Protective Effect of Daily Physical Activity Against COVID-19 in a Young Adult Population on Reunion Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Online Survey
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. A Younger General Sample than Those in Clinical Studies
4.2. Interaction Between Mitochondrial Respiration and Immune Response
4.3. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease 2019 |
PA | Physical activity |
OR | Odds ratio |
BAC | Baccalaureat |
IPAQ | International Physical Activity Questionnaire |
MET | Metabolic equivalent of task |
RT-qPCR | Reverse transcriptase quantitative polymerase chain reaction |
ICU | Intensive care unit |
IQR | Interquartile difference |
95%CI | 95% confidence interval |
BMI | Body mass index |
References
- Salje, H.; Kiem, C.T.; Lefrancq, N.; Courtejoie, N.; Bosetti, P.; Paireau, J.; Andronico, A.; Hozé, N.; Richet, J.; Dubost, C.-L.; et al. Estimating the Burden of SARS-CoV-2 in France. Science 2020, 369, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Romanello, M.; Napoli, C.D.; Green, C.; Kennard, H.; Lampard, P.; Scamman, D.; Walawender, M.; Ali, Z.; Ameli, N.; Ayeb-Karlsson, S.; et al. The 2023 Report of the Lancet Countdown on Health and Climate Change: The Imperative for a Health-Centred Response in a World Facing Irreversible Harms. Lancet 2023, 402, 2346–2394. [Google Scholar] [CrossRef]
- de Souza, F.R.; Motta-Santos, D.; dos Santos Soares, D.; de Lima, J.B.; Cardozo, G.G.; Guimarães, L.S.P.; Negrão, C.E.; dos Santos, M.R. Association of Physical Activity Levels and the Prevalence of COVID-19-Associated Hospitalization. J. Sci. Med. Sport 2021, 24, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.J.; Goessler, K.F.; Fernandes, A.L.; Murai, I.H.; Sales, L.P.; Reis, B.Z.; Santos, M.D.; Roschel, H.; Pereira, R.M.R.; Gualano, B. No Independent Associations between Physical Activity and Clinical Outcomes among Hospitalized Patients with Moderate to Severe COVID-19. J. Sport Health Sci. 2021, 10, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Sallis, R.; Young, D.R.; Tartof, S.Y.; Sallis, J.F.; Sall, J.; Li, Q.; Smith, G.N.; Cohen, D.A. Physical Inactivity Is Associated with a Higher Risk for Severe COVID-19 Outcomes: A Study in 48 440 Adult Patients. Br. J. Sports Med. 2021, 55, 1099–1105. [Google Scholar] [CrossRef]
- Steenkamp, L.; Saggers, R.T.; Bandini, R.; Stranges, S.; Choi, Y.-H.; Thornton, J.S.; Hendrie, S.; Patel, D.; Rabinowitz, S.; Patricios, J. Small Steps, Strong Shield: Directly Measured, Moderate Physical Activity in 65,361 Adults Is Associated with Significant Protective Effects from Severe COVID-19 Outcomes. Br. J. Sports Med. 2022, 56, 568–576. [Google Scholar] [CrossRef]
- Vanhelst, J.; Srour, B.; Bourhis, L.; Charreire, H.; VerdotDeschasaux-Tanguy, C.M.; Druesne-Pecollo, N.; De Edelenyi, F.S.; Allègre, J.; Allès, B.; Deschamps, V.; et al. Association of SARS-CoV-2 Infection with Physical Activity Domains and Types. Sci. Rep. 2023, 13, 19187. [Google Scholar] [CrossRef]
- Tiku, V.; Tan, M.-W.; Dikic, I. Mitochondrial Functions in Infection and Immunity. Trends Cell Biol. 2020, 30, 263–275. [Google Scholar] [CrossRef]
