Comparison of Backprojection Techniques for Rupture Propagation Modelling of the Mw = 7.8 Mainshock Earthquake near Kahramanmaras and the Mw = 7.5 Second-Largest Mainshock near Elbistan, Turkey, 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geology and Seismic Significance of the Area
2.2. Studied Earthquakes and Their Importance
2.3. Beamforming Technique
2.4. Music Backprojection Technique
2.5. Data and Methodology
3. Results and Discussion
4. Conclusions
5. Evaluation and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, B.; Ge, Z. Cascading multi-segment rupture process of the 2023 Turkish earthquake doublet on a complex fault system revealed by teleseismic P wave back projection method. Earthq. Sci. 2024, 37, 158–173. [Google Scholar] [CrossRef]
- Hayes, G.P. The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth Planet. Sci. Lett. 2017, 468, 94–100. [Google Scholar] [CrossRef]
- Mendoza, C.; Hartzell, S.; Ramirez-Guzman, L.; Martinez-Lopez, R. Prediction of Regional Broadband Strong Ground Motions Using a Teleseismic Source Model of the 18 April 2014 Mw 7.3 Papanoa, Mexico, Earthquake. Bull. Seismol. Soc. Am. 2024, 114, 2524–2545. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Hua, S.; Zhang, X.; Xu, L.; Chen, Y.; Taymaz, T. Rapid source inversions of the 2023 SE Türkiye earthquakes with teleseismic and strong-motion data. Earthq. Sci. 2023, 36, 316–327. [Google Scholar] [CrossRef]
- Taymaz, T.; Ganas, A.; Yolsal-Çevikbilen, S.; Vera, F.; Eken, T.; Erman, C.; Keleş, D.; Kapetanidis, V.; Valkaniotis, S.; Karasante, I.; et al. Source mechanism and rupture process of the 24 January 2020 Mw 6.7 Doğanyol–Sivrice earthquake obtained from seismological waveform analysis and space geodetic observations on the East Anatolian Fault Zone (Turkey). Tectonophysics 2021, 804, 228745. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Koch, P.; Melgar, D.; Riquelme, S.; Yeck, W.L. Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite-Fault Modeling. Seismol. Res. Lett. 2022, 93, 3308–3323. [Google Scholar] [CrossRef]
- Chelidze, T.; Matcharashvili, T.; Varamashvili, N.; Mepharidze, E.; Tephnadze, D.; Chelidze, Z. 9—Complexity and Synchronization Analysis in Natural and Dynamically Forced Stick–Slip: A Review. In Complexity of Seismic Time Series; Chelidze, T., Vallianatos, F., Telesca, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 275–320. [Google Scholar] [CrossRef]
- Ringler, A.T.; Anthony, R.E.; Aster, R.C.; Ammon, C.J.; Arrowsmith, S.; Benz, H.; Ebeling, C.; Frassetto, A.; Kim, W.Y.; Koelemeijer, P.; et al. Achievements and Prospects of Global Broadband Seismographic Networks After 30 Years of Continuous Geophysical Observations. Rev. Geophys. 2022, 60, e2021RG000749. [Google Scholar] [CrossRef]
- Kato, S.; Nishida, K. Extraction of Mantle Discontinuities From Teleseismic Body-Wave Microseisms. Geophys. Res. Lett. 2023, 50, e2023GL105017. [Google Scholar] [CrossRef]
- Deng, Y.; Byrnes, J.S.; Bezada, M. New Insights Into the Heterogeneity of the Lithosphere-Asthenosphere System Beneath South China From Teleseismic Body-Wave Attenuation. Geophys. Res. Lett. 2021, 48, e2020GL091654. [Google Scholar] [CrossRef]
- Shrivastava, A.; Liu, K.H.; Gao, S.S. Teleseismic P-Wave Attenuation Beneath the Southeastern United States. Geochem. Geophys. Geosyst. 2021, 22, e2021GC009715. [Google Scholar] [CrossRef]
