renewable Energy Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Formatting
2.3. Data Analysis
- Selection of explanatory and response variables from the collected datasets;
- Evaluation of bathymetric characteristics for predicting the presence of individual sediment types (i.e., classes);
- Generation of a sediment presence composite map from individual sediment class predictions.
2.3.1. Variable Preparation
2.3.2. MaxEnt Modeling
2.3.3. Sediment Composite
3. Results
3.1. Sediment Class Predictions
3.2. Model Performance
4. Discussion
4.1. Assessment of Sediment Composite
4.2. Review of Systematic Workflow
4.2.1. Sediment Observations
4.2.2. Environmental Data
4.2.3. MaxEnt Modeling
4.3. Recommendations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A. Renewable Energy and Climate Change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- The White House. FACT SHEET: Biden-Harris Administration Continues to Advance American Offshore Wind Opportunities. The White House. 2023. Available online: https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/29/fact-sheet-biden-harris-administration-continues-to-advance-american-offshore-wind-opportunities/ (accessed on 31 May 2024).
- Global Wind Energy Council. Global Offshore Wind Report 2023. Available online: https://gwec.net/gwecs-global-offshore-wind-report-2023/ (accessed on 31 May 2024).
- Musial, W.; Spitsen, P.; Duffy, P.; Beiter, P.; Shields, M.; Hernando, D.M.; Hammond, R.; Marquis, M.; King, J.; Sriharan, S. Offshore Wind Market Report: 2023 Edition; U.S. Department of Energy: Washington, DC, USA, 2023.
- Methratta, E.T.; Silva, A.; Lipsky, A.; Ford, K.; Christel, D.; Pfeiffer, L. Science Priorities for Offshore Wind and Fisheries Research in the Northeast U.S. Continental Shelf Ecosystem: Perspectives from Scientists at the National Marine Fisheries Service. Mar. Coast. Fish. 2023, 15, e10242. [Google Scholar] [CrossRef]
- Galparsoro, I.; Menchaca, I.; Garmendia, J.M.; Borja, Á.; Maldonado, A.D.; Iglesias, G.; Bald, J. Reviewing the Ecological Impacts of Offshore Wind Farms. NPJ Ocean Sustain. 2022, 1, 1. [Google Scholar] [CrossRef]
- Methratta, E.; Hawkins, A.; Hooker, B.; Lipsky, A.; Hare, J. Offshore Wind Development in the Northeast US Shelf Large Marine Ecosystem: Ecological, Human, and Fishery Management Dimensions. Oceanography 2020, 33, 16–27. [Google Scholar] [CrossRef]
- Harris, P.; Baker, E. (Eds.) Seafloor Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features and Benthic Habitats; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Hughes, B.B.; Johnson, A.J.; Pfirrmann, B.W.; Rasher, D.B.; Smyth, A.R.; Williams, B.L.; Beck, M.W.; Orth, R.J. Are Coastal Habitats Important Nurseries? A Meta-Analysis. Conserv. Lett. 2019, 12, e12645. [Google Scholar] [CrossRef]
- Crespo, D.; Pardal, M.Â. Ecological and Economic Importance of Benthic Communities. In Life Below Water; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–11. [Google Scholar]
- Airoldi, L.; Balata, D.; Beck, M.W. The Gray Zone: Relationships between Habitat Loss and Marine Diversity and Their Applications in Conservation. J. Exp. Mar. Biol. Ecol. 2008, 366, 8–15. [Google Scholar] [CrossRef]