- Monlun, M.; Hyernard, C.; Blanco, P.; Lartigue, L.; Faustin, B. Mitochondria as Molecular Platforms Integrating Multiple Innate Immune Signalings. J. Mol. Biol. 2017, 429, 1–13. [Google Scholar] [CrossRef]
- Balan, E.; Schwalm, C.; Naslain, D.; Nielens, H.; Francaux, M.; Deldicque, L. Regular Endurance Exercise Promotes Fission, Mitophagy, and Oxidative Phosphorylation in Human Skeletal Muscle Independently of Age. Front. Physiol. 2019, 10, 1088. [Google Scholar] [CrossRef]
- Mayer, K.A.; Stöckl, J.; Zlabinger, G.J.; Gualdoni, G.A. Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction. Front. Immunol. 2019, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Nunn, A.V.W.; Guy, G.W.; Brysch, W.; Botchway, S.W.; Frasch, W.; Calabrese, E.J.; Bell, J.D. SARS-CoV-2 and Mitochondrial Health: Implications of Lifestyle and Ageing. Immun. Ageing 2020, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Dyrstad, S.M.; Anderssen, S.A.; Edvardsen, E.; Hansen, B.H. Cardiorespiratory Fitness in Groups with Different Physical Activity Levels. Scand. Med. Sci. Sports 2016, 26, 291–298. [Google Scholar] [CrossRef]
- Huang, G.; Wang, R.; Chen, P.; Huang, S.C.; Donnelly, J.E.; Mehlferber, J.P. Dose–Response Relationship of Cardiorespiratory Fitness Adaptation to Controlled Endurance Training in Sedentary Older Adults. Eur. J. Prev. Cardiolog. 2016, 23, 518–529. [Google Scholar] [CrossRef]
- Yuan, Q.; Huang, H.; Chen, X.; Chen, R.; Zhang, Y.; Pan, X.; Chen, J.; Liu, N.; Du, H. Does Pre-Existent Physical Inactivity Have a Role in the Severity of COVID-19? Ther. Adv. Respir. Dis. 2021, 15, 175346662110252. [Google Scholar] [CrossRef]
- Hamer, M.; Kivimäki, M.; Gale, C.R.; Batty, G.D. Lifestyle Risk Factors, Inflammatory Mechanisms, and COVID-19 Hospitalization: A Community-Based Cohort Study of 387,109 Adults in UK. Brain Behav. Immun. 2020, 87, 184–187. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Silsbury, Z.; Goldsmith, R.; Rushton, A. Systematic Review of the Measurement Properties of Self-Report Physical Activity Questionnaires in Healthy Adult Populations: Figure 1. BMJ Open 2015, 5, e008430. [Google Scholar] [CrossRef]
- Brown, W.J.; Trost, S.G.; Bauman, A.; Mummery, K.; Owen, N. Test-Retest Reliability of Four Physical Activity Measures Used in Population Surveys. J. Sci. Med. Sport 2004, 7, 205–215. [Google Scholar] [CrossRef]
- Green, I.; Merzon, E.; Vinker, S.; Golan-Cohen, A.; Israel, A.; Scheinowitz, M.; Ishai, R.; Ashkenazi, S.; Magen, E. A Higher Frequency of Physical Activity Is Associated with Reduced Rates of SARS-CoV-2 Infection. Eur. J. Gen. Pract. 2023, 29, 2138855. [Google Scholar] [CrossRef]
- Leung, N.H.L. Transmissibility and Transmission of Respiratory Viruses. Nat. Rev. Microbiol. 2021, 19, 528–545. [Google Scholar] [CrossRef] [PubMed]
- Ezzatvar, Y.; Ramírez-Vélez, R.; Izquierdo, M.; Garcia-Hermoso, A. Physical Activity and Risk of Infection, Severity and Mortality of COVID-19: A Systematic Review and Non-Linear Dose–Response Meta-Analysis of Data from 1 853 610 Adults. Br. J. Sports Med. 2022, 56, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Halabchi, F.; Mahdaviani, B.; Tazesh, B.; Shab-Bidar, S.; Selk-Ghaffari, M. Association between Physical Activity and Risk of COVID-19 Infection or Clinical Outcomes of the Patients with COVID-19; A Systematic Review and Meta-Analysis. J. Prev. Med. Hyg. 2023, 64, E123–E136. [Google Scholar] [CrossRef] [PubMed]
