The Increasing Problem of Resistant Hypertension: We’ll Manage till Help Comes!
Abstract
:1. Introduction
2. Literature Sources and Search Strategy
3. International Guidelines with a Long-Lasting Gap
- -
- Stage 1: Uncomplicated hypertension (i.e., without confirmed HMOD or cardiovascular disease (CVD), but including stages 1 and 2 of CKD);
- -
- Stage 2: Presence of HMOD or CKD stage 3 or diabetes;
- -
- Stage 3: Established cardiovascular disease (CVD) or CKD stage 4 or 5.
3.1. “Let Food be Thy Medicine and Medicine be thy Food”
- -
- body weight reduction: for every kilogram of weight loss, a reduction in SBP and DBP of approximately 1 mmHg is estimated [11]. To this end, a low-calorie diet is recommended [12]. Among the various diets, those associated with a greater reduction in BP are the Dietary Approaches to Stop Hypertension (DASH diet) [11] and the Mediterranean diet [12]. The new ESC guidelines on HNT recommend a stable BMI of 20–25 kg/m2 and a waist circumference less than 94 cm in males and less than 80 cm in females [4];
- -
- reducing dietary sodium intake: a daily sodium intake <100 mmol (5.8 g of salt per day) has been shown to be associated with an average reduction of about 5 mmHg in SBP and 2 mmHg in DBP in patients with HNT [13]. Salt (NaCl) restriction to <5 g (~2 g sodium) per day as well as the use of salt substitutes, which have also shown reductions in SBP of about −4.8 mmHg and DBP of about −1.5 mmHg, is recommended [1,14];
- -
- increased dietary potassium intake: administration of 60 mmol (1380 mg) of potassium chloride has been observed to reduce BP by approximately 2 and 4–5 mmHg in adults with normotension and HNT, respectively [15]. The ESC guidelines recommend, in class IIb, in patients who do not have moderate to severe renal insufficiency, to increase potassium intake by 0.5–1 g/day either by replacing sodium with potassium-enriched salts or through a diet rich in fruit and vegetables [4];
- -
- regular physical activity: aerobic exercise is associated with an average reduction in SBP of approximately 2–4 and 5–8 mmHg in adult patients with normotension and hypertension, respectively [16]. New ESC guidelines recommend moderate-intensity aerobic exercise (40–60% heart rate reserve) for at least 150 min per week, or 75 min per week of vigorous-intensity aerobic exercise for three days associated with low- or moderate-intensity dynamic or isometric resistance training (2–3 times/week) to prevent and treat HNT and CVD [1,4,17];
- -
- reduction in alcohol intake: A major meta-analysis revealed that reducing alcohol intake close to abstinence in people who habitually consumed alcohol (at least three drinks/day) was associated with a reduction of 3.3 mmHg in SBP and 2.0 mmHg in DBP [18]. The guidelines are not unambiguously clear on maximum limits, but recommend moderating alcohol intake [1]. New ESC guidelines recommend preferably avoiding alcohol intake or in any case drinking less alcohol than the maximum limit, which is about 100 g/week of pure alcohol [4];
- -
- abstention from cigarette smoking: compared to non-smokers, smokers more frequently present with malignant hypertension, documented by normal ambulatory BP values and higher daytime BP values at 24 h ambulatory BP monitoring [19] and very variable as smoking causes a sympathetic activation that is associated with an increase in BP for about 30 min [20].