- Kritzer, J.P.; DeLucia, M.-B.; Greene, E.; Shumway, C.; Topolski, M.F.; Thomas-Blate, J.; Chiarella, L.A.; Davy, K.B.; Smith, K. The Importance of Benthic Habitats for Coastal Fisheries. Bioscience 2016, 66, 274–284. [Google Scholar] [CrossRef]
- McCauley, D.J.; Pinsky, M.L.; Palumbi, S.R.; Estes, J.A.; Joyce, F.H.; Warner, R.R. Marine Defaunation: Animal Loss in the Global Ocean. Science 2015, 347, 1255641. [Google Scholar] [CrossRef]
- Degraer, S.; Carey, D.; Coolen, J.; Hutchison, Z.; Kerckhof, F.; Rumes, B.; Vanaverbeke, J. Offshore Wind Farm Artificial Reefs Affect Ecosystem Structure and Functioning: A Synthesis. Oceanography 2020, 33, 48–57. [Google Scholar] [CrossRef]
- Hutchison, Z.; Bartley, M.; Degraer, S.; English, P.; Khan, A.; Livermore, J.; Rumes, B.; King, J. Offshore Wind Energy and Benthic Habitat Changes: Lessons from Block Island Wind Farm. Oceanography 2020, 33, 58–69. [Google Scholar] [CrossRef]
- Goff, J.A.; Jenkins, C.J.; Jeffress Williams, S. Seabed Mapping and Characterization of Sediment Variability Using the usSEABED Data Base. Cont. Shelf Res. 2008, 28, 614–633. [Google Scholar] [CrossRef]
- Misiuk, B.; Brown, C.J. Benthic Habitat Mapping: A Review of Three Decades of Mapping Biological Patterns on the Seafloor. Estuar. Coast. Shelf Sci. 2024, 296, 108599. [Google Scholar] [CrossRef]
- Tuit, C.B.; Wait, A.D. A Review of Marine Sediment Sampling Methods. Environ. Forensics 2020, 21, 291–309. [Google Scholar] [CrossRef]
- Mayer, L.A. Frontiers in Seafloor Mapping and Visualization. Mar. Geophys. Res. 2006, 27, 7–17. [Google Scholar] [CrossRef]
- Brown, C.J.; Smith, S.J.; Lawton, P.; Anderson, J.T. Benthic Habitat Mapping: A Review of Progress towards Improved Understanding of the Spatial Ecology of the Seafloor Using Acoustic Techniques. Estuar. Coast. Shelf Sci. 2011, 92, 502–520. [Google Scholar] [CrossRef]
- Khomsin, M.; Pratomo, D.G.; Suntoyo. The Development of Seabed Sediment Mapping Methods: The Opportunity Application in the Coastal Waters. IOP Conf. Ser. Earth Environ. Sci. 2021, 731, 012039. [Google Scholar] [CrossRef]
- Dartnell, P.; Gardner, J.V. Predicting Seafloor Facies from Multibeam Bathymetry and Backscatter Data. Photogramm. Eng. Remote Sens. 2004, 70, 1081–1091. [Google Scholar] [CrossRef]
- Elvenes, S.; Dolan, M.F.J.; Buhl-Mortensen, P.; Bellec, V.K. An Evaluation of Compiled Single-Beam Bathymetry Data as a Basis for Regional Sediment and Biotope Mapping. ICES J. Mar. Sci. 2014, 71, 867–881. [Google Scholar] [CrossRef]
- Lamarche, G.; Lurton, X. Recommendations for Improved and Coherent Acquisition and Processing of Backscatter Data from Seafloor-Mapping Sonars. Mar. Geophys. Res. 2018, 39, 5–22. [Google Scholar] [CrossRef]
- Misiuk, B.; Diesing, M.; Aitken, A.; Brown, C.J.; Edinger, E.N.; Bell, T. A Spatially Explicit Comparison of Quantitative and Categorical Modelling Approaches for Mapping Seabed Sediments Using Random Forest. Geosciences 2019, 9, 254. [Google Scholar] [CrossRef]
- Nimon, K.F. Statistical Assumptions of Substantive Analyses Across the General Linear Model: A Mini-Review. Front. Psychol. 2012, 3, 322. [Google Scholar] [CrossRef] [PubMed]
- Olden, J.D.; Lawler, J.J.; Poff, N.L. Machine Learning Methods Without Tears: A Primer for Ecologists. Q. Rev. Biol. 2008, 83, 171–193. [Google Scholar] [CrossRef] [PubMed]
