Acute Intravesical Capsaicin for the Study of TRPV1 in the Lower Urinary Tract: Clinical Relevance and Potential for Innovation
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. TRPV1 and Normal Bladder Function
3.2. Intravesical Capsaicin and Role of TRPV1 in LUT Dysfunction
3.2.1. Role of TPRV1 in Non-Neurogenic Overactive Bladder/Detrusor Overactivity
- Capsaicin OAB/DO studies
- Capsaicin for the assessment of innovative treatments for OAB/DO
- Conclusion
3.2.2. Role of TRPV1 in Neurogenic Detrusor Overactivity
- Capsaicin NDO studies
- Capsaicin for the assessment of NDO treatments
- Conclusion
3.2.3. Role of TRPV1 in Painful Bladder Syndrome/Interstitial Cystitis (PBS/IC)
- Capsaicin PBS/IC studies
- Capsaicin for the assessment of innovative treatments for IC/PBS
- Conclusion
3.2.4. Role of TRPV1 in Bladder Disorders Caused by Bladder Outlet Obstruction
- Studies of the effect of capsaicin on bladder dysfunction caused by BOO
- Conclusion
3.3. Clinical Application of Drugs Blocking TRPV1 Receptors
4. General Conclusions (Table 1)
LUTD | Involvement of TRPV1 Receptors in LUTD | AICI in Rodents | Clinical Trials Assessing the Effect of Vanilloids | Clinical Efficiency of Vanilloids |
---|---|---|---|---|
OAB/DO | Yes | Yes | Yes | RTX decreased incontinence episodes and improved quality of life |
NDO | Yes | Yes | Yes | Capsaicin decreased incontinence episodes in incomplete SCI |
BOO | Yes | Yes | No | - |
IC/PBS | Yes | Yes | Yes | RTX did not improve symptoms |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Szallasi, A.; Blumberg, P.M. Minireview: Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor. Life Sci. 1990, 47, 1399–1408. [Google Scholar] [CrossRef]
- Luo, X.-J.; Peng, J.; Li, Y.-J. Recent advances in the study on capsaicinoids and capsinoids. Eur. J. Pharmacol. 2011, 650, 1–7. [Google Scholar] [CrossRef] [PubMed]
- de Groat, W.C.; Araki, I.; Vizzard, M.A.; Yoshiyama, M.; Yoshimura, N.; Sugaya, K.; Tai, C.; Roppolo, J.R. Developmental and injury induced plasticity in the micturition reflex pathway. Behav. Brain. Res. 1998, 92, 127–140. [Google Scholar] [CrossRef]
- Geppetti, P.; Nassini, R.; Materazzi, S.; Benemei, S. The concept of neurogenic inflammation. BJU Int. 2008, 101 (Suppl. S3), 2–6. [Google Scholar] [CrossRef]
- Szallasi, A.; Blumberg, P.M.; Nilsson, S.; Hökfelt, T.; Lundberg, J.M. Visualization by [3H]resiniferatoxin autoradiography of capsaicin-sensitive neurons in the rat, pig and man. Eur. J. Pharmacol. 1994, 264, 217–221. [Google Scholar] [CrossRef]
- Maggi, C.A.; Barbanti, G.; Santicioli, P.; Beneforti, P.; Misuri, D.; Meli, A.; Turini, D. Cystometric evidence that capsaicin-sensitive nerves modulate the afferent branch of micturition reflex in humans. J. Urol. 1989, 142, 150–154. [Google Scholar] [CrossRef]
- Fowler, C.J.; Jewkes, D.; Mcdonald, W.I.; Lynn, B.; De Groat, W.C. Intravesical capsaicin for neurogenic bladder dysfunction. Lancet 1992, 339, 1239. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Ishizuka, O.; Igawa, Y.; Mattiasson, A.; Andersson, K.-E. Capsaicin-induced bladder hyperactivity in normal conscious rats. J. Urol. 1994, 152 Pt 1, 525–530. [Google Scholar] [CrossRef]
- Avelino, A.; Charrua, A.; Frias, B.; Cruz, C.; Boudes, M.; de Ridder, D.; Cruz, F. Transient receptor potential channels in bladder function. Acta Physiol. 2013, 207, 110–122. [Google Scholar] [CrossRef]
