A Scoping Review on the Prevalence of Hashimoto’s Thyroiditis and the Possible Associated Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Selection Criteria
2.2. Data Extraction
2.3. Data Analysis
3. Results
3.1. Origins of Studies and Diagnostic Criteria Used
3.2. Global Prevalence of HT
3.3. Prevalence of HT in Europe
3.4. Prevalence of HT in Africa
3.5. Prevalence of HT in Oceania
3.6. Prevalence of HT in Asia
3.7. Prevalence of HT in North America and South America
4. Discussion
4.1. Sex and Age
4.2. Socioeconomic Status and Disparities in Health Care and Ethnicity
4.3. Seasonality
4.4. Racial Variations and Genetic Polymorphisms
4.5. The Kaleidoscope of Autoimmunity
4.6. Obesity
4.7. Environmental Factors and Contaminants
4.8. Smoking and Alcohol Intake
4.9. Iodine Intake and Population Iodine Status
4.10. The Population Status of Other Micronutrients
4.11. Overdiagnosis
4.12. Temporal Trends
4.13. Temporal Trends in Thyroid Cancer
4.14. Other Factors
4.15. Diagnostic Criteria and the Definition of the Disease
4.16. Drugs
5. Strengths and Weaknesses of the Present Review
Future Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pisetsky, D.S. Pathogenesis of autoimmune disease. Nat. Rev. Nephrol. 2023, 19, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, M.D.; Remedios, K.A.; Abbas, A.K. Mechanisms of human autoimmunity. J. Clin. Investig. 2015, 125, 2228–2233. [Google Scholar] [CrossRef] [PubMed]
- Bieber, K.; Hundt, J.E.; Yu, X.; Ehlers, M.; Petersen, F.; Karsten, C.M.; Köhl, J.; Kridin, K.; Kalies, K.; Kasprick, A.; et al. Autoimmune pre–disease. Autoimmun. Rev. 2023, 22, 103236. [Google Scholar] [CrossRef]
- Theofilopoulos, A.N.; Kono, D.H.; Baccala, R. The multiple pathways to autoimmunity. Nat. Immunol. 2017, 18, 716–724. [Google Scholar] [CrossRef]
- Samuels, H.; Malov, M.; Saha Detroja, T.; Ben Zaken, K.; Bloch, N.; Gal-Tanamy, M.; Avni, O.; Polis, B.; Samson, A.O. Autoimmune Disease Classification Based on PubMed Text Mining. J. Clin. Med. 2022, 11, 4345. [Google Scholar] [CrossRef] [PubMed]
- Vargas–Uricoechea, H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023, 12, 918. [Google Scholar] [CrossRef]
- Tywanek, E.; Michalak, A.; Świrska, J.; Zwolak, A. Autoimmunity, New Potential Biomarkers and the Thyroid Gland–The Perspective of Hashimoto’s Thyroiditis and Its Treatment. Int. J. Mol. Sci. 2024, 25, 4703. [Google Scholar] [CrossRef]
- Petranović Ovčariček, P.; Görges, R.; Giovanella, L. Autoimmune Thyroid Diseases. Semin. Nucl. Med. 2024, 54, 219–236. [Google Scholar] [CrossRef]
- Ajjan, R.A.; Weetman, A.P. The Pathogenesis of Hashimoto’s Thyroiditis: Further Developments in our Understanding. Horm Metab Res. 2015, 47, 702–710. [Google Scholar] [CrossRef]
- Asa, S.L.; Erickson, L.A.; Rindi, G. The Spectrum of Endocrine Pathology. Endocr. Pathol. 2023, 34, 368–381. [Google Scholar] [CrossRef]
- Vanderpump, M.P. The epidemiology of thyroid disease. Br. Med. Bull. 2011, 99, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Conrad, N.; Misra, S.; Verbakel, J.Y.; Verbeke, G.; Molenberghs, G.; Taylor, P.N.; Mason, J.; Sattar, N.; McMurray, J.J.V.; McInnes, I.B.; et al. Incidence, prevalence, and co–occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population–based cohort study of 22 million individuals in the UK. Lancet 2023, 401, 1878–1890. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Y.; Shen, Y.; Tian, R.; Sheng, Y.; Que, H. Global prevalence and epidemiological trends of Hashimoto’s thyroiditis in adults: A systematic review and meta–analysis. Front. Public. Health 2022, 10, 1020709. [Google Scholar] [CrossRef]
