Numerical and Experimental Seismic Characterization of Byblos Site in Lebanon
Abstract
:1. Introduction
2. Lebanon’s Seismicity
3. Byblos Case Study
4. Location and Acquisition Characteristics of the Geophysical Tests
5. Field Data Analyses and Results
5.1. Multichannel Analysis of Surface Waves—MASW
5.2. The 2D Seismic Array
5.3. Combination of Active and Passive Extracted Dispersion Curves
5.4. Experimental Horizontal-to-Vertical Spectral Ratio of Microtremors (HVSR) or (H/V)
5.4.1. HVSR Results
5.4.2. Results Comparison
5.5. Numerical HVSR or H/V Curve
6. Discussion
7. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maleska, T.; Beben, D.; Vaslestad, J.; Sergei Sukuvara, D. Application of EPS Geofoam below Soil–Steel Composite Bridge Subjected to Seismic Excitations. J. Geotech. Geoenviron. Eng. 2024, 150, 04024115. [Google Scholar] [CrossRef]
- Roohi, M.; Ghasemi, S.; Sediek, O.; Jeon, H.; van de Lindt, J.W.; Shields, M.; Hamideh, S.; Cutler, H. Multi-disciplinary seismic resilience modeling for developing mitigation policies and recovery planning. Resilient Cities Struct. 2024, 3, 66–84. [Google Scholar] [CrossRef]
- Sediek, O.A.; Roohi, M.; van de Lindt, J.W. A Decision Support Methodology for Seismic Design Requirements of Buildings to Achieve Community-Level Resilience Metrics. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2024, 10, 04024038. [Google Scholar] [CrossRef]
- Sediek, O.A.; Roohi, M.; van de Lindt, J.W. A genetic algorithm framework for seismic retrofit of building portfolios to enhance community resilience. Int. J. Disaster Risk Reduct. 2024, 108, 104570. [Google Scholar] [CrossRef]
- Amini, M.; Sanderson, D.R.; Cox, D.T.; Barbosa, A.R.; Rosenheim, N. Methodology to incorporate seismic damage and debris to evaluate strategies to reduce life safety risk for multi-hazard earthquake and tsunami. Nat. Hazards 2024, 120, 9187–9222. [Google Scholar] [CrossRef]
- Makhoul, N.; Roohi, M.; van de Lindt, J.W.; Sousa, H.; Santos, L.O.; Argyroudis, S.; Barbosa, A.; Derras, B.; Gardoni, P.; Lee, J.S.; et al. Seismic Resilience of Interdependent Built Environment for Integrating Structural Health Monitoring and Emerging Technologies in Decision-Making. Struct. Eng. Int. 2024, 34, 19–33. [Google Scholar] [CrossRef]
- Gidaris, I.; Padgett, J.E.; Misra, S. Probabilistic fragility and resilience assessment and sensitivity analysis of bridges incorporating aftershock effects. Sustain. Resilient Infrastruct. 2022, 7, 17–39. [Google Scholar] [CrossRef]
- van de Lindt, J.W.; Kruse, J.; Cox, D.T.; Gardoni, P.; Lee, J.S.; Padgett, J.; McAllister, T.P.; Barbosa, A.; Cutler, H.; Van Zandt, S.; et al. The interdependent networked community resilience modeling environment (IN-CORE). Resilient Cities Struct. 2023, 2, 57–66. [Google Scholar] [CrossRef]
- Li, S.-Q.; Gardoni, P. Optimized seismic hazard and structural vulnerability model considering macroseismic intensity measures. Reliab. Eng. Syst. Saf. 2024, 252, 110460. [Google Scholar] [CrossRef]
- Li, S.-Q.; Gardoni, P. Seismic loss assessment for regional building portfolios considering empirical seismic vulnerability functions. Bull. Earthq. Eng. 2024, 22, 487–517. [Google Scholar] [CrossRef]