- Andersson, K.E. TRP Channels as Lower Urinary Tract Sensory Targets. Med. Sci. 2019, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, M.; Segal, A.; Voets, T.; Everaerts, W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat. Rev. Urol. 2021, 18, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Vij, A.S.; Sharma, M. Mechanisms and clinical uses of capsaicin. Eur. J. Pharmacol. 2013, 720, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Nilius, B.; Szallasi, A. Transient receptor potential channels as drug targets: From the science of basic research to the art of medicine. Pharmacol. Rev. 2014, 66, 676–814. [Google Scholar] [CrossRef] [PubMed]
- Andersson, K.E. Agents in early development for treatment of bladder dysfunction—Promise of drugs acting at TRP channels? Expert. Opin. Investig. Drugs 2019, 28, 749–755. [Google Scholar] [CrossRef]
- de Groat, W.C.; Yoshimura, N. Afferent nerve regulation of bladder function in health and disease. Handb. Exp. Pharmacol. 2009, 194, 91–138. [Google Scholar]
- Xu, L.; Gebhart, G.F. Characterization of mouse lumbar splanchnic and pelvic nerve urinary bladder mechanosensory afferents. J. Neurophysiol. 2008, 99, 244–253. [Google Scholar] [CrossRef]
- Andrade, E.L.; Ferreira, J.; André, E.; Calixto, J.B. Contractile mechanisms coupled to TRPA1 receptor activation in rat urinary bladder. Biochem. Pharmacol. 2006, 72, 104–114. [Google Scholar] [CrossRef]
- Thorneloe, K.S.; Sulpizio, A.C.; Lin, Z.; Figueroa, D.J.; Clouse, A.K.; McCafferty, G.P.; Chendrimada, T.P.; Lashinger, E.S.; Gordon, E.; Evans, L.; et al. N-(1S)-1-{[4-(2S)-2-{[(2,4-dichlorophenyl) sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J. Pharmacol. Exp. Ther. 2008, 326, 432–442. [Google Scholar]
- Streng, T.; Axelsson, H.E.; Hedlund, P.; Andersson, D.A.; Jordt, S.E.; Bevan, S.; Andersson, K.E.; Högestätt, E.D.; Zygmunt, P.M. Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur. Urol. 2008, 53, 391–399. [Google Scholar] [CrossRef]
- Birder, L.; Andersson, K.E. Urothelial signaling. Physiol. Rev. 2013, 93, 653–680. [Google Scholar] [CrossRef]
- Merrill, L.; Gonzalez, E.J.; Girard, B.M.; Vizzard, M.A. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev. Urol. 2016, 13, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sui, G.P.; Fry, C.H. Purinergic regulation of guinea pig suburothelial myofibroblasts. J. Physiol. 2004, 559, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Fry, C.H.; Sui, G.P.; Kanai, A.J.; Wu, C. The function of suburothelial myofibroblasts in the bladder. Neurourol. Urodyn 2007, 26, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Kanai, A. Urotheliogenic modulation of intrinsic activity in spinal cord-transected rat bladders: Role of mucosal muscarinic receptors. Am. J. Physiol. Renal Physiol. 2008, 295, F454–F461. [Google Scholar] [CrossRef]
- Sui, G.P.; Wu, C.; Roosen, A.; Ikeda, Y.; Kanai, A.J.; Fry, C.H. Modulation of bladder myofibroblast activity: Implications for bladder function. Am. J. Physiol. Renal Physiol. 2008, 295, F688–F697. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Chu, J.F.; Li, P.; Li, N.; Lv, Z.H. Expression and diagnosis of transient receptor potential vanilloid1 in urothelium of patients with overactive bladder. J. Biol. Regul. Homeost. Agents 2015, 29, 875–879. [Google Scholar]
- Liu, L.; Mansfield, K.J.; Kristiana, I.; Vaux, K.J.; Millard, R.J.; Burcher, E. The molecular basis of urgency: Regional difference of vanilloid receptor expression in the human urinary bladder. Neurourol. Urodyn. 2007, 26, 433–438. [Google Scholar] [CrossRef]