- Poti, M.; Kinlan, B.; Menza, C. Chapter 3: Surficial Sediments. In A Biogeographic Assessment of Seabirds, Deep Sea Corals and Ocean Habitats of the New York Bight: Science to Support Offshore Spatial Planning; Menza, C., Kinlan, B., Dorfman, D., Poti, M., Eds.; NOAA Technical Memorandum NOS NCCOS 141; NOAA/National Centers for Coastal Ocean Science: Silver Spring, MD, USA, 2012; pp. 33–58. [Google Scholar]
- Xu, W.; Cheng, H.; Zheng, S.; Hu, H. Predicted Mapping of Seabed Sediments Based on MBES Backscatter and Bathymetric Data: A Case Study in Joseph Bonaparte Gulf, Australia, Using Random Forest Decision Tree. J. Mar. Sci. Eng. 2021, 9, 947. [Google Scholar] [CrossRef]
- Pillay, T.; Cawthra, H.C.; Lombard, A.T.; Sink, K. Benthic Habitat Mapping from a Machine Learning Perspective on the Cape St Francis Inner Shelf, Eastern Cape, South Africa. Mar. Geol. 2021, 440, 106595. [Google Scholar] [CrossRef]
- Sklar, E.; Bushuev, E.; Misiuk, B.; Labbé-Morissette, G.; Brown, C.J. Seafloor Morphology and Substrate Mapping in the Gulf of St Lawrence, Canada, Using Machine Learning Approaches. Front. Mar. Sci. 2024, 11, 1306396. [Google Scholar] [CrossRef]
- Wölfl, A.-C.; Snaith, H.; Amirebrahimi, S.; Devey, C.W.; Dorschel, B.; Ferrini, V.; Huvenne, V.A.I.; Jakobsson, M.; Jencks, J.; Johnston, G.; et al. Seafloor Mapping—The Challenge of a Truly Global Ocean Bathymetry. Front. Mar. Sci. 2019, 6, 283. [Google Scholar] [CrossRef]
- Mayer, L.; Jakobsson, M.; Allen, G.; Dorschel, B.; Falconer, R.; Ferrini, V.; Lamarche, G.; Snaith, H.; Weatherall, P. The Nippon Foundation—GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences 2018, 8, 63. [Google Scholar] [CrossRef]
- Jackson, S.J.; Barbrow, S. Standards and/as Innovation: Protocols, Creativity, and Interactive Systems Development in Ecology. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 18–23 April 2015; ACM: New York, NY, USA, 2015; pp. 1769–1778. [Google Scholar]
- Stevenson, D.; Chiarella, L.; Stephen, D.; Reid, R.; Wilhelm, K.; McCarthy, J.; Pentony, M. Characterization of the Fishing Practices and Marine Benthic Ecosystems of the Northeast U.S. Shelf, and an Evaluation of the Potential Effects of Fishing on Essential Fish Habitat; NOAA Technical Memorandum NMFS-NE-181; NOAA/National Centers for Coastal Ocean Science: Silver Spring, MD, USA, 2004.
- Wahle, R.; Steneck, R. Recruitment Habitats and Nursery Grounds of the American Lobster Homarus Americanus: A Demographic Bottleneck? Mar. Ecol. Prog. Ser. 1991, 69, 231–243. [Google Scholar] [CrossRef]
- Griswold, C.A.; Prezioso, J. In Situ Observations on Reproductive Behavior of the Long-Finned Squid, Loligo Pealei. Fish. Bull. 1981, 78, 945–947. [Google Scholar]
- Roper, C.F.E.; Sweeney, M.J.; Nauen, C.E. FAO Species Catalogue: Vol. 3. Cephalopods of the World. An Annotated and Illustrated Catalogue of Species of Interest to Fisheries; FAO Fisheries Synopsis No. 125; FAO: Rome, Italy, 1984; Volume 3. [Google Scholar]
- Fahay, M.P.; Berrien, P.L.; Johnson, D.L.; Morse, W.W. Essential Fish Habitat Source Document: Atlantic Cod, Gadus Morhua, Life History and Habitat Characteristics; NOAA/National Marine Fisheries Service, Northeast Fisheries Science Center: Woods Hole, MA, USA, 1999.