- Li, L.; Boué, P.; Campillo, M. Observation and explanation of spurious seismic signals emerging in teleseismic noise correlations. Solid Earth 2020, 11, 173–184. [Google Scholar] [CrossRef]
- Li, B.; Wu, B.; Bao, H.; Oglesby, D.D.; Ghosh, A.; Gabriel, A.A.; Meng, L.; Chu, R. Rupture Heterogeneity and Directivity Effects in Back-Projection Analysis. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022663. [Google Scholar] [CrossRef]
- Song, X. Seismic Array Imaging of Teleseismic Body Wsves from Finite-Frequency Tomography to Full Waveform Invesrions: With Applications to South-Central Alska Subduction Zone. Ph.D. Thesis, Graduate Department of Physics, University of Toronto, Toronto, ON, Canada, 2019. [Google Scholar]
- Yin, J.; Denolle, M.A. Relating teleseismic backprojection images to earthquake kinematics. Geophys. J. Int. 2019, 217, 729–747. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, X.; Liu, D.; Taymaz, T.; Eken, T.; Guo, R.; Zheng, Y.; Wang, J.; Sun, H. Geometric controls on cascading rupture of the 2023 Kahramanmaraşearthquake doublet. Nat. Geosci. 2023, 16, 1054–1060. [Google Scholar] [CrossRef]
- Du, H. Estimating rupture front of large earthquakes using a novel multi-array back-projection method. Front. Earth Sci. 2021, 9, 680163. [Google Scholar] [CrossRef]
- Steinberg, A.; Sudhaus, H.; Krüger, F. Using teleseismic backprojection and InSAR to obtain segmentation information for large earthquakes: A case study of the 2016 Mw 6.6 Muji earthquake. Geophys. J. Int. 2022, 232, 1482–1502. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, A.; Yagi, Y. Improving back projection imaging with a novel physics-based aftershock calibration approach: A case study of the 2015 Gorkha earthquake. Geophys. Res. Lett. 2016, 43, 628–636. [Google Scholar] [CrossRef]
- Zhang, H.; Koper, K.D.; Pankow, K.; Ge, Z. Imaging the 2016 Mw 7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults. Geophys. Res. Lett. 2017, 44, 4790–4798. [Google Scholar] [CrossRef]
- Meng, L.; Bao, H.; Huang, H.; Zhang, A.; Bloore, A.; Liu, Z. Double pincer movement: Encircling rupture splitting during the 2015 Mw 8.3 Illapel earthquake. Earth Planet. Sci. Lett. 2018, 495, 164–173. [Google Scholar] [CrossRef]
- Fahmi, M.N.; Realita, A.; Risanti, H.; Prastowo, T.; Madlazim. Back-projection results for the Mw 7.5, 28 September 2018 Palu earthquake-tsunami. J. Phys. Conf. Ser. 2022, 2377, 012032. [Google Scholar] [CrossRef]
- Xie, Y.; Meng, L.; Zhou, T.; Xu, L.; Bao, H.; Chu, R. The 2021 Mw 7.3 East Cape Earthquake: Triggered Rupture in Complex Faulting Revealed by Multi-Array Back-Projections. Geophys. Res. Lett. 2022, 49, e2022GL099643. [Google Scholar] [CrossRef]
- Claudino, C.; Lupinacci, W.M. The spectral stacking method and its application in seismic data resolution increase. Geophys. Prospect. 2023, 71, 509–517. [Google Scholar] [CrossRef]
- Lai, H.; Garnero, E.J. Travel time and waveform measurements of global multibounce seismic waves using virtual station seismogram stacks. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008679. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, W.; Ren, H. Automatic time picking for weak seismic phase in the strong noise and interference environment: An hybrid method based on array similarity. Sensors 2022, 22, 9924. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Bao, H.; Meng, L. Source Imaging With a Multi-Array Local Back-Projection and Its Application to the 2019 Mw 6.4 and Mw 7.1 Ridgecrest Earthquakes. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021396. [Google Scholar] [CrossRef]