3.2. Combination Strategy as First: When Two Are Better than One
3.3. Special Population
3.4. Hypertension-Mediated Organ Damage: Determinants of Aggressive Strategy
4. Resistant Hypertension: the Dark Side of the Moon
4.1. Pseudo-RH: Drug Adherence
4.2. Secondary Hypertension
4.3. Renal Denervation
5. Antihypertensive Drug Development: Research Must Go on
5.1. Finerenone
5.2. Baxdrostat and Lorundrostat
5.3. NRP-1 Agonists
5.4. Zilebesiran
6. Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension. J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef] [PubMed]
- Manta, E.; Thomopoulos, C.; Kariori, M.; Polyzos, D.; Mihas, C.; Konstantinidis, D.; Farmakis, D.; Mancia, G.; Tsioufis, K. Revisiting Cardiovascular Benefits of Blood Pressure Reduction in Primary and Secondary Prevention: Focus on Targets and Residual Risk-A Systematic Review and Meta-Analysis. Hypertension 2024, 81, 1076–1086. [Google Scholar] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, 1269–1324. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 2024, ehae178. [Google Scholar] [CrossRef]
- Lieb, W.; Enserro, D.M.; Sullivan, L.M.; Vasan, R.S. Residual Cardiovascular Risk in Individuals on Blood Pressure-Lowering Treatment. J. Am. Heart Assoc. 2015, 4, e002155. [Google Scholar] [CrossRef]
- Flack, J.M.; Buhnerkempe, M.G.; Moore, K.T. Resistant Hypertension: Disease Burden and Emerging Treatment Options. Curr. Hypertens. Rep. 2024, 26, 183–199. [Google Scholar] [CrossRef]
- Nardoianni, G.; Pala, B.; Scoccia, A.; Volpe, M.; Barbato, E.; Tocci, G. Systematic Review Article: New Drug Strategies for Treating Resistant Hypertension-the Importance of a Mechanistic, Personalized Approach. High Blood Press. Cardiovasc. Prev. Off. J. Ital. Soc. Hypertens. 2024, 31, 99–112. [Google Scholar] [CrossRef]
- Yugar-Toledo, J.C.; Modolo, R.; de Faria, A.P.; Moreno, H. Managing resistant hypertension: Focus on mineralocorticoid-receptor antagonists. Vasc. Health Risk Manag. 2017, 13, 403–411. [Google Scholar] [CrossRef]
- Matanes, F.; Khan, M.B.; Siddiqui, M.; Dudenbostel, T.; Calhoun, D.; Oparil, S. An Update on Refractory Hypertension. Curr. Hypertens. Rep. 2022, 24, 225–234. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Neter, J.E.; Stam, B.E.; Kok, F.J.; Grobbee, D.E.; Geleijnse, J.M. Influence of Weight Reduction on Blood Pressure. Hypertension 2003, 42, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Liu, Y.; Zhang, L.; Zhou, L.; Li, D.; Quan, H.; Zhu, L.; Hu, F.; Li, X.; Meng, S.; et al. Nonpharmacologic Interventions for Reducing Blood Pressure in Adults with Prehypertension to Established Hypertension. J. Am. Heart Assoc. 2020, 9, e016804. [Google Scholar] [CrossRef] [PubMed]
- Cutler, J.A.; Follmann, D.; Allender, P.S. Randomized trials of sodium reduction: An overview. Am. J. Clin. Nutr. 1997, 65, 643S–651S. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Tsao, Y.P.; Huang, C.J.; Tai, Y.H.; Su, Y.C.; Chiang, C.E.; Sung, S.H.; Chen, C.H.; Cheng, H.M. Effectiveness of salt substitute on cardiovascular outcomes: A systematic review and meta-analysis. J. Clin. Hypertens. 2022, 24, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef]
- Hansen, D.; Abreu, A.; Ambrosetti, M.; Cornelissen, V.; Gevaert, A.; Kemps, H.; Laukkanen, J.A.; Pedretti, R.; Simonenko, M.; Wilhelm, M.; et al. Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: Why and how: A position statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2022, 29, 230–245. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Smart, N.A. Exercise Training for Blood Pressure: A Systematic Review and Meta-analysis. J. Am. Heart Assoc. 2013, 2, e004473. [Google Scholar] [CrossRef]