- Park, J.S.; Jung, H.D.; Cho, Y.S.; Jin, M.H.; Hong, C.H. Neonatal Bladder Irritation Is Associated with Vanilloid Receptor TRPV1 Expression in Adult Rats. Int. Neurourol. J. 2018, 22, 169–176. [Google Scholar] [CrossRef]
- Mingin, G.C.; Heppner, T.J.; Tykocki, N.R.; Erickson, C.S.; Vizzard, M.A.; Nelson, M.T. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2015, 309, R629–R638. [Google Scholar] [CrossRef]
- Tykocki, N.R.; Heppner, T.J.; Erickson, C.S.; van Batavia, J.; Vizzard, M.A.; Nelson, M.T.; Mingin, G.C. Development of stress-induced bladder insufficiency requires functional TRPV1 channels. Am. J. Physiol.-Ren. Physiol. 2018, 315, F1583–F1591. [Google Scholar] [CrossRef] [PubMed]
- Everaerts, W.; Gevaert, T.; Nilius, B.; De Ridder, D. On the origin of bladder sensing: Tr(i)ps in urology. Neurourol. Urodyn. 2008, 27, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Hindmarsh, J.R.; Gosling, P.T.; Deane, A.M. Bladder instability. Is the primary defect in the urethra? Br. J. Urol. 1983, 55, 648–651. [Google Scholar] [CrossRef]
- Low, J.A.; Armstrong, J.B.; Mauger, G.M. The unstable urethra in the female. Obstet. Gynecol. 1989, 74, 69–74. [Google Scholar] [PubMed]
- Farrell, S.A.; Tynski, G. The effect of urethral pressure variation on detrusor activity in women. Int. Urogynecol. J. 1996, 7, 87–93. [Google Scholar] [CrossRef]
- McLennan, M.T.; Melick, C.; Bent, A.E. Urethral instability: Clinical and urodynamic characteristics. Neurourol. Urodyn. 2001, 20, 653–660. [Google Scholar] [CrossRef]
- Kirschner-Hermanns, R.; Anding, R.; Rosier, P.; Birder, L.; Andersson, K.E.; Djurhuus, J.C. Fundamentals and clinical perspective of urethral sphincter instability as a contributing factor in patients with lower urinary tract dysfunction–ICI-RS 2014. Neurourol. Urodyn. 2016, 35, 318–323. [Google Scholar] [CrossRef][Green Version]
- Pandita, R.K.; Persson, K.; Andersson, K.E. Capsaicin-induced bladder overactivity and nociceptive behaviour in conscious rats: Involvement of spinal nitric oxide. J. Auton. Nerv. Syst. 1997, 67, 184–191. [Google Scholar] [CrossRef]
- Masuda, H.; Kim, J.H.; Kihara, K.; Chancellor, M.B.; de Groat, W.C.; Yoshimura, N. Inhibitory roles of peripheral nitrergic mechanisms in capsaicin-induced detrusor overactivity in the rat. BJU Int. 2007, 100, 912–918. [Google Scholar] [CrossRef]
- Caremel, R.; Oger-Roussel, S.; Behr-Roussel, D.; Grise, P.; Giuliano, F.A. Nitric oxide/cyclic guanosine monophosphate signalling mediates an inhibitory action on sensory pathways of the micturition reflex in the rat. Eur. Urol. 2010, 58, 616–625. [Google Scholar] [CrossRef]
- Juszczak, K.; Ziomber, A.; Wyczolkowski, M.; Thor, P.J. Urodynamic effects of the bladder C-fiber afferent activity modulation in chronic model of overactive bladder in rats. J. Physiol. Pharmacol. 2009, 60, 85–91. [Google Scholar] [PubMed]
- Cruz, F.; Dinis, P. Resiniferatoxin and botulinum toxin type A for treatment of lower urinary tract symptoms. Neurourol. Urodyn. 2007, 26 (Suppl. S6), 920–927. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, Y.; Wada, M.; Kanehisa, T.; Miyai, A.; Usui, K.; Maekawa, M.; Sakata, M.; Matsuo, A.; Hayashi, M.; Matsushita, M.; et al. JTS-653 blocks afferent nerve firing and attenuates bladder overactivity without affecting normal voiding function. J. Urol. 2013, 189, 1137–1146. [Google Scholar] [CrossRef]
- Lecci, A.; Giuliani, S.; Tramontana, M.; Criscuoli, M.; Maggi, C.A. MEN 11,420, a peptide tachykinin NK2 receptor antagonist, reduces motor responses induced by the intravesical administration of capsaicin in vivo. Naunyn-Schmiedeberg's Arch. Pharmacol. 1997, 356, 182–188. [Google Scholar] [CrossRef]