- Kiser, E.; Ishii, M. Back-projection imaging of earthquakes. Annu. Rev. Earth Planet. Sci. 2017, 45, 271–299. [Google Scholar] [CrossRef]
- Jian, P.R.; Wang, Y. Applying unsupervised machine-learning algorithms and MUSIC back-projection to characterize 2018–2022 Hualien earthquake sequence. Terr. Atmos. Ocean. Sci. 2022, 33, 28. [Google Scholar] [CrossRef]
- Ishii, M.; Shearer, P.M.; Houston, H.; Vidale, J.E. Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature 2005, 435, 933–936. [Google Scholar] [CrossRef]
- Kiser, E.; Ishii, M. Combining seismic arrays to image the high-frequency characteristics of large earthquakes. Geophys. J. Int. 2012, 188, 1117–1128. [Google Scholar] [CrossRef]
- Neo, J.C.; Fan, W.; Huang, Y.; Dowling, D. Frequency-difference backprojection of earthquakes. Geophys. J. Int. 2022, 231, 2173–2185. [Google Scholar] [CrossRef]
- Zeng, H.; Wei, S.; Wu, W. Sources of uncertainties and artefacts in back-projection results. Geophys. J. Int. 2019, 220, 876–891. [Google Scholar] [CrossRef]
- Tan, F.; Ge, Z.; Kao, H.; Nissen, E. Validation of the 3-D phase-weighted relative back projection technique and its application to the 2016 Mw 7.8 Kaikōura Earthquake. Geophys. J. Int. 2019, 217, 375–388. [Google Scholar] [CrossRef]
- Vera, F.; Tilmann, F.; Saul, J.; Evangelidis, C.P. Imaging the 2007 Mw 7.7 Tocopilla earthquake from short-period back-projection. J. S. Am. Earth Sci. 2023, 127, 104399. [Google Scholar] [CrossRef]
- Zhang, H.; Ge, Z. Stepover rupture of the 2014 Mw 7.0 Yutian, Xinjiang, Earthquake. Bull. Seismol. Soc. Am. 2017, 107, 581–591. [Google Scholar] [CrossRef]
- Liu, Z.; Song, C.; Meng, L.; Ge, Z.; Huang, Q.; Wu, Q. Utilizing a 3D global P-wave tomography model to improve backprojection imaging: A case study of the 2015 Nepal earthquake. Bull. Seismol. Soc. Am. 2017, 107, 2459–2466. [Google Scholar] [CrossRef]
- Qin, W.; Yao, H. Characteristics of subevents and three-stage rupture processes of the 2015 Mw 7.8 Gorkha Nepal earthquake from multiple-array back projection. J. Asian Earth Sci. 2017, 133, 72–79. [Google Scholar] [CrossRef]
- Yagi, Y.; Okuwaki, R. Integrated seismic source model of the 2015 Gorkha, Nepal, earthquake. Geophys. Res. Lett. 2015, 42, 6229–6235. [Google Scholar] [CrossRef]
- Zhang, H.; Van Der Lee, S.; Ge, Z. Multiarray rupture imaging of the devastating 2015 Gorkha, Nepal, earthquake sequence. Geophys. Res. Lett. 2016, 43, 584–591. [Google Scholar] [CrossRef]
- Nissen, E.; Elliott, J.; Sloan, R.; Craig, T.; Funning, G.; Hutko, A.; Parsons, B.; Wright, T. Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet. Nat. Geosci. 2016, 9, 330–336. [Google Scholar] [CrossRef]
- Bletery, Q.; Sladen, A.; Jiang, J.; Simons, M. A Bayesian source model for the 2004 great Sumatra-Andaman earthquake. J. Geophys. Res. Solid Earth 2016, 121, 5116–5135. [Google Scholar] [CrossRef]
- Fan, W.; Shearer, P.M. Coherent seismic arrivals in the P wave coda of the 2012 Mw 7.2 Sumatra earthquake: Water reverberations or an early aftershock? J. Geophys. Res. Solid Earth 2018, 123, 3147–3159. [Google Scholar] [CrossRef]
- Meng, L.; Ampuero, J.P.; Luo, Y.; Wu, W.; Ni, S. Mitigating artifacts in back-projection source imaging with implications for frequency-dependent properties of the Tohoku-Oki earthquake. Earth Planets Space 2012, 64, 1101–1109. [Google Scholar] [CrossRef]