- Guo, H.; Feng, R.; Dong, Y.; Gardoni, P. Life-cycle seismic resilience prediction of sea-crossing bridge piers exposed to chloride-induced corrosion in marine environments. Struct. Saf. 2024, 111, 102523. [Google Scholar] [CrossRef]
- Tabandeh, A.; Sharma, N.; Gardoni, P. Seismic risk and resilience analysis of networked industrial facilities. Bull. Earthq. Eng. 2024, 22, 255–276. [Google Scholar] [CrossRef]
- Contento, A.; Briseghella, B.; Di Egidio, A.; Aloisio, A.; Tsang, H.-H.; Gardoni, P. Effectiveness of geotechnical seismic isolation for post-tensioned rocking piers. In Bridge Maintenance, Safety, Management, Digitalization and Sustainability; CRC Press: London, UK, 2024; pp. 4052–4059. [Google Scholar] [CrossRef]
- Pirazzoli, P.A.; Laborel, J.; Stiros, S.C. Earthquake clustering in the Eastern Mediterranean during historical times. J. Geophys. Res. Solid Earth 1996, 101, 6083–6097. [Google Scholar] [CrossRef]
- Maufroy, E.; Cruz-Atienza, V.M.; Gaffet, S. A Robust Method for Assessing 3-D Topographic Site Effects: A Case Study at the LSBB Underground Laboratory, France. Earthq. Spectra 2012, 28, 1097–1115. [Google Scholar] [CrossRef]
- Ozcep, F.; Karabulut, S.; Özel, O.; Ozcep, T.; Imre, N.; Zarif, H. Liquefaction-induced settlement, site effects and damage in the vicinity of Yalova City during the 1999 Izmit earthquake, Turkey. J. Earth Syst. Sci. 2014, 123, 73–89. [Google Scholar] [CrossRef]
- Anderson, J.G.; Bodin, P.; Brune, J.N.; Prince, J.; Singh, S.K.; Quaas, R.; Onate, M. Strong Ground Motion from the Michoacan, Mexico, Earthquake. Science 1986, 233, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Levret, A.; Loup, C.; Goula, X. The Provence Earthquake of 11th June 1909 (France). A New Assessment of near Field Effects. Mod. Approaches Geophys. 1988, 383–399. [Google Scholar]
- Bard, P.-Y.; Bouchon, M. The two-dimensional resonance of sediment-filled valleys. Bull. Seismol. Soc. Am. 1985, 75, 519–541. [Google Scholar] [CrossRef]
- Regnier, J.; Bonilla, L.F.; Bertrand, E.; Semblat, J.-F. Influence of the VS Profiles beyond 30 m Depth on Linear Site Effects: Assessment from the KiK-net Data. Bull. Seismol. Soc. Am. 2014, 104, 2337–2348. [Google Scholar] [CrossRef]
- Çelebi, M. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake. Bull. Seismol. Soc. Am. 1987, 77, 1147–1167. [Google Scholar] [CrossRef]
- Campillo, M.; Gariel, J.C.; Aki, K.; Sánchez-Sesma, F.J. Destructive strong ground motion in Mexico city: Source, path, and site effects during great 1985 Michoacán earthquake. Bull. Seismol. Soc. Am. 1989, 79, 1718–1735. [Google Scholar] [CrossRef]
- Bard, P.-Y.; Campillo, M.; Chávez-Garcia, F.J.; Sánchez-Sesma, F. The Mexico Earthquake of September 19, 1985—A Theoretical Investigation of Large- and Small-scale Amplification Effects in the Mexico City Valley. Earthq. Spectra 1988, 4, 609–633. [Google Scholar] [CrossRef]
- Brambati, A.; Faccioli, E.; Carulli, G.B.; Cucchi, F.; Onofri, R.; Stefanini, S.; Ulcigrai, F. Studio di Microzonazione Sismica Dell’area di Tarcento (Friuli); Regione Autonoma Friuli-Venezia Giulia, Assessorato dei Lavori Pubblici, Servizio Calamità Naturali: Trieste, Italy, 1980. (In Italian) [Google Scholar]
- Davis, L.L.; West, L.R. Observed effects of topography on ground motion. Bull. Seismol. Soc. Am. 1973, 63, 283–298. [Google Scholar] [CrossRef]