- Ward, L.; Johnson, P.; Bogonko, M.; McAvoy, Z.; Morrison, R. Northeast Bathymetry and Backscatter Compilation: Western Gulf of Maine, Southern New England, and Long Island Sound; Department of Interior, Bureau of Ocean Energy Management, Marine Minerals Division: Sterling, VA, USA, 2021.
- Federal Geographic Data Committee (FGDC). Coastal and Marine Ecological Classification Standard; FGDC-STD-018-2012; Federal Geographic Data Committee (FGDC): Reston, VA, USA, 2012.
- Wentworth, C. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Walbridge, S.; Slocum, N.; Pobuda, M.; Wright, D. Unified Geomorphological Analysis Workflows with Benthic Terrain Modeler. Geosciences 2018, 8, 94. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 30 March 2022).
- Hijmans, R.; Phillips, S.; Leathwick, J.; Elith, J. Dismo: Species Distribution Modeling. R Package Version 1.3.5. Available online: https://cran.r-project.org/web/packages/dismo/index.html (accessed on 29 May 2024).
- Urbanek, S. RJava: Low-Level R to Java Interface. R Package Version 1.0.6. Available online: https://cran.r-project.org/web/packages/rJava/index.html (accessed on 29 May 2024).
- Elith, J.; Graham, C.; Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.; Huettmann, F.; Leathwick, J.; Lehmann, A.; et al. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Howell, K.L.; Holt, R.; Endrino, I.P.; Stewart, H. When the Species Is Also a Habitat: Comparing the Predictively Modelled Distributions of Lophelia Pertusa and the Reef Habitat It Forms. Biol. Conserv. 2011, 144, 2656–2665. [Google Scholar] [CrossRef]
- Tittensor, D.; Baco, A.; Brewin, P.; Clark, M.; Consalvey, M.; Hall-Spencer, J.; Rowden, A.; Schlacher, T.; Stocks, K.; Rogers, A. Predicting Global Habitat Suitability for Stony Corals on Seamounts. J. Biogeogr. 2009, 36, 1111–1128. [Google Scholar] [CrossRef]
- Melo, F. Area under the ROC Curve. In Encyclopedia of Systems Biology; Springer: New York, NY, USA, 2013; pp. 38–39. [Google Scholar]
- Mandrekar, J. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Massachusetts Office of Coastal Zone Management (MassCZM). Sediment and Geology Workgroup Report; Massachusetts Office of Coastal Zone Management (MassCZM): Boston, MA, USA, 2020.
- Poppe, L.J.; Danforth, W.W.; McMullen, K.Y.; Blankenship, M.A.; Glomb, K.A.; Wright, D.B.; Smith, S.M. Sea-Floor Character and Sedimentary Processes of Block Island Sound, Offshore Rhode Island (ver.1.1, August 2014): U.S. Geological Survey Open-File Report 2012–1005. 2012. Available online: http://pubs.usgs.gov/of/2012/1005/ (accessed on 31 May 2024).
- Anderson, M.; Green, J.; Morse, D.; Shumway, D.; Clark, M. Benthic Habitats of the Northwest Atlantic. In The Northwest Atlantic Marine Ecoregional Assessment: Species, Habitats and Ecosystems. Phase One; Greene, J., Anderson, M., Odell, J., Steinberg, N., Eds.; The Nature Conservancy, Eastern U.S. Division: Boston, MA, USA, 2010; pp. 3-1–3-61. [Google Scholar]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample Selection Bias and Presence-only Distribution Models: Implications for Background and Pseudo-absence Data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef]
- Lurton, X.; Lamarche, G. Backscatter Measurements by Seafloor-Mapping Sonars. Guidelines and Recommendations. 2015. 200p. Available online: https://zenodo.org/records/10089261 (accessed on 30 March 2024).