- Bowden, D.C.; Sager, K.; Fichtner, A.; Chmiel, M. Connecting beamforming and kernel-based noise source inversion. Geophys. J. Int. 2020, 224, 1607–1620. [Google Scholar] [CrossRef]
- Zhang, H.; Vidale, J.E.; Wang, W. Aftershocks on the Planar Rupture Surface of the Deep-Focus Mw 7.9 Bonin Islands Earthquake. Seism. Rec. 2025, 5, 35–43. [Google Scholar] [CrossRef]
- Guilbert, J.; Vergoz, J.; Schisselé, E.; Roueff, A.; Cansi, Y. Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the Mw = 9.0 Sumatra earthquake. Geophys. Res. Lett. 2005, 32, L15310. [Google Scholar] [CrossRef]
- Kennett, B.L.N.; Engdahl, E.R.; Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 1995, 122, 108–124. [Google Scholar] [CrossRef]
- Delph, J.R.; Abgarmi, B.; Ward, K.M.; Beck, S.L.; Özacar, A.A.; Zandt, G.; Sandvol, E.; Türkelli, N.; Kalafat, D. The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia. Geosphere 2017, 13, 1788–1805. [Google Scholar] [CrossRef]
- Ahadov, B.; Jin, S. Present-day kinematics in the Eastern Mediterranean and Caucasus from dense GPS observations. Phys. Earth Planet. Inter. 2017, 268, 54–64. [Google Scholar] [CrossRef]
- Bartol, J.; Govers, R. A single cause for uplift of the Central and Eastern Anatolian plateau? Tectonophysics 2014, 637, 116–136. [Google Scholar] [CrossRef]
- Güvercin, S.E.; Karabulut, H.; Konca, A.Ö.; Doğan, U.; Ergintav, S. Active seismotectonics of the East Anatolian fault. Geophys. J. Int. 2022, 230, 50–69. [Google Scholar] [CrossRef]
- Mahatsente, R.; Önal, G.; Çemen, I. Lithospheric structure and the isostatic state of Eastern Anatolia: Insight from gravity data modelling. Lithosphere 2018, 10, 279–290. [Google Scholar] [CrossRef]
- Schildgen, T.F.; Yıldırım, C.; Cosentino, D.; Strecker, M.R. Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth-Sci. Rev. 2014, 128, 147–168. [Google Scholar] [CrossRef]
- Bayrak, E.; Yılmaz, Ş.; Softa, M.; Türker, T.; Bayrak, Y. Earthquake hazard analysis for East Anatolian fault zone, Turkey. Nat. Hazards 2015, 76, 1063–1077. [Google Scholar] [CrossRef]
- Altunel, E.; Kozacı, Ö.; Yıldırım, C.; Sbeinati, R.M.; Meghraoui, M. Potential domino effect of the 2023 Kahramanmaraşearthquake on the centuries-long seismic quiescence of the Dead Sea fault: Inferences from the North Anatolian fault. Sci. Rep. 2024, 14, 15440. [Google Scholar] [CrossRef]
- Ambraseys, N. Earthquakes in the Mediterranean and Middle East: A Multidisciplinary Study of Seismicity up to 1900; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Chen, W.; Rao, G.; Kang, D.; Wan, Z.; Wang, D. Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 Mw 7.8 and 7.5 Turkey Earthquakes. J. Earth Sci. 2023, 34, 297–303. [Google Scholar] [CrossRef]
- Melgar, D.; Taymaz, T.; Ganas, A.; Crowell, B.W.; Öcalan, T.; Kahraman, M.; Tsironi, V.; Yolsal-Çevikbil, S.; Valkaniotis, S.; Irmak, T.S.; et al. Sub-and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica 2023, 2, 387. [Google Scholar] [CrossRef]
- Melgar, D.; Ganas, A.; Taymaz, T.; Valkaniotis, S.; Crowell, B.W.; Kapetanidis, V.; Tsironi, V.; Yolsal-Çevikbilen, S.; Öcalan, T. Rupture kinematics of 2020 January 24 Mw 6.7 Doğanyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophys. J. Int. 2020, 223, 862–874. [Google Scholar] [CrossRef]
- Kusky, T.M.; Bozkurt, E.; Meng, J.; Wang, L. Twin earthquakes devastate southeast Türkiye and Syria: First report from the epicenters. J. Earth Sci. 2023, 34, 291–296. [Google Scholar] [CrossRef]