- Roerecke, M.; Kaczorowski, J.; Tobe, S.W.; Gmel, G.; Hasan, O.S.M.; Rehm, J. The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e108–e120. [Google Scholar] [CrossRef]
- Groppelli, A.; Giorgi, D.M.A.; Omboni, S.; Parati, G.; Mancia, G. Persistent blood pressure increase induced by heavy smoking. J. Hypertens. 1992, 10, 495–499. [Google Scholar] [CrossRef]
- Grassi, G.; Seravalle, G.; Calhoun, D.A.; Bolla, G.B.; Giannattasio, C.; Marabini, M.; Del Bo, A.; Mancia, G. Mechanisms responsible for sympathetic activation by cigarette smoking in humans. Circulation 1994, 90, 248–253. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Liu, L.; Hong, L.; Chen, H.; Luo, Z. Comparative Analysis of Hypertension Guidelines: Unveiling Consensus and Discrepancies in Lifestyle Modifications for Blood Pressure Control. Cardiol. Res. Pract. 2023, 2023, 5586403. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Kjeldsen, S.; Coca, A.; Cushman, W.C.; Wang, J. Adherence to Single-Pill Versus Free-Equivalent Combination Therapy in Hypertension. Hypertension 2021, 77, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Zambon, A.; Soranna, D.; Merlino, L.; Corrao, G. Factors involved in the discontinuation of antihypertensive drug therapy. J. Hypertens. 2014, 32, 1708–1716. [Google Scholar] [CrossRef] [PubMed]
- Rea, F.; Corrao, G.; Merlino, L.; Mancia, G. Initial Antihypertensive Treatment Strategies and Therapeutic Inertia. Hypertension 2018, 72, 846–853. [Google Scholar] [CrossRef]
- Silva, A.R.; Martini, A.G.; Canto, G.D.L.; Guerra, E.N.d.S.; Neves, F.d.A.R. Effects of dual blockade in heart failure and renal dysfunction: Systematic review and meta-analysis. J. Renin-Angiotensin-Aldosterone Syst. 2019, 20, 147032031988265. [Google Scholar] [CrossRef]
- Jamerson, K.; Weber, M.A.; Bakris, G.L.; Dahlöf, B.; Pitt, B.; Shi, V.; Hester, A.; Gupte, J.; Gatlin, M.; Velazquez, E.J. Benazepril plus Amlodipine or Hydrochlorothiazide for Hypertension in High-Risk Patients. N. Engl. J. Med. 2008, 359, 2417–2428. [Google Scholar] [CrossRef]
- Matsuzaki, M.; Ogihara, T.; Umemoto, S.; Rakugi, H.; Matsuoka, H.; Shimada, K.; Abe, K.; Suzuki, N.; Eto, T.; Higaki, J.; et al. Prevention of cardiovascular events with calcium channel blocker-based combination therapies in patients with hypertension. J. Hypertens. 2011, 29, 1649–1659. [Google Scholar] [CrossRef]
- Ogihara, T.; Saruta, T.; Rakugi, H.; Saito, I.; Shimamoto, K.; Matsuoka, H.; Teramukai, S.; Higaki, J.; Ito, S.; Shimada, K. Combination therapy of hypertension in the elderly: A subgroup analysis of the Combination of OLMesartan and a calcium channel blocker or diuretic in Japanese elderly hypertensive patients trial. Hypertens. Res. 2014, 38, 89–96. [Google Scholar] [CrossRef]
- Rochon, P.A.; Austin, P.C.; Normand, S.L.; Savage, R.D.; Read, S.H.; McCarthy, L.M.; Giannakeas, V.; Wu, W.; Strauss, R.; Wang, X.; et al. Association of a calcium channel blocker and diuretic prescribing cascade with adverse events: A population-based cohort study. J. Am. Geriatr. Soc. 2023, 72, 467–478. [Google Scholar] [CrossRef]
- do Vale, G.T.; Ceron, C.S.; Gonzaga, N.A.; Simplicio, J.A.; Padovan, J.C. Three Generations of β-blockers: History, Class Differences and Clinical Applicability. Curr. Hypertens. Rev. 2019, 15, 22–31. [Google Scholar] [CrossRef]
- Thomopoulos, C.; Parati, G.; Zanchetti, A. Effects of blood pressure-lowering on outcome incidence in hypertension. J. Hypertens. 2015, 33, 1321–1341. [Google Scholar] [CrossRef] [PubMed]