- Chávez-García, F.J.; Sánchez, L.R.; Hatzfeld, D. Topographic site effects and HVSR. A comparison between observations and theory. Bull. Seismol. Soc. Am. 1996, 86, 1559–1573. [Google Scholar] [CrossRef]
- Bard, P.-Y. Diffracted waves and displacement field over two-dimensional elevated topographies. Geophys. J. Int. 1982, 71, 731–760. [Google Scholar] [CrossRef]
- Baroux, E.; Pino, N.A.; Valensise, G.; Scotti, O.; Cushing, M.E. Source parameters of the 11 June 1909, Lambesc (Provence, southeastern France) earthquake: A reappraisal based on macroseismic, seismological, and geodetic observations. J. Geophys. Res. Solid Earth 2003, 108, 2454. [Google Scholar] [CrossRef]
- Scuderi, L.A.; Onyango, E.A.; Nagle-McNaughton, T. A Remote Sensing and GIS Analysis of Rockfall Distributions from the 5 July 2019 Ridgecrest (MW7.1) and 24 June 2020 Owens Lake (MW5.8) Earthquakes. Remote Sens. 2023, 15, 1962. [Google Scholar] [CrossRef]
- Boore, D.M. The effect of simple topography on seismic waves: Implications for the accelerations recorded at Pacoima Dam, San Fernando Valley, California. Bull. Seismol. Soc. Am. 1973, 63, 1603–1609. [Google Scholar] [CrossRef]
- Kawase, H.; Aki, K. Topography Effect at the Critical SV-Wave Incidence: Possible Explanation of Damage Pattern by the Whittier Narrows, California, Earthquake of 1 October 1987. Bull. Seismol. Soc. Am. 1990, 80, 1–22. [Google Scholar] [CrossRef]
- Ashford, S.A.; Sitar, N. Seismic Response of Steep Natural Slopes; Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 1994. [Google Scholar]
- Spudich, P.; Hellweg, M.; Lee, W.H.K. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions. Bull. Seismol. Soc. Am. 1996, 86, S193–S208. [Google Scholar] [CrossRef]
- Borcherdt, R.D.; Glassmoyer, G. On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Francisco Bay region, California. Bull. Seismol. Soc. Am. 1992, 82, 603–641. [Google Scholar] [CrossRef]
- Ishimura, D.; Toda, S.; Mukoyama, S.; Homma, S.; Yamaguchi, K.; Takahashi, N. 3D Surface Displacement and Surface Ruptures Associated with the 2014 Mw 6.2 Nagano Earthquake Using Differential Lidar. Bull. Seismol. Soc. Am. 2019, 109, 780–796. [Google Scholar] [CrossRef]
- Murphy, W. The Role of Topographic Amplification on the Initiation of Rock Slopes Failures During Earthquakes. In Landslides from Massive Rock Slope Failure; Springer: Dordrecht, The Netherlands, 2006; pp. 139–154. [Google Scholar]
- Lee, S.-J.; Komatitsch, D.; Huang, B.-S.; Tromp, J. Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan. Bull. Seismol. Soc. Am. 2009, 99, 314–325. [Google Scholar] [CrossRef]
- Abou-Jaoude, R.; Makhoul, N.; Fleurisson, J.-A.; Gesret, A. Review of Site Effect Modeling Methods Considering Experimental Geophysical Data. In Proceedings of the EURODYN 2020 XI International Conference on Structural Dynamics, Athens, Greece, 23–26 November 2020; pp. 3274–3290. [Google Scholar] [CrossRef]
- Elnashai, A.S.-E.; El-Khoury, R.R. Earthquake Hazard in Lebanon; World Scientific Publishing Co.: Singapore, 2004. [Google Scholar] [CrossRef]