- Aromataris, E.; Fernandez, R.; Godfrey, C.; Holly, C.; Kahlil, H.; Tungpunkom, P. Summarizing systematic reviews: Methodological development, conduct and reporting of an Umbrella review approach. Int. J. Evid. Based Healthc. 2015, 13, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Dingle, P.R.; Ferguson, A.; Horn, D.B.; Tubmen, J.; Hall, R. The incidence of thyroglobulin antibodies and thyroid enlargement in a general practice in northeast England. Clin. Exp. Immunol. 1966, 1, 277–284. [Google Scholar] [PubMed]
- Jacobs, A.; Entwistle, C.C.; Campbell, H.; Waters, W.E. A random sample from Wales. IV. Circulating gastric and thyroid antibodies and antinuclear factor. Br. J. Haematol. 1969, 17, 589–595. [Google Scholar] [CrossRef]
- Prentice, L.M.; Phillips, D.I.; Sarsero, D.; Beever, K.; McLachlan, S.M.; Smith, B.R. Geographical distribution of subclinical autoimmune thyroid disease in Britain: A study using highly sensitive direct assays for autoantibodies to thyroglobulin and thyroid peroxidase. Acta Endocrinol. 1990, 123, 493–498. [Google Scholar] [CrossRef]
- Tunbridge, W.M.; Evered, D.C.; Hall, R.; Appleton, D.; Brewis, M.; Clark, F.; Evans, J.G.; Young, E.; Bird, T.; Smith, P.A. The spectrum of thyroid disease in a community: The Whickham survey. Clin. Endocrinol. 1977, 7, 481–493. [Google Scholar] [CrossRef]
- Aho, K.; Virkola, P.; Heinonen, O.P. Determination of thyroglobulin antibodies using chromic chloride as a coupling reagent. Evaluation of the test and characterization of antibodies in an adult population. Acta Endocrinol. 1971, 68, 196–202. [Google Scholar]
- Gordin, A.; Heinonen, O.P.; Saarinen, P.; Lamberg, B.A. Serum–thyrotrophin in symptomless autoimmune thyroiditis. Lancet 1972, 1, 551–554. [Google Scholar] [CrossRef]
- Bjøro, T.; Gaarder, P.I.; Smeland, E.B.; Kornstad, L. Thyroid antibodies in blood donors: Prevalence and clinical significance. Acta Endocrinol. 1984, 105, 324–329. [Google Scholar] [CrossRef]
- Bryhni, B.; Aanderud, S.; Sundsfjord, J.; Rekvig, O.P.; Jorde, R. Thyroid antibodies in northern Norway: Prevalence, persistence and relevance. J. Intern. Med. 1996, 239, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Völzke, H.; Lüdemann, J.; Robinson, D.M.; Spieker, K.W.; Schwahn, C.; Kramer, A.; John, U.; Meng, W. The prevalence of undiagnosed thyroid disorders in a previously iodine–deficient area. Thyroid 2003, 13, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Döbert, N.; Balzer, K.; Diener, J.; Wegscheider, K.; Vaupel, R.; Grünwald, F. Thyroid sonomorphology, thyroid peroxidase antibodies and thyroid function: New epidemiological data in unselected German employees. Nuklearmedizin 2008, 47, 194–199. [Google Scholar] [PubMed]
- Khattak, R.M.; Ittermann, T.; Nauck, M.; Below, H.; Völzke, H. Monitoring the prevalence of thyroid disorders in the adult population of Northeast Germany. Popul. Health Metr. 2016, 14, 39. [Google Scholar] [CrossRef]
- Aghini–Lombardi, F.; Antonangeli, L.; Martino, E.; Vitti, P.; Maccherini, D.; Leoli, F.; Rago, T.; Grasso, L.; Valeriano, R.; Balestrieri, A.; et al. The spectrum of thyroid disorders in an iodine–deficient community: The Pescopagano survey. J. Clin. Endocrinol. Metab. 1999, 84, 561–566. [Google Scholar] [CrossRef]