- Thomopoulos, C.; Parati, G.; Zanchetti, A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J. Hypertens. 2014, 32, 2285–2295. [Google Scholar] [CrossRef] [PubMed]
- The, A.O.; Coordinators for the ALLHAT Collaborative Research Group. Major Outcomes in High-Risk Hypertensive Patients Randomized to Angiotensin-Converting Enzyme Inhibitor or Calcium Channel Blocker vs Diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA: J. Am. Med. Assoc. 2002, 288, 2981–2997. [Google Scholar] [CrossRef]
- Williams, B.; MacDonald, T.M.; Morant, S.; Webb, D.J.; Sever, P.; McInnes, G.; Ford, I.; Cruickshank, J.K.; Caulfield, M.J.; Salsbury, J.; et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): A randomised, double-blind, crossover trial. Lancet 2015, 386, 2059–2068. [Google Scholar] [CrossRef]
- Ruilope, L.M.; Agarwal, R.; Anker, S.D.; Filippatos, G.; Pitt, B.; Rossing, P.; Sarafidis, P.; Schmieder, R.E.; Joseph, A.; Rethemeier, N.; et al. Blood Pressure and Cardiorenal Outcomes with Finerenone in Chronic Kidney Disease in Type 2 Diabetes. Hypertension 2022, 79, 2685–2695. [Google Scholar] [CrossRef]
- Chua, S.-K.; Lai, W.-T.; Chen, L.-C.; Hung, H.-F. The Antihypertensive Effects and Safety of LCZ696 in Patients with Hypertension: A Systemic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 2824. [Google Scholar] [CrossRef]
- Maddox, T.M.; Januzzi, J.L.; Allen, L.A.; Breathett, K.; Brouse, S.; Butler, J.; Davis, L.L.; Fonarow, G.C.; Ibrahim, N.E.; Lindenfeld, J.; et al. 2024 ACC Expert Consensus Decision Pathway for Treatment of Heart Failure with Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2024, 83, 1444–1488. [Google Scholar] [CrossRef]
- Villanueva, C.; Albillos, A.; Genescà, J.; Garcia-Pagan, J.C.; Calleja, J.L.; Aracil, C.; Bañares, R.; Morillas, R.M.; Poca, M.; Peñas, B.; et al. β blockers to prevent decompensation of cirrhosis in patients with clinically significant portal hypertension (PREDESCI): A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2019, 393, 1597–1608. [Google Scholar] [CrossRef]
- Rapsomaniki, E.; Timmis, A.; George, J.; Pujades-Rodriguez, M.; Shah, A.D.; Denaxas, S.; White, I.R.; Caulfield, M.J.; Deanfield, J.E.; Smeeth, L.; et al. Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet 2014, 383, 1899–1911. [Google Scholar] [CrossRef]
- Lønnebakken, M.T.; Izzo, R.; Mancusi, C.; Gerdts, E.; Losi, M.A.; Canciello, G.; Giugliano, G.; De Luca, N.; Trimarco, B.; de Simone, G. Left Ventricular Hypertrophy Regression During Antihypertensive Treatment in an Outpatient Clinic (the Campania Salute Network). J. Am. Heart Assoc. 2017, 6, e004152. [Google Scholar] [CrossRef]
- Mensah, G.A.; Croft, J.B.; Giles, W.H. The heart, kidney, and brain as target organs in hypertension. Cardiol. Clin. 2002, 20, 225–247. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, M.A.; Natale, F.; Mocerino, R.; Tassinario, G.; Calabrò, R. Renal resistive index and cardiovascular organ damage in a large population of hypertensive patients. J. Hum. Hypertens. 2007, 21, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Mishima, E.; Funayama, Y.; Suzuki, T.; Mishima, F.; Nitta, F.; Toyohara, T.; Kikuchi, K.; Kunikata, H.; Hashimoto, J.; Miyazaki, M.; et al. Concurrent analogous organ damage in the brain, eyes, and kidneys in malignant hypertension: Reversible encephalopathy, serous retinal detachment, and proteinuria. Hypertens. Res. 2020, 44, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Pacholko, A.; Iadecola, C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension 2024, 81, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.J. Arterial stiffness or endothelial dysfunction as a surrogate marker of vascular risk. Can. J. Cardiol. 2006, 22 (Suppl. B), 72B–80B. [Google Scholar] [CrossRef]