- Karray, M.; Karakan, E.; Kincal, C.; Chiaradonna, A.; Gül, T.O.; Lanzo, G.; Monaco, P.; Sezer, A. Türkiye Mw 7.7 Pazarcık and Mw 7.6 Elbistan earthquakes of February 6th, 2023: Contribution of valley effects on damage pattern. Soil Dyn. Earthq. Eng. 2024, 181, 108634. [Google Scholar] [CrossRef]
- Işık, E.; Hadzima-Nyarko, M.; Avcil, F.; Büyüksaraç, A.; Arkan, E.; Alkan, H.; Harirchian, E. Comparison of Seismic and Structural Parameters of Settlements in the East Anatolian Fault Zone in Light of the 6 February Kahramanmaraş Earthquakes. Infrastructures 2024, 9, 219. [Google Scholar] [CrossRef]
- Tan, O. Long-term Aftershock Properties of the Catastrophic 6 February 2023 Kahramanmaraş (Türkiye) Earthquake Sequence. Acta Geophys. 2025, 73, 1023–1040. [Google Scholar] [CrossRef]
- Pizza, M.; Ferrario, F.; Michetti, A.M.; Velázquez-Bucio, M.M.; Lacan, P.; Porfido, S. Intensity Prediction Equations Based on the Environmental Seismic Intensity (ESI-07) Scale: Application to Normal Fault Earthquakes. Appl. Sci. 2024, 14, 8048. [Google Scholar] [CrossRef]
- Michetti, A.M.; Guerrieri, L.; Vittori, E. Intensity Scale ESI 2007; SystemCart: Siracusa, Italy, 2007. [Google Scholar]
- Serva, L. History of the Environmental Seismic Intensity Scale ESI-07. Geosciences 2019, 9, 210. [Google Scholar] [CrossRef]
- Ishii, M.; Shearer, P.M.; Houston, H.; Vidale, J.E. Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array. J. Geophys. Res. Solid Earth 2007, 112, B11307. [Google Scholar] [CrossRef]
- Meng, L.; Inbal, A.; Ampuero, J.P. A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, L00G07. [Google Scholar] [CrossRef]
- Bai, K. Dynamic Earthquake Source Modeling and the Study of Slab Effects. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2019. [Google Scholar]
- Wang, D.; Mori, J.; Koketsu, K. Fast rupture propagation for large strike-slip earthquakes. Earth Planet. Sci. Lett. 2016, 440, 115–126. [Google Scholar] [CrossRef]
- Yue, H.; Castellanos, J.C.; Yu, C.; Meng, L.; Zhan, Z. Localized water reverberation phases and its impact on backprojection images. Geophys. Res. Lett. 2017, 44, 9573–9580. [Google Scholar] [CrossRef]
- Huang, B.S.; Chen, J.h.; Liu, Q.; Chen, Y.G.; Xu, X.; Wang, C.Y.; Lee, S.J.; Yao, Z.X. Estimation of rupture processes of the 2008 Wenchuan Earthquake from joint analyses of two regional seismic arrays. Tectonophysics 2012, 578, 87–97. [Google Scholar] [CrossRef]
- Sultan, M.; Javed, F.; Mahmood, M.F.; Shah, M.A.; Ahmed, K.A.; Iqbal, T. Imaging of rupture process of 2005 Mw 7.6 Kashmir earthquake using back projection techniques. Arab. J. Geosci. 2022, 15, 871. [Google Scholar] [CrossRef]
- Kiser, E.; Ishii, M. The 2010 Mw 8.8 Chile earthquake: Triggering on multiple segments and frequency-dependent rupture behavior. Geophys. Res. Lett. 2011, 38, L07301. [Google Scholar] [CrossRef]
- Kiser, E.; Ishii, M. The March 11, 2011 Tohoku-oki earthquake and cascading failure of the plate interface. Geophys. Res. Lett. 2012, 39, L00G25. [Google Scholar] [CrossRef]
- Koper, K.; Hutko, A.; Lay, T. Along-dip variation of teleseismic short-period radiation from the 11 March 2011 Tohoku earthquake (Mw 9.0). Geophys. Res. Lett. 2011, 38, L21309. [Google Scholar] [CrossRef]
- Koper, K.D.; Hutko, A.R.; Lay, T.; Ammon, C.J.; Kanamori, H. Frequency-dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models. Earth Planets Space 2011, 63, 599–602. [Google Scholar] [CrossRef]