- Altamura, M. Tachykinin NK2 receptor antagonists. A patent review (2006–2010). Expert Opin. Ther. Pat. 2012, 22, 57–77. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Maria, S.A.; Peedicayil, J. Drugs Currently Undergoing Preclinical or Clinical Trials for the Treatment of Overactive Bladder: A Review. Curr. Ther. Res. Clin. Exp. 2022, 96, 100669. [Google Scholar] [CrossRef]
- Hougaard, C.; Fraser, M.O.; Chien, C.; Bookout, A.; Katofiasc, M.; Jensen, B.S.; Rode, F.; Bitsch-Nørhave, J.; Teuber, L.; Thor, K.B.; et al. A Positive Modulator of KCa2 and KCa3 Channels, 4,5-Dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591), Inhibits Bladder Afferent Firing in Vitro and Bladder Overactivity in Vivo. J. Pharmacol. Exp. Ther. 2009, 328, 28–39. [Google Scholar] [CrossRef]
- Yokoyama, H.; Sasaki, K.; Franks, M.E.; Goins, W.F.; Goss, J.R.; De Groat, W.C.; Glorioso, J.C.; Chancellor, M.B.; Yoshimura, N. Gene Therapy for Bladder Overactivity and Nociception with Herpes Simplex Virus Vectors Expressing Preproenkephalin. Hum. Gene Ther. 2009, 20, 63–71. [Google Scholar] [CrossRef]
- Sahai, A.; Cortes, E.; Seth, J.; Khan, M.S.; Panicker, J.; Kelleher, C.; Kessler, T.M.; Fowler, C.J.; Dasgupta, P. Neurogenic detrusor overactivity in patients with spinal cord injury: Evaluation and management. Curr. Urol. Rep. 2011, 12, 404–412. [Google Scholar] [CrossRef]
- Amarenco, G.; Sheikh Ismaël, S.; Chesnel, C.; Charlanes, A.; Le Breton, F. Diagnosis and clinical evaluation of neurogenic bladder. Eur. J. Phys. Rehabil. Med. 2017, 53, 975–980. [Google Scholar] [CrossRef]
- Brady, C.M.; Apostolidis, A.N.; Harper, M.; Yiangou, Y.; Beckett, A.; Jacques, T.S.; Freeman, A.; Scaravilli, F.; Fowler, C.J.; Anand, P. Parallel changes in bladder suburothelial vanilloid receptor TRPV1 and pan-neuronal marker PGP9.5 immunoreactivity in patients with neurogenic detrusor overactivity after intravesical resiniferatoxin treatment. BJU Int. 2004, 93, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, A.; Brady, C.M.; Yiangou, Y.; Davis, J.; Fowler, C.J.; Anand, P. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 2005, 65, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, A.; Popat, R.; Yiangou, Y.; Cockayne, D.; Ford, A.P.D.W.; Davis, J.B.; Dasgupta, P.; Fowler, C.J.; Anand, P. Decreased sensory receptors P2X3 and TRPV1 in suburothelial nerve fibres following intradetrusor injections of botulinum toxin for human detrusor overactivity. J. Urol. 2005, 174, 977–983. [Google Scholar] [CrossRef] [PubMed]
- de Groat, W.C. A neurologic basis for the overactive bladder. Urology 1997, 50 (Suppl. S6A), 36–52. [Google Scholar] [CrossRef]
- Cruz, F.; Guimaräes, M. Suppression of bladder hyperreflexia by intravesical resiniferatoxin. Lancet 1997, 350, 640–641. [Google Scholar] [CrossRef]
- Cruz, F.; Guimarães, M.; Silva, C.; Rio, M.E.; Coimbra, A.; Reis, M. Desensitization of bladder sensory fibres by intravesical capsaicin has long lasting clinical and urodynamic effects in patients with hyperactive or hypersensitive bladder dysfunction. J. Urol. 1997, 157, 585–589. [Google Scholar] [CrossRef]
- Liu, H.T.; Kuo, H.C. Increased expression of transient receptor potential vanilloid subfamily 1 in the bladder predicts the response to intravesical instillations of resiniferatoxin in patients with refractory idiopathic detrusor overactivity. BJU Int. 2007, 100, 1086. [Google Scholar] [CrossRef]