- Lecours, V.; Devillers, R.; Schneider, D.; Lucieer, V.; Brown, C.; Edinger, E. Spatial Scale and Geographic Context in Benthic Habitat Mapping: Review and Future Directions. Mar. Ecol. Prog. Ser. 2015, 535, 259–284. [Google Scholar] [CrossRef]
- Diesing, M.; Green, S.L.; Stephens, D.; Lark, R.M.; Stewart, H.A.; Dove, D. Mapping Seabed Sediments: Comparison of Manual, Geostatistical, Object-Based Image Analysis and Machine Learning Approaches. Cont. Shelf Res. 2014, 84, 107–119. [Google Scholar] [CrossRef]
- Lobo, J.M. More Complex Distribution Models or More Representative Data? Biodivers. Inform. 2008, 5, 14–19. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Lobo, J.M.; Hortal, J. Not as Good as They Seem: The Importance of Concepts in Species Distribution Modelling. Divers. Distrib. 2008, 14, 885–890. [Google Scholar] [CrossRef]
- Misiuk, B.; Lecours, V.; Bell, T. A Multiscale Approach to Mapping Seabed Sediments. PLoS ONE 2018, 13, e0193647. [Google Scholar] [CrossRef] [PubMed]
- Gormley, K.S.G.; Porter, J.S.; Bell, M.C.; Hull, A.D.; Sanderson, W.G. Predictive Habitat Modelling as a Tool to Assess the Change in Distribution and Extent of an OSPAR Priority Habitat under an Increased Ocean Temperature Scenario: Consequences for Marine Protected Area Networks and Management. PLoS ONE 2013, 8, e68263. [Google Scholar] [CrossRef]
- Huang, Z.; Brooke, B.P.; Harris, P.T. A New Approach to Mapping Marine Benthic Habitats Using Physical Environmental Data. Cont. Shelf Res. 2011, 31, S4–S16. [Google Scholar] [CrossRef]
- Huang, Z.; Siwabessy, J.; Nichol, S.L.; Brooke, B.P. Predictive Mapping of Seabed Substrata Using High-Resolution Multibeam Sonar Data: A Case Study from a Shelf with Complex Geomorphology. Mar. Geol. 2014, 357, 37–52. [Google Scholar] [CrossRef]
- Calvert, J.; Strong, J.A.; Service, M.; McGonigle, C.; Quinn, R. An Evaluation of Supervised and Unsupervised Classification Techniques for Marine Benthic Habitat Mapping Using Multibeam Echosounder Data. ICES J. Mar. Sci. 2015, 72, 1498–1513. [Google Scholar] [CrossRef]
- Diesing, M.; Mitchell, P.J.; O’Keeffe, E.; Gavazzi, G.O.A.M.; Bas, T. Le Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed. Remote Sens. 2020, 12, 3398. [Google Scholar] [CrossRef]
- Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The Importance of Correcting for Sampling Bias in MaxEnt Species Distribution Models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.; Valavi, R.; Abegg, M.; Bruce, C.; Ford, A.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Lohmann, L.; et al. Presence-Only and Presence-Absence Data for Comparing Species Distribution Modeling Methods. Biodivers. Inform. 2020, 15, 69–80. [Google Scholar] [CrossRef]
- Bureau of Ocean Energy Management (BOEM), Office of Renewable Energy Programs. Guidelines for Providing Geophysical, Geotechnical, and Geohazard Information Pursuant to 30 CFR Part 585; BOEM: Washington, DC, USA, 2020.
- Bureau of Ocean Energy Management (BOEM), Office of Renewable Energy Programs. Guidelines for Providing Benthic Habitat Survey Information for Renewable Energy Development on the Atlantic Outer Continental Shelf Pursuant to 30 CFR Part 585; BOEM: Washington, DC, USA, 2019.
- National Marine Fisheries Service (NOAA Fisheries), Greater Atlantic Regional Fisheries Office, Habitat Conservation and Ecosystem Services Division. Recommendations for Mapping Fish Habitat; NOAA/National Marine Fisheries Service, Greater Atlantic Regional Fisheries Office: Gloucester, MA, USA, 2021.