- Elias, A.; Tapponnier, P.; Singh, S.C.; King, G.C.P.; Briais, A.; Daëron, M.; Carton, H.; Sursock, A.; Jacques, E.; Jomaa, R.; et al. Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake. Geology 2007, 35, 755. [Google Scholar] [CrossRef]
- Jabbour, E.; Mouawad, Y.; Abou Khater, D.; Helou, M. Lessons from the February 2023 Turkish Earthquake. Cureus 2024, 16, e71042. [Google Scholar] [CrossRef]
- Dulger, M.; Kilic, H. Investigation of Earthquake-Induced Pipe Damage in Liquefiable Soils. Appl. Sci. 2024, 14, 4599. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; Marchetti, D. Study of the Preparation Phase of Turkey’s Powerful Earthquake (6 February 2023) by a Geophysical Multi-Parametric Fuzzy Inference System. Remote Sens. 2023, 15, 2224. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Christopoulos, S.-R.G.; Varotsos, P.K. Identifying the Occurrence Time of the Destructive Kahramanmaraş-Gazientep Earthquake of Magnitude M7.8 in Turkey on 6 February 2023. Appl. Sci. 2024, 14, 1215. [Google Scholar] [CrossRef]
- Brax, M.; Albini, P.; Beauval, C.; Jomaa, R.; Sursock, A. An Earthquake Catalog for the Lebanese Region. Seismol. Res. Lett. 2019, 90, 2236–2249. [Google Scholar] [CrossRef]
- Makhoul, N.; Navarro, C.; Lee, J.; Abi-Youness, A. Assessment of seismic damage to buildings in resilient Byblos City. Int. J. Disaster Risk Reduct. 2016, 18, 12–22. [Google Scholar] [CrossRef]
- Huijer, C.; Harajli, M.; Sadek, S. Re-evaluation and updating of the seismic hazard of Lebanon. J. Seismol. 2016, 20, 233–250. [Google Scholar] [CrossRef]
- El Kadri, S.; Beauval, C.; Brax, M.; Bard, P.Y.; Vergnolle, M.; Klinger, Y. A fault-based probabilistic seismic hazard model for Lebanon, controlling parameters and hazard levels. Bull. Earthq. Eng. 2023, 21, 3163–3197. [Google Scholar] [CrossRef]
- Makhoul, N.; Mikhael, E. Earthquake Damage Estimations of Byblos Potable Water Network. In Proceedings of the 19th IABSE Congress Stockholm: Challenges in Design and Construction of an Innovative and Sustainable Built Environment, IABSE, Stockholm, Sweden, 21–23 September 2016. [Google Scholar]
- Makhoul, N.; Navarro, C.; Lee, J. Earthquake damage estimations of Byblos potable water network. Nat. Hazards 2018, 93, 627–659. [Google Scholar] [CrossRef]
- Makhoul, N. Seismic loss estimation of Byblos City: A contribution to the ‘100 Resilient Cities’ strategy. In Proceedings of the 16th World Conference on Earthquake, 16WCEE, Thessaloniki, Greece, 18–21 June 2018. [Google Scholar]
- Makhoul, N.; Navarro, C.; Lee, J.S.; Gueguen, P. A comparative study of buried pipeline fragilities using the seismic damage to the Byblos wastewater network. Int. J. Disaster Risk Reduct. 2020, 51, 101775. [Google Scholar] [CrossRef]
- Makhoul, N.; Navarro, C.; Sung Lee, J. Seismic estimation of casualties and direct economic loss to Byblos city: A contribution to the ‘100 resilient cities’ strategy. Sustain. Resilient Infrastruct. 2022, 7, 201–221. [Google Scholar] [CrossRef]
- Salloum, N. Evaluation de la Variabilité Spatiale des Paramètres Géotechnique du sol à Partir de Mesures Géophysiques: Application à la Plaine Alluviale de Nahr-Beyrouth (Liban). Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, Université Libanaise, Beirut, Lebanon, 2015. Available online: https://theses.hal.science/tel-01279224/ (accessed on 12 January 2025).