- Chastin, S.F.M.; Abaraogu, U.; Bourgois, J.G.; Dall, P.M.; Darnborough, J.; Duncan, E.; Dumortier, J.; Pavón, D.J.; McParland, J.; Roberts, N.J.; et al. Effects of Regular Physical Activity on the Immune System, Vaccination and Risk of Community-Acquired Infectious Disease in the General Population: Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1673–1686. [Google Scholar] [CrossRef]
- WHO. Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001512-8. [Google Scholar]
- Rejeki, P.S.; Witarto, B.S.; Witarto, A.P.; Rifdah, S.N.; Wafa, I.A.; Utami, D.M.; Izzatunnisa, N.; Kencono Wungu, C.D.; Khaerunnisa, S.; Sakina; et al. Importance of Moderate-to-Vigorous Physical Activity during the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. J. Basic Clin. Physiol. Pharmacol. 2023, 34, 311–320. [Google Scholar] [CrossRef]
- Milanović, Z.; Sporiš, G.; Weston, M. Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Med. 2015, 45, 1469–1481. [Google Scholar] [CrossRef]
- Deley, G.; Kervio, G.; Van Hoecke, J.; Verges, B.; Grassi, B.; Casillas, J.-M. Effects of a One-Year Exercise Training Program in Adults over 70 Years Old: A Study with a Control Group. Aging Clin. Exp. Res. 2007, 19, 310–315. [Google Scholar] [CrossRef]
- Hupin, D.; Edouard, P.; Gremeaux, V.; Garet, M.; Celle, S.; Pichot, V.; Maudoux, D.; Barthélémy, J.; Roche, F. Physical Activity to Reduce Mortality Risk. Eur. Heart J. 2017, 38, 1534–1537. [Google Scholar] [CrossRef]
- Lunt, S.Y.; Vander Heiden, M.G. Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27, 441–464. [Google Scholar] [CrossRef]
- Yu, L.; Chen, X.; Wang, L.; Chen, S. Oncogenic Virus-Induced Aerobic Glycolysis and Tumorigenesis. J. Cancer 2018, 9, 3699–3706. [Google Scholar] [CrossRef]
- Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef]
- Lebeau, G.; Paulo-Ramos, A.; Hoareau, M.; El Safadi, D.; Meilhac, O.; Krejbich-Trotot, P.; Roche, M.; Viranaicken, W. Metabolic Dependency Shapes Bivalent Antiviral Response in Host Cells in Response to Poly:IC: The Role of Glutamine. Viruses 2024, 16, 1391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, G.; Xu, Z.-G.; Tu, H.; Hu, F.; Dai, J.; Chang, Y.; Chen, Y.; Lu, Y.; Zeng, H.; et al. Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell 2019, 178, 176–189.e15. [Google Scholar] [CrossRef]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious Disease in an Era of Global Change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
Groups | Total Research Sample (n = 290) | COVID-19 Diagnosis not Reported (n = 149) | COVID-19 Diagnosis Reported (n = 141) | p Value | |
---|---|---|---|---|---|
Variables | |||||
Female, n (%) | 179 (61.7) | 94 (32.4) | 85 (29.3) | 0.624 | |
Age (y) | 27.5 ± 21.3 | 27.8 ± 20.7 | 26.9 ± 22.3 | 0.419 | |
Body mass index (kg/m2) | 22.9 ± 4.8 | 23.0 ± 4.6 | 22.8 ± 5.0 | 0.611 | |
Alcohol Consumption | Never, n (%) | 71 (24.5) | 46 (15.9) | 25 (8.6) | <0.05 |
Occasionally, n (%) | 136 (46.9) | 70 (24.1) | 66 (22.8) | ||