- Natale, F.; Covino, S.; Molinari, R.; Limatola, M.; Mollo, N.; Alfieri, R.; Pezzullo, E.; Loffredo, F.; Golino, P.; Cimmino, G. The overall echogenicity (GSM) of carotid intima-media complex shows a positive correlation with arterial stiffness in hypertensive patients. Arter. Hypertens. 2023, 27, 232–239. [Google Scholar] [CrossRef]
- Lamirault, G.; Artifoni, M.; Daniel, M.; Barber-Chamoux, N.; Nantes University Hospital Working Group on, H. Resistant Hypertension: Novel Insights. Curr. Hypertens. Rev. 2020, 16, 61–72. [Google Scholar] [CrossRef]
- Chan, R.J.; Helmeczi, W.; Hiremath, S.S. Revisiting resistant hypertension: A comprehensive review. Intern. Med. J. 2023, 53, 1739–1751. [Google Scholar] [CrossRef]
- Dybiec, J.; Krzemińska, J.; Radzioch, E.; Szlagor, M.; Wronka, M.; Młynarska, E.; Rysz, J.; Franczyk, B. Advances in the Pathogenesis and Treatment of Resistant Hypertension. Int. J. Mol. Sci. 2023, 24, 12911. [Google Scholar] [CrossRef]
- Zanatta, J.M.d.M.; Cosenso-Martin, L.N.; da Silva Lopes, V.; Roma Uyemura, J.R.; Polegati Santos, A.M.; Paz Landim, M.I.; Yugar-Toledo, J.C.; Vilela-Martin, J.F. Evidence of Nonadherence in Cases of Pseudoresistant Hypertension. Integr. Blood Press. Control 2021, 14, 9–17. [Google Scholar] [CrossRef]
- Lambert, T.; Nahler, A.; Reiter, C.; Gammer, V.; Blessberger, H.; Kammler, J.; Grund, M.; Saleh, K.; Schwarz, S.; Steinwender, C. Influence of pseudo-resistance on the effect of renal denervation on 24-h ambulatory blood pressure levels. Catheter. Cardiovasc. Interv. 2015, 86, E126–E130. [Google Scholar] [CrossRef] [PubMed]
- Kishor, R.; Kumari, S.; Prakash, R.; Chaudhary, N.; Shyama, S.; Ahmad, S.; Kumar, P. An assessment of treatment compliance using the Morisky scale-8 tool in adult hypertensive patients of Eastern India. J. Fam. Med. Prim. Care 2024, 13, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Alessa, T.; Hawley, M.S.; Hock, E.S.; de Witte, L. Smartphone Apps to Support Self-Management of Hypertension: Review and Content Analysis. JMIR Mhealth Uhealth 2019, 7, e13645. [Google Scholar] [CrossRef] [PubMed]
- DiBona, G.F.; Esler, M. Translational medicine: The antihypertensive effect of renal denervation. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2010, 298, R245–R253. [Google Scholar] [CrossRef]
- Azizi, M.; Sanghvi, K.; Saxena, M.; Gosse, P.; Reilly, J.P.; Levy, T.; Rump, L.C.; Persu, A.; Basile, J.; Bloch, M.J.; et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): A randomised, multicentre, single-blind, sham-controlled trial. Lancet 2021, 397, 2476–2486. [Google Scholar] [CrossRef] [PubMed]
- Böhm, M.; Kario, K.; Kandzari, D.E.; Mahfoud, F.; Weber, M.A.; Schmieder, R.E.; Tsioufis, K.; Pocock, S.; Konstantinidis, D.; Choi, J.W.; et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): A multicentre, randomised, sham-controlled trial. Lancet 2020, 395, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Rader, F.; Kirtane, A.K.; Wang, Y.; Daemen, J.; Lurz, P.; Sayer, J.; Saxena, M.; Levy, T.; Scicli, A.S.; Thackeray, L.; et al. Durability of blood pressure reduction after ultrasound renal denervation: Three-year follow-up of the treatment arm of the randomised RADIANCE-HTN SOLO trial. EuroIntervention J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2022, 18, e677–e685. [Google Scholar] [CrossRef]