- Benvenga, S.; Trimarchi, F. Changed presentation of Hashimoto’s thyroiditis in North–Eastern Sicily and Calabria (Southern Italy) based on a 31–year experience. Thyroid 2008, 18, 429–441. [Google Scholar] [CrossRef]
- Sardu, C.; Cocco, E.; Mereu, A.; Massa, R.; Cuccu, A.; Marrosu, M.G.; Contu, P. Population based study of 12 autoimmune diseases in Sardinia, Italy: Prevalence and comorbidity. PLoS ONE 2012, 7, e32487. [Google Scholar] [CrossRef]
- Aghini–Lombardi, F.; Fiore, E.; Tonacchera, M.; Antonangeli, L.; Rago, T.; Frigeri, M.; Provenzale, A.M.; Montanelli, L.; Grasso, L.; Pinchera, A.; et al. The effect of voluntary iodine prophylaxis in a small rural community: The Pescopagano survey 15 years later. J. Clin. Endocrinol. Metab. 2013, 98, 1031–1039. [Google Scholar] [CrossRef]
- Tammaro, A.; Pigliacelli, F.; Fumarola, A.; Persechino, S. Trends of thyroid function and autoimmunity to 5 years after the introduction of mandatory iodization in Italy. Eur. Ann. Allergy Clin. Immunol. 2016, 48, 77–81. [Google Scholar]
- Pilli, T.; Cardinale, S.; Dalmiglio, C.; Secchi, C.; Fralassi, N.; Cevenini, G.; Di Cairano, G.; Maino, F.; Forleo, R.; Pacini, F.; et al. Autoimmune thyroid diseases are more common in patients with prolactinomas: A retrospective case–control study in an Italian cohort. J. Endocrinol. Investig. 2019, 42, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, I.B.; Knudsen, N.; Jørgensen, T.; Perrild, H.; Ovesen, L.; Laurberg, P. Thyroid peroxidase and thyroglobulin autoantibodies in a large survey of populations with mild and moderate iodine deficiency. Clin. Endocrinol. 2003, 58, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, I.B.; Knudsen, N.; Carlé, A.; Vejbjerg, P.; Jørgensen, T.; Perrild, H.; Ovesen, L.; Rasmussen, L.B.; Laurberg, P. A cautious iodization programme bringing iodine intake to a low recommended level is associated with an increase in the prevalence of thyroid autoantibodies in the population. Clin. Endocrinol. 2011, 75, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Tang Møllehave, L.; Knudsen, N.; Linneberg, A.; Bülow Pedersen, I.; Ravn–Haren, G.; Madsen, A.L.; Carlé, A.; Cerqueira, C.; Krejbjerg, A.; Rasmussen, L.B.; et al. The Danish investigation on iodine intake and thyroid disease (DanThyr): History and implications. Eur. Thyroid. J. 2024, 13, e230230. [Google Scholar] [CrossRef]
- Valdés, S.; Maldonado–Araque, C.; Lago–Sampedro, A.; Lillo, J.A.; Garcia–Fuentes, E.; Perez–Valero, V.; Gutierrez–Repiso, C.; Ocon–Sanchez, P.; Goday, A.; Urrutia, I.; et al. Population–Based National Prevalence of Thyroid Dysfunction in Spain and Associated Factors: Di@bet.es study. Hyroid 2017, 27, 156–166. [Google Scholar] [CrossRef]
- Jóźków, P.; Lwow, F.; Słowińska–Lisowska, M.; Mędraś, M. Trends in the prevalence of autoimmune thyroiditis in the leading private health–care provider in Poland. Adv. Clin. Exp. Med. 2017, 26, 497–503. [Google Scholar] [CrossRef]
- Troshina, E.A.; Platonova, N.M.; Panfilova, E.A. Dynamics of epidemiological indicators of thyroid pathology in the population of the Russian Federation: Analytical report for the period 2009–2018. Probl. Endokrinol. 2021, 67, 10–19. [Google Scholar] [CrossRef]
- Izic, B.; Custovic, A.; Caluk, S.; Fejzic, H.; Kundalic, B.S.; Husejnovic, M.S. The Epidemiological Characteristics of Autoimmune Thyroiditis in the Tuzla Canton in the Period from 2015 to 2020. Mater. Sociomed. 2021, 33, 288–292. [Google Scholar] [CrossRef]