- Regional Wildlife Science Collaborative for Offshore Wind (RWSC). Integrated Science Plan for Offshore Wind, Wildlife, and Habitat in U.S. Atlantic Waters. Version 1.0. Available online: https://rwsc.org/science-plan (accessed on 31 May 2024).
Wentworth Scale | CMECS 1 | ||||
---|---|---|---|---|---|
Phi Size (Φ) | Size Range (mm) | Size Class | Substrate Group (Substrate Subgroup) 2 | Grain Size (mm) | Class Sizes (phi) |
Gravel 3 | 2 to <4096 | −1 to <−12 | |||
<−8 | >256 | Boulder | (Boulder) | 256 to <4096 | −8 to <−12 |
−7 to −8 | 128 to 256 | Cobble | (Cobble) | 64 to <256 | −6 to <−8 |
−6 to −7 | 64 to 128 | Cobble | |||
−5 to −6 | 32 to 64 | Very coarse pebble | (Pebble) | 4 to <64 | −1 to <−6 |
−4 to −5 | 16 to 32 | Coarse pebble | |||
−3 to −4 | 8 to 16 | Medium pebble | |||
−2 to −3 | 4 to 8 | Fine pebble | |||
−1 to −2 | 2 to 4 | Very fine pebble | (Granule) | 2 to <4 | −1 to <−2 |
Sand | 0.0625 to <2 | 4 to <−1 | |||
0 to −1 | 1 to 2 | Very coarse sand | (Very Coarse Sand) | 1 to <2 | 0 to <−1 |
1 to 0 | 0.5 to 1 | Coarse sand | (Coarse Sand) | 0.5 to <1 | 1 to <0 |
2 to 1 | 0.25 to 0.5 | Medium sand | (Medium Sand) | 0.25 to <0.5 | 2 to <1 |
3 to 2 | 0.125 to 0.25 | Fine sand | (Fine Sand) | 0.125 to <0.25 | 3 to <2 |
4 to 3 | 0.0625 to 0.125 | Very find sand | (Very Fine Sand) | 0.0625 to <0.125 | 4 to <3 |
>4 | <0.0625 | Silt/clay | Mud | <0.0625 | >4 |
(Silt) | 0.004 to <0.0625 | >4 to 8 | |||
(Clay) | <0.004 | >8 |
Variables | Abbreviation | Definition |
---|---|---|
Depth (m) * | Depth | Water depth in meters |
Geodesic Slope * | Slope | Measure of gradient |
Aspect—N/S * | AspectN | Gradient in north/south direction |
Aspect—E/W * | AspectE | Gradient in east/west direction |
Curvature, Profile * | Curv-Profile | Measure of ‘exposure’; parallel direction, benthic flow |
Curvature, Planar * | Curve-Plan | Measure of ‘exposure’; perpendicular direction, benthic convergence |
Bathymetric Position Index, Fine (8, 10) | BPI 8–10 | Measure of relative surrounding elevation, fine (peaks+, depressions−, plateau 0) |
Bathymetric Position Index, Broad (8, 25) * | BPI 8–25 | Measure of relative surrounding elevation, broad (peaks+, depressions−, plateau 0) |
Bathymetric Position Index, Broad (8, 75) | BPI 8–75 | Measure of relative surrounding elevation, broad (peaks+, depressions−, plateau 0) |
Region | ||
---|---|---|
Sediment Class | Nearshore | Offshore |
Gravel | 0.46 * | 0.49 * |
Gravel Mixes | 0.74 | 0.67 |
Gravelly | 0.81 | 0.71 |
Sand | 0.45 * | 0.40 * |
Sand–Mud Mix | 0.39 * | 0.76 |
Overall | Nearshore | Offshore | ||||
---|---|---|---|---|---|---|
Sediment Class | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) |
Gravel | 6.67 | 0.21 | 6.67 | 0.36 | 0 | 0 |
Gravel Mixes | 3.16 | 0.10 | 3.14 | 0.17 | 0.02 | 0 |