- Townsend, R.R.; Walton, A.; Hettrick, D.A.; Hickey, G.L.; Weil, J.; Sharp, A.S.P.; Blankenstijn, P.J.; Böhm, M.; Mancia, G. Review and meta-analysis of renal artery damage following percutaneous renal denervation with radiofrequency renal artery ablation. EuroIntervention J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2020, 16, 89–96. [Google Scholar] [CrossRef]
- Sanders, M.F.; Reitsma, J.B.; Morpey, M.; Gremmels, H.; Bots, M.L.; Pisano, A.; Bolignano, D.; Zoccali, C.; Blankestijn, P.J. Renal safety of catheter-based renal denervation: Systematic review and meta-analysis. Nephrol. Dial. Transplant. 2017, 32, 1440–1447. [Google Scholar] [CrossRef]
- Ahmad, Y.; Francis, D.P.; Bhatt, D.L.; Howard, J.P. Renal Denervation for Hypertension. JACC Cardiovasc. Interv. 2021, 14, 2614–2624. [Google Scholar] [CrossRef]
- Pimenta, E.; Gaddam, K.K.; Pratt-Ubunama, M.N.; Nishizaka, M.K.; Cofield, S.S.; Oparil, S.; Calhoun, D.A. Aldosterone excess and resistance to 24-h blood pressure control. J. Hypertens. 2007, 25, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Georgianos, P.I.; Agarwal, R. The Nonsteroidal Mineralocorticoid-Receptor-Antagonist Finerenone in Cardiorenal Medicine: A State-of-the-Art Review of the Literature. Am. J. Hypertens. 2023, 36, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Grune, J.; Beyhoff, N.; Smeir, E.; Chudek, R.; Blumrich, A.; Ban, Z.; Brix, S.; Betz, I.R.; Schupp, M.; Foryst-Ludwig, A.; et al. Selective Mineralocorticoid Receptor Cofactor Modulation as Molecular Basis for Finerenone’s Antifibrotic Activity. Hypertension 2018, 71, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Grune, J.; Benz, V.; Brix, S.; Salatzki, J.; Blumrich, A.; Höft, B.; Klopfleisch, R.; Foryst-Ludwig, A.; Kolkhof, P.; Kintscher, U. Steroidal and Nonsteroidal Mineralocorticoid Receptor Antagonists Cause Differential Cardiac Gene Expression in Pressure Overload-induced Cardiac Hypertrophy. J. Cardiovasc. Pharmacol. 2016, 67, 402–411. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef]
- Agarwal, R.; Ruilope, L.M.; Ruiz-Hurtado, G.; Haller, H.; Schmieder, R.E.; Anker, S.D.; Filippatos, G.; Pitt, B.; Rossing, P.; Lambelet, M.; et al. Effect of finerenone on ambulatory blood pressure in chronic kidney disease in type 2 diabetes. J. Hypertens. 2023, 41, 295–302. [Google Scholar] [CrossRef]
- Agarwal, R.; Pitt, B.; Palmer, B.F.; Kovesdy, C.P.; Burgess, E.; Filippatos, G.; Małyszko, J.; Ruilope, L.M.; Rossignol, P.; Rossing, P.; et al. A comparative post hoc analysis of finerenone and spironolactone in resistant hypertension in moderate-to-advanced chronic kidney disease. Clin. Kidney J. 2023, 16, 293–302. [Google Scholar] [CrossRef]
- Azzam, O.; Nejad, S.H.; Carnagarin, R.; Nolde, J.M.; Galindo-Kiuchi, M.; Schlaich, M.P. Taming resistant hypertension: The promise of novel pharmacologic approaches and renal denervation. Br. J. Pharmacol. 2023, 181, 319–339. [Google Scholar] [CrossRef]
- Gros, R.; Ding, Q.; Sklar, L.A.; Prossnitz, E.E.; Arterburn, J.B.; Chorazyczewski, J.; Feldman, R.D. GPR30 Expression Is Required for the Mineralocorticoid Receptor–Independent Rapid Vascular Effects of Aldosterone. Hypertension 2011, 57, 442–451. [Google Scholar] [CrossRef]
- Calhoun, D.A.; White, W.B.; Krum, H.; Guo, W.; Bermann, G.; Trapani, A.; Lefkowitz, M.P.; Ménard, J. Effects of a Novel Aldosterone Synthase Inhibitor for Treatment of Primary Hypertension. Circulation 2011, 124, 1945–1955. [Google Scholar] [CrossRef] [PubMed]