- Strikić Đula, I.; Pleić, N.; Babić Leko, M.; Gunjača, I.; Torlak, V.; Brdar, D.; Punda, A.; Polašek, O.; Hayward, C.; Zemunik, T. Epidemiology of Hypothyroidism, Hyperthyroidism and Positive Thyroid Antibodies in the Croatian Population. Biology 2022, 11, 394. [Google Scholar] [CrossRef]
- Chabchoub, G.; Mnif, M.; Maalej, A.; Charfi, N.; Ayadi, H.; Abid, M. Epidemiologic study of autoimmune thyroid disease in south Tunisia. Ann. Endocrinol. 2006, 67, 591–595. [Google Scholar] [CrossRef]
- Okosieme, O.E.; Taylor, R.C.; Ohwovoriole, A.E.; Parkes, A.B.; Lazarus, J.H. Prevalence of thyroid antibodies in Nigerian patients. QJM 2007, 100, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Sarfo–Kantanka, O.; Kyei, I.; Sarfo, F.S.; Ansah, E.O. Thyroid Disorders in Central Ghana: The Influence of 20 Years of Iodization. J. Thyroid. Res. 2017, 2017, 7843972. [Google Scholar] [CrossRef]
- O’Leary, P.C.; Feddema, P.H.; Michelangeli, V.P.; Leedman, P.J.; Chew, G.T.; Knuiman, M.; Kaye, J.; Walsh, J.P. Investigations of thyroid hormones and antibodies based on a community health survey: The Busselton thyroid study. Clin. Endocrinol. 2006, 64, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, P.; Lucas, M.; Brunt, S.; Lucas, A.; Hollingsworth, P.; Bundell, C. Low level autoantibodies can be frequently detected in the general Australian population. Pathology 2016, 48, 483–490. [Google Scholar] [CrossRef]
- Okayasu, I.; Hatakeyama, S.; Tanaka, Y.; Sakurai, T.; Hoshi, K.; Lewis, P.D. Is focal chronic autoimmune thyroiditis an age–related disease? Differences in incidence and severity between Japanese and British. J. Pathol. 1991, 163, 257–264. [Google Scholar] [CrossRef]
- Konno, N.; Yuri, K.; Taguchi, H.; Miura, K.; Taguchi, S.; Hagiwara, K.; Murakami, S. Screening for thyroid diseases in an iodine sufficient area with sensitive thyrotrophin assays, and serum thyroid autoantibody and urinary iodide determinations. Clin. Endocrinol. 1993, 38, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Morinaka, S. On the frequency of thyroid diseases in outpatients in an ENT clinic. Auris Nasus Larynx. 1995, 22, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Nagata, K.; Takasu, N.; Akamine, H.; Ohshiro, C.; Komiya, I.; Murakami, K.; Suzawa, A.; Nomura, T. Urinary iodine and thyroid antibodies in Okinawa, Yamagata, Hyogo, and Nagano, Japan: The differences in iodine intake do not affect thyroid antibody positivity. Endocr. J. 1998, 45, 797–803. [Google Scholar] [CrossRef]
- Kurata, S.; Ishibashi, M.; Hiromatsu, Y.; Kaida, H.; Miyake, I.; Uchida, M.; Hayabuchi, N. Diffuse and diffuse–plus–focal uptake in the thyroid gland identified by using FDG–PET: Prevalence of thyroid cancer and Hashimoto’s thyroiditis. Ann. Nucl. Med. 2007, 21, 325–330. [Google Scholar] [CrossRef]
- Teng, W.; Shan, Z.; Teng, X.; Guan, H.; Li, Y.; Teng, D.; Li, C. Effect of iodine intake on thyroid diseases in China. N. Engl. J. Med. 2006, 354, 2783–2793. [Google Scholar] [CrossRef]
- Teng, X.; Shi, X.; Shan, Z.; Jin, Y.; Guan, H.; Li, Y.; Yang, F.; Wang, W.; Tong, Y.; Teng, W. Safe range of iodine intake levels: A comparative study of thyroid diseases in three women population cohorts with slightly different iodine intake levels. Biol. Trace Elem. Res. 2008, 121, 23–30. [Google Scholar] [CrossRef]