- Roten, D.; Miyake, H.; Koketsu, K. A Rayleigh wave back-projection method applied to the 2011 Tohoku earthquake. Geophys. Res. Lett. 2012, 39, L02302. [Google Scholar] [CrossRef]
- Wang, D.; Mori, J. Rupture process of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) as imaged with back-projection of teleseismic P-waves. Earth Planets Space 2011, 63, 603–607. [Google Scholar] [CrossRef]
- Wang, D.; Mori, J. Frequency-dependent energy radiation and fault coupling for the 2010 Mw8.8 Maule, Chile, and 2011 Mw 9.0 Tohoku, Japan, earthquakes. Geophys. Res. Lett. 2011, 38, L22308. [Google Scholar] [CrossRef]
- Yagi, Y.; Nakao, A.; Kasahara, A. Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth Planet. Sci. Lett. 2012, 355, 94–101. [Google Scholar] [CrossRef]
- Yao, H.; Gerstoft, P.; Shearer, P.M.; Mecklenbräuker, C. Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: Frequency-dependent rupture modes. Geophys. Res. Lett. 2011, 38, L20310. [Google Scholar] [CrossRef]
- Meng, L.; Ampuero, J.P.; Sladen, A.; Rendon, H. High-resolution backprojection at regional distance: Application to the Haiti M7.0 earthquake and comparisons with finite source studies. J. Geophys. Res. Solid Earth 2012, 117, B04313. [Google Scholar] [CrossRef]
- Satriano, C.; Kiraly, E.; Bernard, P.; Vilotte, J.P. The 2012 Mw 8.6 Sumatra earthquake: Evidence of westward sequential seismic ruptures associated to the reactivation of a N-S ocean fabric. Geophys. Res. Lett. 2012, 39, L15302. [Google Scholar] [CrossRef]
- Yao, H.; Shearer, P.M.; Gerstoft, P. Subevent location and rupture imaging using iterative backprojection for the 2011 Tohoku Mw 9.0 earthquake. Geophys. J. Int. 2012, 190, 1152–1168. [Google Scholar] [CrossRef]
- Li, B.; Gabriel, A.; Hillers, G. Source Properties of the Induced ML 0.0–1.8 Earthquakes from Local Beamforming and Backprojection in the Helsinki Area, Southern Finland. Seismol. Res. Lett. 2024, 96, 111–129. [Google Scholar] [CrossRef]
- Taylor, G.; Hillers, G.; Vuorinen, T.A.T. Using Array-Derived Rotational Motion to Obtain Local Wave Propagation Properties From Earthquakes Induced by the 2018 Geothermal Stimulation in Finland. Geophys. Res. Lett. 2021, 48, e2020GL090403. [Google Scholar] [CrossRef]
- Gkogkas, K.; Lin, F.; Allam, A.A.; Wang, Y. Shallow Damage Zone Structure of the Wasatch Fault in Salt Lake City from Ambient-Noise Double Beamforming with a Temporary Linear Array. Seismol. Res. Lett. 2021, 92, 2453–2463. [Google Scholar] [CrossRef]
- Gong, J.; McGuire, J.J. Waveform Signatures of Earthquakes Located Close to the Subducted Gorda Plate Interface. Bull. Seismol. Soc. Am. 2022, 112, 2440–2453. [Google Scholar] [CrossRef]
- Qin, T.; Lu, L.; Ding, Z.; Feng, X.; Zhang, Y. High-Resolution 3D Shallow S Wave Velocity Structure of Tongzhou, Subcenter of Beijing, Inferred From Multimode Rayleigh Waves by Beamforming Seismic Noise at a Dense Array. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023689. [Google Scholar] [CrossRef]
- Ammirati, J.B.; Mackaman-Lofland, C.; Zeckra, M.; Gobron, K. Stress transmission along mid-crustal faults highlighted by the 2021 Mw 6.5 San Juan (Argentina) earthquake. Sci. Rep. 2022, 12, 17939. [Google Scholar] [CrossRef]
- Takano, T.; Poli, P. Coherence-Based Characterization of a Long-Period Monochromatic Seismic Signal. Geophys. Res. Lett. 2025, 52, e2024GL113290. [Google Scholar] [CrossRef]