- Karns, A.D.; Bral, J.M.; Hartman, D.; Peppard, T.; Schumacher, C. Study of Aldosterone Synthase Inhibition as an Add-On Therapy in Resistant Hypertension. J. Clin. Hypertens. 2012, 15, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Bogman, K.; Schwab, D.; Delporte, M.-L.; Palermo, G.; Amrein, K.; Mohr, S.; De Vera Mudry, M.C.; Brown, M.J.; Ferber, P. Preclinical and Early Clinical Profile of a Highly Selective and Potent Oral Inhibitor of Aldosterone Synthase (CYP11B2). Hypertension 2017, 69, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.W.; Halvorsen, Y.-D.; Marshall, W.; Pater, M.; Isaacsohn, J.; Pearce, C.; Murphy, B.; Alp, N.; Srivastava, A.; Bhatt, D.L.; et al. Phase 2 Trial of Baxdrostat for Treatment-Resistant Hypertension. N. Engl. J. Med. 2023, 388, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Shah, S.; Gitzel, L.; Pusukur, B.; Sood, A.; Vyas, A.V.; Gupta, R. Baxdrostat: A Novel Aldosterone Synthase Inhibitor for Treatment Resistant Hypertension. Curr. Probl. Cardiol. 2023, 48, 101918. [Google Scholar] [CrossRef]
- Laffin, L.J.; Rodman, D.; Luther, J.M.; Vaidya, A.; Weir, M.R.; Rajicic, N.; Slingsby, B.T.; Nissen, S.E.; Beasley, R.; Budoff, M.; et al. Aldosterone Synthase Inhibition with Lorundrostat for Uncontrolled Hypertension. JAMA 2023, 330, 1140. [Google Scholar] [CrossRef]
- Williams, B. A New Dawn for Aldosterone as a Therapeutic Target in Hypertension. JAMA 2023, 330, 1138. [Google Scholar] [CrossRef]
- Gallo, G.; Volpe, M.; Savoia, C. Endothelial Dysfunction in Hypertension: Current Concepts and Clinical Implications. Front. Med. 2022, 8, 798958. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X.; Shang, R.; Chen, Y. Asymmetric dimethylarginine (ADMA) as an important risk factor for the increased cardiovascular diseases and heart failure in chronic kidney disease. Nitric Oxide 2018, 78, 113–120. [Google Scholar] [CrossRef]
- Fiedler, L. The DDAH/ADMA pathway is a critical regulator of NO signalling in vascular homeostasis. Cell Adhes. Migr. 2014, 2, 149–150. [Google Scholar] [CrossRef]
- Hu, X.; Atzler, D.; Xu, X.; Zhang, P.; Guo, H.; Lu, Z.; Fassett, J.; Schwedhelm, E.; Böger, R.H.; Bache, R.J.; et al. Dimethylarginine Dimethylaminohydrolase-1 Is the Critical Enzyme for Degrading the Cardiovascular Risk Factor Asymmetrical Dimethylarginine. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, E.; Zhang, Y.; Madamsetty, V.S.; Ji, B.; Radisky, D.C.; Grande, J.P.; Misra, S.; Mukhopadhyay, D. Neuropilin-1 maintains dimethylarginine dimethylaminohydrolase 1 expression in endothelial cells, and contributes to protection from angiotensin II–induced hypertension. FASEB J. 2018, 33, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Bondeva, T.; Wolf, G. Role of Neuropilin-1 in Diabetic Nephropathy. J. Clin. Med. 2015, 4, 1293–1311. [Google Scholar] [CrossRef] [PubMed]
- Domingues, A.; Fantin, A. Neuropilin 1 Regulation of Vascular Permeability Signaling. Biomolecules 2021, 11, 666. [Google Scholar] [CrossRef] [PubMed]
- Addison, M.L.; Ranasinghe, P.; Webb, D.J. Novel Pharmacological Approaches in the Treatment of Hypertension: A Focus on RNA-Based Therapeutics. Hypertension 2023, 80, 2243–2254. [Google Scholar] [CrossRef]
- Nobakht, N.; Kamgar, M.; Rastogi, A.; Schrier, R.W. Limitations of angiotensin inhibition. Nat. Rev. Nephrol. 2011, 7, 356–359. [Google Scholar] [CrossRef]
- Makani, H.; Bangalore, S.; Desouza, K.A.; Shah, A.; Messerli, F.H. Efficacy and safety of dual blockade of the renin-angiotensin system: Meta-analysis of randomised trials. BMJ 2013, 346, f360. [Google Scholar] [CrossRef]