- Brax, M.; Causse, M.; Bard, P.-Y. Ground motion prediction in Beirut: A multi-step procedure coupling empirical Green’s functions, ground motion prediction equations and instrumental transfer functions. Bull. Earthq. Eng. 2016, 14, 3317–3341. [Google Scholar] [CrossRef]
- Brax, M.; Bard, P.-Y.; Duval, A.-M.; Bertrand, E.; Rahhal, M.-E.; Jomaa, R.; Cornou, C.; Voisin, C.; Sursock, A. Towards a microzonation of the Greater Beirut area: An instrumental approach combining earthquake and ambient vibration recordings. Bull. Earthq. Eng. 2018, 16, 5735–5767. [Google Scholar] [CrossRef]
- Fayjaloun, R. Estimation of Near-Fault Strong Ground-Motion. Earth Sciences. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2018. [Google Scholar]
- Dunand, M. Byblos, Its History, Ruins and Legends; Librairie Adrien—Maisonneuve: Paris, France, 1973. [Google Scholar]
- Bourdeau, C. Effets de site et Mouvements de Versant en Zones Sismiques: Apport de la Modélisation Numérique. Ph.D. Thesis, École Nationale Supérieure des Mines de Paris, Paris, France, 2005. [Google Scholar]
- Zhang, Z. Dynamic Slope Stability and Geomorphological Site Effects: Numerical Simulations and Back Analysis. Ph.D. Thesis, Université Paris Sciences et Lettres, Paris, France, 2018. [Google Scholar]
- Reiter, L. Earthquake Hazard Analysis: Issues and insights; Columbia University Press: New York, NY, USA, 1990. [Google Scholar]
- Chatelain, J.; Guéguen, P.; Guillier, B.; Fréchet, J.; Bondoux, F.; Sarrault, J.; Sulpice, P.; Neuville, J. CityShark: A user-friendly instrument dedicated to ambient noise (microtremor) recording for site and building response studies. Seismol. Res. Lett. 2000, 71, 698–703. [Google Scholar] [CrossRef]
- Bard, P.-Y.; Acerra, C.; Gerardo, A.; Anastasios, A.; Kuvvet, A.; Riccardo, A.; Roberto, B.; Etienne, B.; Bruno, B.; Fabien, B.; et al. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation. Bull. Earthq. Eng. 2008, 6, 1–2. [Google Scholar] [CrossRef]
- Chatelain, J.-L.; Guillier, B.; Cara, F.; Duval, A.-M.; Atakan, K.; Bard, P.-Y. Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bull. Earthq. Eng. 2008, 6, 33–74. [Google Scholar] [CrossRef]
- Bard, P.-Y.; Cadet, H.; Endrun, B.; Hobiger, M.; Renalier, F.; Theodulidis, N.; Ohrnberger, M.; Fäh, D.; Sabetta, F.; Teves-Costa, P.; et al. From Non-invasive Site Characterization to Site Amplification: Recent Advances in the Use of Ambient Vibration Measurements. In Earthquake Engineering in Europe; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; pp. 105–123. [Google Scholar] [CrossRef]
- Foti, S.; Hollender, F.; Garofalo, F.; Albarello, D.; Asten, M.; Bard, P.-Y.; Comina, C.; Cornou, C.; Cox, B.; Di Giulio, G.; et al. Guidelines for the good practice of surface wave analysis: A product of the InterPACIFIC project. Bull. Earthq. Eng. 2018, 16, 2367–2420. [Google Scholar] [CrossRef]
- Cadet, H.; Bard, P.Y.; Duval, A.M. A New Proposal for Site Classification Based on Ambient Vibration Measurements and the Kiknet Strong Motion Data Set. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008; pp. 12–17. [Google Scholar]
- Lacoss, R.T.; Kelly, E.J.; Toksöz, M.N. Estimation of Seismic Noise Structure Using Arrays. Geophysics 1969, 34, 21–38. [Google Scholar] [CrossRef]
- Makhoul, N.; Harb, J. Dynamic properties of Byblos municipality building with soil-structure interaction using geophysical methods. Procedia Eng. 2017, 199, 206–211. [Google Scholar] [CrossRef]