- Anderson, J.F.; Johnson, J.B.; Mikesell, T.D.; Liberty, L.M. Remotely imaging seismic ground shaking via large-N infrasound beamforming. Commun. Earth Environ. 2023, 4, 399. [Google Scholar] [CrossRef]
- Blackwell, A.; Craig, T.; Rost, S. Automatic relocation of intermediate-depth earthquakes using adaptive teleseismic arrays. Geophys. J. Int. 2024, 239, 821–840. [Google Scholar] [CrossRef]
- Aghaee-Naeini, A.; Fry, B.; Eccles, D. Spatial-Temporal Rupture Characterization of Potential Tsunamigenic Earthquakes Using Beamforming: Faster and More Accurate Tsunami Early Warning. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Ammon, C.J.; Ji, C.; Thio, H.K.; Robinson, D.; Ni, S.; Hjorleifsdottir, V.; Kanamori, H.; Lay, T.; Das, S.; Helmberger, D.; et al. Rupture process of the 2004 Sumatra-Andaman earthquake. Science 2005, 308, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Oshima, M.; Takenaka, H.; Matsubara, M. High-Resolution Fault-Rupture Imaging by Combining a Backprojection Method With Binarized MUSIC Spectral Image Calculation. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024003. [Google Scholar] [CrossRef]
- Zali, Z.; Ohrnberger, M.; Scherbaum, F.; Cotton, F.; Eibl, E.P. Volcanic tremor extraction and earthquake detection using music information retrieval algorithms. Seismol. Res. Lett. 2021, 92, 3668–3681. [Google Scholar] [CrossRef]
- Jian, P.R. Rupture Characteristics of the 2016 Meinong Earthquake Revealed by the Back-Projection and Directivity Analysis of Teleseismic Broadband Waveforms. In AutoBATS and 3D MUSIC: New Approaches to Imaging Earthquake Rupture Behaviors; Springer: Singapore, 2021; pp. 59–72. [Google Scholar] [CrossRef]
- Vera, F.; Tilmann, F.; Saul, J. A Decade of Short-Period Earthquake Rupture Histories From Multi-Array Back-Projection. J. Geophys. Res. Solid Earth 2024, 129, e2023JB027260. [Google Scholar] [CrossRef]
- Zhang, Y.; Bao, H.; Aoki, Y.; Hashima, A. Integrated seismic source model of the 2021 M 7.1 Fukushima earthquake. Geophys. J. Int. 2022, 233, 93–106. [Google Scholar] [CrossRef]
- Bao, H.; Xu, L.; Meng, L.; Ampuero, J.P.; Gao, L.; Zhang, H. Global frequency of oceanic and continental supershear earthquakes. Nat. Geosci. 2022, 15, 942–949. [Google Scholar] [CrossRef]
- Ni, S.; Kanamori, H.; Helmberger, D. Energy radiation from the Sumatra earthquake. Nature 2005, 434, 582. [Google Scholar] [CrossRef]
- Di Stefano, R.; Chiarabba, C.; Chiaraluce, L.; Cocco, M.; Gori, P.D.; Piccinini, D.; Valoroso, L. Fault zone properties affecting the rupture evolution of the 2009 (M 6.1) L’Aquila earthquake (central Italy): Insights from seismic tomography. Geophys. Res. Lett. 2011, 38, L10310. [Google Scholar] [CrossRef]
- Chandrakumar, C.; Tan, M.L.; Holden, C.; Stephens, M.T.; Prasanna, R. Performance analysis of P-wave detection algorithms for a community-engaged earthquake early warning system—A case study of the 2022 M5.8 Cook Strait earthquake. N. Z. J. Geol. Geophys. 2025, 68, 135–150. [Google Scholar] [CrossRef]
- Zhang, D.; Fu, J.; Li, Z.; Wang, L.; Li, J.; Wang, J. A Synchronous Magnitude Estimation with P-Wave Phases’ Detection Used in Earthquake Early Warning System. Sensors 2022, 22, 4534. [Google Scholar] [CrossRef]
- Barbot, S.; Luo, H.; Wang, T.; Hamiel, Y.; Piatibratova, O.; Javed, M.T.; Braitenberg, C.; Gurbuz, G. Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian fault zone. Seismica 2023, 2, 502. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Cantzos, D.; Alam, A.; Dimopoulos, S.; Petraki, E. Electromagnetic and Radon Earthquake Precursors. Geosciences 2024, 14, 271. [Google Scholar] [CrossRef]