- Fowler, C.J.; Beck, R.O.; Gerrard, S.; Betts, C.D.; Fowler, C.G. Intravesical capsaicin for treatment of detrusor hyperreflexia. J. Neurol. Neurosurg. Psychiatry 1994, 57, 169–173. [Google Scholar] [CrossRef]
- Geirsson, G.; Fall, M.; Sullivan, L. Clinical and urodynamic effects of intravesical capsaicin treatment in patients with chronic traumatic spinal detrusor hyperreflexia. J. Urol. 1995, 154, 1825–1829. [Google Scholar] [CrossRef]
- Das, A.; Chancellor, M.B.; Watanabe, T.; Sedor, J.; Rivas, D.A. Intravesical capsaicin in neurologic impaired patients with detrusor hyperreflexia. J. Spinal Cord Med. 1996, 19, 190–193. [Google Scholar] [CrossRef]
- De Ridder, D.; Chandiramani, V.; Dasgupta, P.; Van Poppel, H.; Baert, L.; Fowler, C.J. Intravesical capsaicin as a treatment for refractory detrusor hyperreflexia: A dual center study with long-term followup. J. Urol. 1997, 158, 2087–2092. [Google Scholar] [CrossRef]
- de Sèze, M.; Wiart, L.; Joseph, P.A.; Dosque, J.P.; Mazaux, J.M.; Barat, M. Capsaicin and neurogenic detrusor hyperreflexia: A double-blind placebo-controlled study in 20 patients with spinal cord lesions. Neurourol. Urodyn. 1998, 17, 513–523. [Google Scholar] [CrossRef]
- Ikeda, Y.; Zabbarova, I.V.; Birder, L.A.; de Groat, W.C.; McCarthy, C.J.; Hanna-Mitchell, A.T.; Kanai, A.J. Botulinum neurotoxin serotype A suppresses neurotransmitter release from afferent as well as efferent nerves in the urinary bladder. Eur. Urol. 2012, 62, 1157–1164. [Google Scholar] [CrossRef]
- Behr-Roussel, D.; Oger, S.; Pignol, B.; Pham, E.; Le Maux, A.; Chabrier, P.E.; Caisey, S.; Compagnie, S.; Picaut, P.; Bernabé, J.; et al. Minimal effective dose of dysport and botox in a rat model of neurogenic detrusor overactivity. Eur. Urol. 2012, 61, 1054–1061. [Google Scholar] [CrossRef]
- Takahashi, R.; Yunoki, T.; Naito, S.; Yoshimura, N. Differential effects of botulinum neurotoxin A on bladder contractile responses to activation of efferent nerves, smooth muscles and afferent nerves in rats. J. Urol. 2012, 188, 1993–1999. [Google Scholar] [CrossRef]
- Rapp, D.E.; Turk, K.W.; Bales, G.T.; Cook, S.P. Botulinum toxin type a inhibits calcitonin gene-related peptide release from isolated rat bladder. J. Urol. 2006, 175, 1138–1142. [Google Scholar] [CrossRef]
- Shimizu, T.; Majima, T.; Suzuki, T.; Shimizu, N.; Wada, N.; Kadekawa, K.; Takai, S.; Takaoka, E.; Kwon, J.; Kanai, A.J.; et al. Nerve growth factor-dependent hyperexcitability of capsaicin-sensitive bladder afferent neurones in mice with spinal cord injury. Exp. Physiol. 2018, 103, 896–904. [Google Scholar] [CrossRef]
- Cheng, C.L.; Ma, C.P.; de Groat, W.C. Effect of capsaicin on micturition and associated reflexes in chronic spinal rats. Brain Res. 1995, 678, 40–48. [Google Scholar] [CrossRef]
- Kuret, T.; Peskar, D.; Erman, A.; Veranic, P. A systematic review of therapeutic approaches used in experimental models of interstitial cystitis/bladder pain syndrome. Biomedicine 2021, 9, 865. [Google Scholar] [CrossRef]
- Akiyama, Y.; Luo, Y.; Hanno, P.M.; Maeda, D.; Homma, Y. Interstitial cystitis/bladder pain syndrome: The evolving landscape, animal models and future perspectives. Int. J. Urol. 2020, 27, 491–503. [Google Scholar] [CrossRef]
- Mukerji, G.; Yiangou, Y.; Agarwal, S.K.; Anand, P. Transient receptor potential vanilloid receptor subtype 1 in painful bladder syndrome and its correlation with pain. J. Urol. 2006, 176, 797–801. [Google Scholar] [CrossRef]