- Konno, K.; Ohmachi, T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 1998, 88, 228–241. [Google Scholar] [CrossRef]
- Asten, M.W. Geological Control on the Three-Component Spectra of Rayleigh-Wave Microseisms. Bull. Seismol. Soc. Am. 1978, 68, 1623–1636. [Google Scholar] [CrossRef]
- Gutenberg, B. Microseisms in North America. Bull. Seismol. Soc. Am. 1931, 21, 1–24. [Google Scholar] [CrossRef]
- Gutenberg, B. The Amplitudes of Waves to be Expected in Seismic Prospecting. Geophysics 1936, 1, 252–256. [Google Scholar] [CrossRef]
- Guillier, B.; Cornou, C.; Kristek, J.; Moczo, P.; Bonnefoy-Claudet, S.; Bard, P.Y.; Fäh, D. Simulation of Seismic Ambient Vibrations: Does the H/V Provide Quantitative Information in 2D-3D Structures. In Proceedings of the Third International Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France, 30 August–1 September 2006. [Google Scholar]
- Uebayashi, H. Extrapolation of Irregular Subsurface Structures Using the Horizontal-to-Vertical Spectral Ratio of Long-Period Microtremors. Bull. Seismol. Soc. Am. 2003, 93, 570–582. [Google Scholar] [CrossRef]
- Castellaro, S.; Mulargia, F. The Effect of Velocity Inversions on H/V. Pure Appl. Geophys. 2009, 166, 567–592. [Google Scholar] [CrossRef]
- Lavergne, M. Méthodes Sismiques; Editions Technip: Paris, France, 1986. [Google Scholar]
Layer Number | Poisson’s Ratio | Vs Range m/s | Bottom Depth Range | Vs Variation | Visited Models | Minimum Misfit Value |
---|---|---|---|---|---|---|
Layer 1 | 0.2–0.5 | 200–1000 | 3.5–40 | Uniform | 20,107 | 0.88 |
Layer 2 | 0.2–0.5 | 200–1000 | 3.5–40 | Uniform | ||
Layer 3 | 0.2–0.5 | 200–1500 | 3.5–40 | Uniform | ||
Half space | 0.2–0.5 | 1000–3500 | ----- | Uniform |
Layer Number | Poisson’s Ratio | Vs Range m/s | Bottom Depth Range | Vs Variation | Visited Models | Minimum Misfit Value |
---|---|---|---|---|---|---|
Layer 1 | 0.2–0.5 | 50–3500 | 1.5–10 | Uniform | 50,107 | 0.32 |
Layer 2 | 0.2–0.5 | 50–3500 | 1.5–20 | Uniform | ||
Layer 3 | 0.2–0.5 | 50–3500 | 10–30 | Uniform | ||
Layer 4 | 0.2–0.5 | 50–3500 | 10–50 | Uniform | ||
Half space | 0.2–0.5 | 1000–3500 | ----- | Uniform |
Materials | E × 106 (Pa) | ρ (kg/m3) | ϑ | Vs (m/s) |
---|---|---|---|---|
Material 1 (qt) | 1600 | 1800 | 0.25 | 600 |
Material 2 (C5) | 16,200 | 2000 | 0.25 | 1800 |
Material 3 (C4) | 29,100 | 2200 | 0.25 | 2300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou Jaoude, R.; Makhoul, N.; Gesret, A.; Fleurisson, J.-A. Numerical and Experimental Seismic Characterization of Byblos Site in Lebanon. Geosciences 2025, 15, 82. https://doi.org/10.3390/geosciences15030082
Abou Jaoude R, Makhoul N, Gesret A, Fleurisson J-A. Numerical and Experimental Seismic Characterization of Byblos Site in Lebanon. Geosciences. 2025; 15(3):82. https://doi.org/10.3390/geosciences15030082
Chicago/Turabian StyleAbou Jaoude, Rita, Nisrine Makhoul, Alexandrine Gesret, and Jean-Alain Fleurisson. 2025. "Numerical and Experimental Seismic Characterization of Byblos Site in Lebanon" Geosciences 15, no. 3: 82. https://doi.org/10.3390/geosciences15030082
APA StyleAbou Jaoude, R., Makhoul, N., Gesret, A., & Fleurisson, J.-A. (2025). Numerical and Experimental Seismic Characterization of Byblos Site in Lebanon. Geosciences, 15(3), 82. https://doi.org/10.3390/geosciences15030082