- Li, Y.; Teng, D.; Shan, Z.; Teng, X.; Guan, H.; Yu, X.; Fan, C.; Chong, W.; Yang, F.; Dai, H.; et al. Antithyroperoxidase and antithyroglobulin antibodies in a five–year follow–up survey of populations with different iodine intakes. J. Clin. Endocrinol. Metab. 2008, 93, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Shan, Z.; Chen, Y.; Lai, Y.; Yu, J.; Shan, L.; Bai, X.; Li, Y.; Li, N.; Li, Z.; et al. More than adequate iodine intake may increase subclinical hypothyroidism and autoimmune thyroiditis: A cross–sectional study based on two Chinese communities with different iodine intake levels. Eur. J. Endocrinol. 2011, 164, 943–950. [Google Scholar] [CrossRef]
- Wu, Q.; Rayman, M.P.; Lv, H.; Schomburg, L.; Cui, B.; Gao, C.; Chen, P.; Zhuang, G.; Zhang, Z.; Peng, X.; et al. Low Population Selenium Status Is Associated with Increased Prevalence of Thyroid Disease. J. Clin. Endocrinol. Metab. 2015, 100, 4037–4047. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Ding, G.; Lou, X.; Wang, X.; Mo, Z.; Zhu, W.; Zhou, J.; Mao, G. Incidence of thyroid diseases in Zhejiang Province, China, after 15 years of salt iodization. J. Trace Elem. Med. Biol. 2016, 36, 57–64. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.N.; Cui, J.; Xin, Z.; Yang, G.R.; Niu, M.J.; Yang, J.K. Using Hashimoto thyroiditis as gold standard to determine the upper limit value of thyroid stimulating hormone in a Chinese cohort. BMC Endocr. Disord. 2016, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Qu, M.; Wu, H.; Ren, B.; Jiang, W.; Wang, X.; Liu, L.; Shen, H. Autoimmune thyroid diseases after 25 years of universal salt iodisation: An epidemiological study of Chinese adults in areas with different water iodine levels. Br. J. Nutr. 2020, 124, 853–864. [Google Scholar] [CrossRef]
- Chen, Y.; Han, B.; Yu, J.; Chen, Y.; Cheng, J.; Zhu, C.; Xia, F.; Wang, N.; Lu, Y. Influence of Rapid Urbanization on Thyroid Autoimmune Disease in China. Int. J. Endocrinol. 2021, 2021, 9967712. [Google Scholar] [CrossRef]
- Yu, Z.; Yu, Y.; Wan, Y.; Fan, J.; Meng, H.; Li, S.; Wang, Y.; Wang, T.; Ling, R. Iodine intake level and incidence of thyroid disease in adults in Shaanxi province: A cross–sectional study. Ann. Transl. Med. 2021, 9, 1567. [Google Scholar] [CrossRef]
- Fernando, R.F.; Chandrasinghe, P.C.; Pathmeswaran, A.A. The prevalence of autoimmune thyroiditis after universal salt iodisation in Sri Lanka. Ceylon. Med. J. 2012, 57, 116–119. [Google Scholar] [CrossRef]
- Amouzegar, A.; Gharibzadeh, S.; Kazemian, E.; Mehran, L.; Tohidi, M.; Azizi, F. The Prevalence, Incidence and Natural Course of Positive Antithyroperoxidase Antibodies in a Population–Based Study: Tehran Thyroid Study. PLoS ONE 2017, 12, e0169283. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kazmi, S.Z.; Kang, T.; Sohn, S.Y.; Kim, D.S.; Hann, H.J.; Ahn, H.S. Familial Risk of Hashimoto’s Thyroiditis Among First–Degree Relatives: A Population–Based Study in Korea. Thyroid 2021, 31, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Ajlouni, K.M.; Khawaja, N.; El–Khateeb, M.; Batieha, A.; Farahid, O. The prevalence of thyroid dysfunction in Jordan: A national population–based survey. BMC Endocr. Disord. 2022, 22, 253. [Google Scholar] [CrossRef] [PubMed]
- Okayasu, I.; Hara, Y.; Nakamura, K.; Rose, N.R. Racial and age–related differences in incidence and severity of focal autoimmune thyroiditis. Am. J. Clin. Pathol. 1994, 101, 698–702. [Google Scholar] [CrossRef]
- Flores–Rebollar, A.; Moreno–Castañeda, L.; Vega–Servín, N.S.; López–Carrasco, G.; Ruiz–Juvera, A. Prevalence of autoimmune thyroiditis and thyroid dysfunction in healthy adult mexicans with a slightly excessive iodine intake. Nutr. Hosp. 2015, 32, 918–924. [Google Scholar]