- Liu, B.L.; Yang, F.; Zhan, H.L.; Feng, Z.Y.; Zhang, Z.G.; Li, W.B.; Zhou, X.F. Increased severity of inflammation correlates with elevated expression of TRPV1 nerve fibres and nerve growth factor on interstitial cystitis/bladder pain syndrome. Urol. Int. 2014, 92, 202–208. [Google Scholar] [CrossRef]
- Charrua, A.; Cruz, C.D.; Narayanan, S.; Gharat, L.; Gullapalli, S.; Cruz, F.; Avelino, A. GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J. Urol. 2009, 181, 379–386. [Google Scholar] [CrossRef]
- Lazzeri, M.; Beneforti, P.; Spinelli, M.; Zanollo, A.; Barbagli, G.; Turini, D. Intravesical resiniferatoxin for the treatment of hypersensitive disorder: A randomized placebo controlled study. J. Urol. 2000, 164, 676–679. [Google Scholar] [CrossRef]
- Lazzeri, M.; Spinelli, M.; Beneforti, P.; Malaguti, S.; Giardiello, G.; Turini, D. Intravesical infusion of resiniferatoxin by a temporary in situ drug delivery system to treat interstitial cystitis: A pilot study. Eur. Urol. 2004, 45, 98–102. [Google Scholar] [CrossRef]
- Chen, T.Y.; Corcos, J.; Camel, M.; Ponsot, Y.; Tu, L.M. Prospective, randomized, double-blind study of safety and tolerability of intravesical resiniferatoxin (RTX) in interstitial cystitis (IC). Int. Urogynecol. J. Pelvic Floor Dysfunct. 2005, 16, 293–297. [Google Scholar] [CrossRef]
- Apostolidis, A.; Gonzales, G.E.; Fowler, C.J. Effect of intravesical Resiniferatoxin (RTX) on lower urinary tract symptoms, urodynamic parameters, and quality of life of patients with urodynamic increased bladder sensation. Eur. Urol. 2006, 50, 1299–1305. [Google Scholar] [CrossRef]
- Peng, C.H.; Kuo, H.C. Multiple intravesical instillations of low-dose resiniferatoxin in the treatment of refractory interstitial cystitis. Urol. Int. 2007, 78, 78–81. [Google Scholar] [CrossRef]
- Payne, C.K.; Mosbaugh, P.G.; Forrest, J.B.; Evans, R.J.; Whitmore, K.E.; Antoci, J.P.; Perez-Marrero, R.; Jacoby, K.; Diokno, A.C.; O’Reilly, K.J.; et al. Intravesical resiniferatoxin for the treatment of interstitial cystitis: A randomized, double-blind, placebo controlled trial. J. Urol. 2005, 173, 1590–1594. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yang, Y.; Zhang, H.; Chen, C.; Zhao, J.; Yang, Z.; Fan, Y.; Li, L.; Feng, H.; Zhu, J.; et al. Activation of GPR18 by Resolvin D2 Relieves Pain and Improves Bladder Function in Cyclophosphamide-Induced Cystitis Through Inhibiting TRPV1. Drug Des. Dev. Ther. 2021, 15, 4687–4699. [Google Scholar] [CrossRef]
- Anand, P.; Yiangou, Y.; Anand, U.; Mukerji, G.; Sinisi, M.; Fox, M.; McQuillan, A.; Quick, T.; Korchev, Y.E.; Hein, P. Nociceptin/orphanin FQ receptor expression in clinical pain disorders and functional effects in cultured neurons. Pain 2016, 157, 1960–1969. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Yang, L.C.; Chiang, P.H.; Kang, H.Y.; Ma, W.L.; Wu, P.C.; DeMiguel, F.; Chancellor, M.B.; Yoshimura, N. Gene gun particle encoding preproenkephalin cDNA produces analgesia against capsaicin-induced bladder pain in rats. Urology 2005, 65, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, O.; Igawa, Y.; Lecci, A.; Maggi, C.A.; Mattiasson, A.; Andersson, K.E. Role of intrathecal tachykinins for micturition in unanaesthetized rats with and without bladder outlet obstruction. Br. J. Pharmacol. 1994, 113, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, A.; Fujimoto, K.; Matsumoto, Y.; Ozono, S.; Hirao, Y. Positive response to ice water test associated with high-grade bladder outlet obstruction in patients with benign prostatic hyperplasia. Urology 2003, 62, 909–913. [Google Scholar] [CrossRef]