- Dunham, E.M.; Archuleta, R.J. Evidence for a supershear transient during the 2002 Denali fault earthquake. Bull. Seismol. Soc. Am. 2004, 94, S256–S268. [Google Scholar] [CrossRef]
- Wang, D.; Mori, J. The 2010 Qinghai, China, earthquake: A moderate earthquake with supershear rupture. Bull. Seismol. Soc. Am. 2012, 102, 301–308. [Google Scholar] [CrossRef]
- Yue, H.; Lay, T.; Freymueller, J.T.; Ding, K.; Rivera, L.; Ruppert, N.A.; Koper, K.D. Supershear rupture of the 5 January 2013 Craig, Alaska (Mw 7.5) earthquake. J. Geophys. Res. Solid Earth 2013, 118, 5903–5919. [Google Scholar] [CrossRef]
- Zhan, Z.; Helmberger, D.V.; Kanamori, H.; Shearer, P.M. Supershear rupture in a Mw 6.7 aftershock of the 2013 Sea of Okhotsk earthquake. Science 2014, 345, 204–207. [Google Scholar] [CrossRef]
- Xia, K.; Rosakis, A.J.; Kanamori, H.; Rice, J.R. Laboratory earthquakes along inhomogeneous faults: Directionality and supershear. Science 2005, 308, 681–684. [Google Scholar] [CrossRef]
- Zhang, H. Imaging the Rupture Processes of Earthquakes Using the Relative Back-Projection Method: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
= 7.8 Kahramanmaras Earthquake | ||||
---|---|---|---|---|
Segment | Distance (km) | Time (s) | Velocity (km/s) | Direction |
1 | 16.0 | 6.0 | 3.2 | North |
2 a | 108 | 35.0 | 3.1 | North-East |
2 b | 35.0 | 10.5 | 3.4 | South-West |
3 | 140 | 42.0 | 3.3 | South-West |
= 7.5 Elbistan earthquake | ||||
4 | 90.0 | 28.0 | 3.2 | North-East |
5 | 60.0 | 17.5 | 3.4 | South-West |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolopoulos, D.; Sultan, M.; Alam, A.; Cantzos, D.; Priniotakis, G.; Papoutsidakis, M.; Javed, F.; Prezerakos, G.; Siddique, J.; Ali Shah, M.; et al. Comparison of Backprojection Techniques for Rupture Propagation Modelling of the Mw = 7.8 Mainshock Earthquake near Kahramanmaras and the Mw = 7.5 Second-Largest Mainshock near Elbistan, Turkey, 2023. Geosciences 2025, 15, 146. https://doi.org/10.3390/geosciences15040146
Nikolopoulos D, Sultan M, Alam A, Cantzos D, Priniotakis G, Papoutsidakis M, Javed F, Prezerakos G, Siddique J, Ali Shah M, et al. Comparison of Backprojection Techniques for Rupture Propagation Modelling of the Mw = 7.8 Mainshock Earthquake near Kahramanmaras and the Mw = 7.5 Second-Largest Mainshock near Elbistan, Turkey, 2023. Geosciences. 2025; 15(4):146. https://doi.org/10.3390/geosciences15040146
Chicago/Turabian StyleNikolopoulos, Dimitrios, Mahmood Sultan, Aftab Alam, Demetrios Cantzos, Georgios Priniotakis, Michail Papoutsidakis, Farhan Javed, Georgios Prezerakos, Jamil Siddique, Muhammad Ali Shah, and et al. 2025. "Comparison of Backprojection Techniques for Rupture Propagation Modelling of the Mw = 7.8 Mainshock Earthquake near Kahramanmaras and the Mw = 7.5 Second-Largest Mainshock near Elbistan, Turkey, 2023" Geosciences 15, no. 4: 146. https://doi.org/10.3390/geosciences15040146
APA StyleNikolopoulos, D., Sultan, M., Alam, A., Cantzos, D., Priniotakis, G., Papoutsidakis, M., Javed, F., Prezerakos, G., Siddique, J., Ali Shah, M., Rafique, M., & Yannakopoulos, P. (2025). Comparison of Backprojection Techniques for Rupture Propagation Modelling of the Mw = 7.8 Mainshock Earthquake near Kahramanmaras and the Mw = 7.5 Second-Largest Mainshock near Elbistan, Turkey, 2023. Geosciences, 15(4), 146. https://doi.org/10.3390/geosciences15040146