- Uijl, E.; Mirabito Colafella, K.M.; Sun, Y.; Ren, L.; van Veghel, R.; Garrelds, I.M.; de Vries, R.; Poglitsch, M.; Zlatev, I.; Kim, J.B.; et al. Strong and Sustained Antihypertensive Effect of Small Interfering RNA Targeting Liver Angiotensinogen. Hypertension 2019, 73, 1249–1257. [Google Scholar] [CrossRef]
- Desai, A.S.; Webb, D.J.; Taubel, J.; Casey, S.; Cheng, Y.; Robbie, G.J.; Foster, D.; Huang, S.A.; Rhyee, S.; Sweetser, M.T.; et al. Zilebesiran, an RNA Interference Therapeutic Agent for Hypertension. N. Engl. J. Med. 2023, 389, 228–238. [Google Scholar] [CrossRef]
- Bakris, G.L.; Saxena, M.; Gupta, A.; Chalhoub, F.; Lee, J.; Stiglitz, D.; Makarova, N.; Goyal, N.; Guo, W.; Zappe, D.; et al. RNA Interference with Zilebesiran for Mild to Moderate Hypertension. JAMA 2024, 331, 740. [Google Scholar] [CrossRef]
- Stanton, A.; Jensen, C.; Nussberger, J.; O’Brien, E. Blood Pressure Lowering in Essential Hypertension with an Oral Renin Inhibitor, Aliskiren. Hypertension 2003, 42, 1137–1143. [Google Scholar] [CrossRef]
Definition | |
---|---|
ESC | SBP ≥ 140 mmHg and DBP ≥ 90 mmHg despite lifestyle measures and OMT |
AHA | Concurrent use of four or more antihypertensive drugs irrespective of BP levels |
Drug | Mechanism of Action | Trials | Effect on BP | Side Effect |
---|---|---|---|---|
Finerenone | selective nonsteroidal mineralocorticoid receptor antagonist (nsMRA) | FIDELIO-DKD FIGARO-DKD FIDELITY ARTS-ON | Lower effect on reducing office BP from baseline than spironolactone and eplerenone | Increase in K+ blood levels |
Baxdrostat | selective enzymatic inhibition of aldosterone synthases | BRIGHT-HTN | Significant effect on reducing BP | Slight increase in K+ blood levels |
Lorundrostat | selective enzymatic inhibition of aldosterone synthases | TARGET-HTN | Significant effect on reducing BP | Slight increase in K+ blood levels |
NRP-1 agonists | neuropilin-1 acts indirectly on vascular tone through regulation of the expression of the enzyme DDAH which degrades the arginine analogue ADMA which inhibits NO synthesis | Preclinical studies on mice | Not known | Not known |
Zilebesiran | an RNA interference therapeutic agent that inhibits hepatic synthesis of angiotensinogen and consequently reduces circulating levels of angiotensin II | Phase 1 trial KARDIA-1 KARDIA-2 | Significant effect on reducing BP | Mild and transient injection site reactions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natale, F.; Franzese, R.; Luisi, E.; Mollo, N.; Marotta, L.; Solimene, A.; D’Elia, S.; Golino, P.; Cimmino, G. The Increasing Problem of Resistant Hypertension: We’ll Manage till Help Comes! Med. Sci. 2024, 12, 53. https://doi.org/10.3390/medsci12040053
Natale F, Franzese R, Luisi E, Mollo N, Marotta L, Solimene A, D’Elia S, Golino P, Cimmino G. The Increasing Problem of Resistant Hypertension: We’ll Manage till Help Comes! Medical Sciences. 2024; 12(4):53. https://doi.org/10.3390/medsci12040053
Chicago/Turabian StyleNatale, Francesco, Rosa Franzese, Ettore Luisi, Noemi Mollo, Luigi Marotta, Achille Solimene, Saverio D’Elia, Paolo Golino, and Giovanni Cimmino. 2024. "The Increasing Problem of Resistant Hypertension: We’ll Manage till Help Comes!" Medical Sciences 12, no. 4: 53. https://doi.org/10.3390/medsci12040053
APA StyleNatale, F., Franzese, R., Luisi, E., Mollo, N., Marotta, L., Solimene, A., D’Elia, S., Golino, P., & Cimmino, G. (2024). The Increasing Problem of Resistant Hypertension: We’ll Manage till Help Comes! Medical Sciences, 12(4), 53. https://doi.org/10.3390/medsci12040053