- Chai, T.C.; Gray, M.L.; Steers, W.D. The incidence of a positive ice water test in bladder outlet obstructed patients: Evidence for bladder neural plasticity. J. Urol. 1998, 160, 34–38. [Google Scholar] [CrossRef]
- McVary, K.T.; Monnig, W.; Camps, J.L., Jr.; Young, J.M.; Tseng, L.J.; van den Ende, G. Sildenafil citrate improves erectile function and urinary symptoms in men with erectile dysfunction and lower urinary tract symptoms associated with benign prostatic hyperplasia: A randomized, double-blind trial. J. Urol. 2007, 177, 1071–1077. [Google Scholar] [CrossRef]
- Stief, C.G.; Porst, H.; Neuser, D.; Beneke, M.; Ulbrich, E. A randomised, placebo-controlled study to assess the efficacy of twice-daily vardenafil in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. Eur. Urol. 2008, 5, 1236–1244. [Google Scholar] [CrossRef]
- Roehrborn, C.G.; McVary, K.T.; Elion-Mboussa, A.; Viktrup, L. Tadalafil administered once daily for lower urinary tract symptoms secondary to benign prostatic hyperplasia: A dose finding study. J. Urol. 2008, 180, 1228–1234. [Google Scholar] [CrossRef]
- Foster, H.E.; Lake, A.G. Use of Vanilloids in Urologic Disorders. In Capsaicin As a Therapeutic Molecule; Progress in Drug Research; Abdel-Salam, O., Ed.; Springer: Basel, Switzerland, 2014; Volume 68. [Google Scholar]
- Bamps, D.; Vriens, J.; de Hoon, J.; Voets, T. TRP Channel Cooperation for Nociception: Therapeutic Opportunities. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 655–677. [Google Scholar] [CrossRef]
- Garami, A.; Shimansky, Y.P.; Rumbus, Z.; Vizin, R.C.L.; Farkas, N.; Hegyi, J.; Szakacs, Z.; Solymar, M.; Csenkey, A.; Chiche, D.A.; et al. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. Pharmacol. Ther. 2020, 208, 107474. [Google Scholar] [CrossRef]
- Brown, W.; Leff, R.L.; Griffin, A.; Hossack, S.; Aubray, R.; Walker, P.; Chiche, D.A. Safety, Pharmacokinetics, and Pharmacodynamics Study in Healthy Subjects of Oral NEO6860, a Modality Selective Transient Receptor Potential Vanilloid Subtype 1 Antagonist. J. Pain 2017, 18, 726–738. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Carvajal, A.; González-Muñiz, R.; Fernández-Ballester, G.; Ferrer-Montiel, A. Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels. Expert Opin. Investig. Drugs 2020, 29, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersson, K.-E.; Behr-Roussel, D.; Denys, P.; Giuliano, F. Acute Intravesical Capsaicin for the Study of TRPV1 in the Lower Urinary Tract: Clinical Relevance and Potential for Innovation. Med. Sci. 2022, 10, 50. https://doi.org/10.3390/medsci10030050
Andersson K-E, Behr-Roussel D, Denys P, Giuliano F. Acute Intravesical Capsaicin for the Study of TRPV1 in the Lower Urinary Tract: Clinical Relevance and Potential for Innovation. Medical Sciences. 2022; 10(3):50. https://doi.org/10.3390/medsci10030050
Chicago/Turabian StyleAndersson, Karl-Erik, Delphine Behr-Roussel, Pierre Denys, and Francois Giuliano. 2022. "Acute Intravesical Capsaicin for the Study of TRPV1 in the Lower Urinary Tract: Clinical Relevance and Potential for Innovation" Medical Sciences 10, no. 3: 50. https://doi.org/10.3390/medsci10030050
APA StyleAndersson, K.-E., Behr-Roussel, D., Denys, P., & Giuliano, F. (2022). Acute Intravesical Capsaicin for the Study of TRPV1 in the Lower Urinary Tract: Clinical Relevance and Potential for Innovation. Medical Sciences, 10(3), 50. https://doi.org/10.3390/medsci10030050