Gravel and Mixed Gravel Classes | 274.17 | 8.65 | 274.15 | 14.87 | 0.01 | 0 |
Gravelly | 54.49 | 1.72 | 52.25 | 2.83 | 2.24 | 0.17 |
Mixed Gravel Classes | 4.58 | 0.14 | 4.55 | 0.25 | 0.03 | 0 |
Sand | 94.22 | 2.97 | 94.22 | 5.11 | 0 | 0 |
Sand–Mud Mix | 57.01 | 1.80 | 56.32 | 3.05 | 0.69 | 0.05 |
Sand–Mud Mix with Gravel | 320.85 | 10.12 | 320.85 | 17.40 | 0 | 0 |
Sand–Mud Mix and Mixed Gravel Classes | 69.14 | 2.18 | 68.97 | 3.74 | 0.17 | 0.01 |
Not Classified | 2284.73 | 72.10 | 962.38 | 52.20 | 1322.34 | 99.76 |
Percent Contribution | ||||||
---|---|---|---|---|---|---|
Variable | Gravel Mixes | Gravel | Gravelly | Sand | Sand–Mud Mix | Mean |
Depth (m) | 68.2 | 67.9 | 77.9 | 94.4 | 94 | 80.48 |
Geodesic Slope | 28.8 | 31.8 | 11.8 | 5.2 | 5 | 16.52 |
Aspect—N/S | 1.2 | 0.2 | 8 | 0.3 | 0.6 | 2.06 |
Aspect—E/W | 1.3 | 0.1 | 1.9 | 0.1 | 0.1 | 0.70 |
Curvature, Profile | 0 | 0 | 0 | 0 | 0 | 0.00 |
Curvature, Planar | 0.4 | 0 | 0 | 0 | 0 | 0.08 |
Bathymetric Position Index (8, 25) | 0 | 0 | 0.3 | 0 | 0.3 | 0.12 |
Metrics | |||||
---|---|---|---|---|---|
Sediment Class | AUC | Accuracy | Sensitivity | Specificity | F1 |
Gravel | 0.85 | 0.66 | 0.73 | 0.63 | 0.61 |
Gravel Mixes | 0.82 | 0.59 | 0.77 | 0.56 | 0.40 |
Gravelly | 0.74 | 0.55 | 0.72 | 0.53 | 0.28 |
Sand | 0.82 | 0.65 | 0.66 | 0.64 | 0.73 |
Sand–Mud Mix | 0.77 | 0.64 | 0.66 | 0.60 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capizzano, C.W.; Rhoads, A.C.; Croteau, J.A.; Taylor, B.G.; Guarinello, M.L.; Shumchenia, E.J. Mapping Seafloor Sediment Distributions Using Public Geospatial Data and Machine Learning to Support Regional Offshore Renewable Energy Development. Geosciences 2024, 14, 186. https://doi.org/10.3390/geosciences14070186
Capizzano CW, Rhoads AC, Croteau JA, Taylor BG, Guarinello ML, Shumchenia EJ. Mapping Seafloor Sediment Distributions Using Public Geospatial Data and Machine Learning to Support Regional Offshore Renewable Energy Development. Geosciences. 2024; 14(7):186. https://doi.org/10.3390/geosciences14070186
Chicago/Turabian StyleCapizzano, Connor W., Alexandria C. Rhoads, Jennifer A. Croteau, Benjamin G. Taylor, Marisa L. Guarinello, and Emily J. Shumchenia. 2024. "Mapping Seafloor Sediment Distributions Using Public Geospatial Data and Machine Learning to Support Regional Offshore Renewable Energy Development" Geosciences 14, no. 7: 186. https://doi.org/10.3390/geosciences14070186
APA StyleCapizzano, C. W., Rhoads, A. C., Croteau, J. A., Taylor, B. G., Guarinello, M. L., & Shumchenia, E. J. (2024). Mapping Seafloor Sediment Distributions Using Public Geospatial Data and Machine Learning to Support Regional Offshore Renewable Energy Development. Geosciences, 14(7), 186. https://doi.org/10.3390/geosciences14070186