1 time/week, n (%) | 48 (16.6) | 19 (6.6) | 29 (10.0) | ||
2–3 times/week, n (%) | 24 (8.3) | 7 (2.4) | 17 (5.9) | ||
Every day or almost, n (%) | 11 (3.8) | 7 (2.4) | 4 (1.4) | ||
Chronic disease, n (%) | 36 (12.4) | 23 (7.9) | 13 (4.5) | 0.109 | |
Chronic obstructive pulmonary disease, n (%) | 1 (0.3) | 1 (0.3) | 0 (0) | 0.330 | |
Cancer, n (%) | 1 (0.3) | 0 (0) | 1 (0.3) | 0.303 | |
Metastatic cancer, n (%) | 1 (0.3) | 0 (0) | 1 (0.3) | 0.303 | |
Renal Disease, n (%) | 4 (1.4) | 2 (0.7) | 2 (0.7) | 0.956 | |
Diabetes, n (%) | 1 (0.3) | 1 (0.3) | 0 (0) | 0.330 | |
Hypertension, n (%) | 10 (3.4) | 5 (1.7) | 5 (1.7) | 0.929 | |
Cardiovascular Disease, n (%) | 5 (1.7) | 1 (0.3) | 4 (1.4) | 0.157 | |
Other Disease, n (%) | 32 (11.0) | 20 (6.9) | 12 (4.1) | 0.182 | |
Overall IPAQ Score | Low, n (%) | 33 (11.4) | 18 (6.2) | 15 (5.2) | 0.589 |
Moderate, n (%) | 89 (30.7) | 49 (16.9) | 40 (13.8) | ||
High, n (%) | 168 (57.9) | 82 (28.3) | 86 (29.6) | ||
Detailed IPAQ Score | Number of day(s) of intense PA /week | 2.0 ± 3.0 | 2.0 ± 3.3 | 1.0 ± 3.0 | 0.176 |
Number of hour(s) of intense PA /week | 1.5 ± 4.5 | 1.5 ± 4.5 | 1.5 ± 4.5 | 0.502 | |
Number of day(s) of moderate PA /week | 3.0 ± 2.0 | 2.0 ± 3.0 | 3.0 ± 2.0 | 0.079 | |
Number of hour(s) of moderate PA /week | 2.5 ± 3.0 | 2.5 ± 2.0 | 2.5 ± 3.0 | 0.083 |
Unadjusted OR (95% CI) | p | Adjusted OR (95% CI) | p | |
---|---|---|---|---|
Overall IPAQ Score | ||||
Low | 1 | - | 1 | - |
Moderate | 0.98 (0.44–2.19) | 0.960 | 0.97 (0.42–2.25) | 0.946 |
High | 1.26 (0.60–2.66) | 0.547 | 1.06 (0.48–2.37) | 0.884 |
Detailed IPAQ Score | ||||
Intense PA | ||||
Number of day(s) of intense PA/week | 0.92 (0.81–1.04) | 0.164 | 0.85 (0.74–0.98) | 0.030 |
Number of hour(s) of intense PA/week | 0.98 (0.91–1.05) | 0.498 | 0.94 (0.86–1.02) | 0.126 |
Moderate PA | ||||
Number of day(s) of moderate PA/week | 1.10 (0.98–1.22) | 0.110 | 1.10 (0.97–1.23) | 0.137 |
Number of hour(s) of moderate PA/week | 1.03 (0.95–1.10) | 0.372 | 1.02 (0.95–1.10) | 0.630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazeneuve, C.; Couret, D.; Lebeau, G.; Viranaicken, W.; Mathieu, M.-E.; Chouchou, F. Protective Effect of Daily Physical Activity Against COVID-19 in a Young Adult Population on Reunion Island. Med. Sci. 2025, 13, 28. https://doi.org/10.3390/medsci13010028
Cazeneuve C, Couret D, Lebeau G, Viranaicken W, Mathieu M-E, Chouchou F. Protective Effect of Daily Physical Activity Against COVID-19 in a Young Adult Population on Reunion Island. Medical Sciences. 2025; 13(1):28. https://doi.org/10.3390/medsci13010028
Chicago/Turabian StyleCazeneuve, Camille, David Couret, Gregorie Lebeau, Wildriss Viranaicken, Marie-Eve Mathieu, and Florian Chouchou. 2025. "Protective Effect of Daily Physical Activity Against COVID-19 in a Young Adult Population on Reunion Island" Medical Sciences 13, no. 1: 28. https://doi.org/10.3390/medsci13010028
APA StyleCazeneuve, C., Couret, D., Lebeau, G., Viranaicken, W., Mathieu, M.-E., & Chouchou, F. (2025). Protective Effect of Daily Physical Activity Against COVID-19 in a Young Adult Population on Reunion Island. Medical Sciences, 13(1), 28. https://doi.org/10.3390/medsci13010028