- Caturegli, G.; Caturegli, P. Disease prevalence in a rural Andean population of central Peru: A focus on autoimmune and allergic diseases. Auto. Immun. Highlights 2016, 7, 3. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Wang, H.; Zhang, X. Trends in Prevalence of Thyroid Dysfunction and its Associations with Mortality Among US Participants, 1988–2012. J. Clin. Endocrinol. Metab. 2024, 109, e657–e666. [Google Scholar] [CrossRef]
- Tomimori, E.; Pedrinola, F.; Cavaliere, H.; Knobel, M.; Medeiros–Neto, G. Prevalence of incidental thyroid disease in a relatively low iodine intake area. Thyroid 1995, 5, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Camargo, R.Y.; Tomimori, E.K.; Neves, S.C.; Knobel, M.; Medeiros–Neto, G. Prevalence of chronic autoimmune thyroiditis in the urban area neighboring a petrochemical complex and a control area in Sao Paulo, Brazil. Clinics 2006, 61, 307–312. [Google Scholar] [CrossRef]
- Camargo, R.Y.; Tomimori, E.K.; Neves, S.C.; G S Rubio, I.; Galrão, A.L.; Knobel, M.; Medeiros–Neto, G. Thyroid and the environment: Exposure to excessive nutritional iodine increases the prevalence of thyroid disorders in Sao Paulo, Brazil. Eur. J. Endocrinol. 2008, 159, 293–299. [Google Scholar] [CrossRef]
- Vecchiatti, S.M.; Lin, C.J.; Capelozzi, V.L.; Longatto–Filho, A.; Bisi, H. Prevalence of thyroiditis and immunohistochemistry study searching for a morphologic consensus in morphology of autoimmune thyroiditis in a 4613 autopsies series. Appl. Immunohistochem. Mol. Morphol. 2015, 23, 402–408. [Google Scholar] [CrossRef]
- Tolentino Júnior, D.S.; de Oliveira, C.M.; de Assis, E.M. Population–based Study of 24 Autoimmune Diseases Carried Out in a Brazilian Microregion. J. Epidemiol. Glob. Health 2019, 9, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Vargas–Uricoechea, H.; Agredo–Delgado, V.; Vargas–Sierra, H.D.; Pinzón–Fernández, M.V. Prevalence of Functional Alterations and the Effects of Thyroid Autoimmunity on the Levels of TSH in an Urban Population of Colombia: A Population–Based Study. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 857–866. [Google Scholar] [CrossRef]
- Dwivedi, S.N.; Kalaria, T.; Buch, H. Thyroid autoantibodies. J. Clin. Pathol. 2023, 76, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ni, W.; Zhang, L.; Fan, K.; Sun, Y.; Liu, C.; Xu, S. Age–specific association between thyroid autoimmunity and hypothyroidism in Chinese adults aged over 65 years: A cross–sectional study. Front. Endocrinol. 2023, 14, 1216308. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.N.; Albrecht, D.; Scholz, A.; Gutierrez–Buey, G.; Lazarus, J.H.; Dayan, C.M.; Okosieme, O.E. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 2018, 14, 301–316. [Google Scholar] [CrossRef]
- Vanderpump, M.P.; Tunbridge, W.M.; French, J.M.; Appleton, D.; Bates, D.; Clark, F.; Grimley Evans, J.; Hasan, D.M.; Rodgers, H.; Tunbridge, F.; et al. The incidence of thyroid disorders in the community: A twenty–year follow–up of the Whickham Survey. Clin. Endocrinol. 1995, 43, 55–68. [Google Scholar] [CrossRef]
- Cooper, G.S.; Stroehla, B.C. The epidemiology of autoimmune diseases. Autoimmun. Rev. 2003, 2, 119–125. [Google Scholar] [CrossRef]
- Empson, M.; Flood, V.; Ma, G.; Eastman, C.J.; Mitchell, P. Prevalence of thyroid disease in an older Australian population. Intern. Med. J. 2007, 37, 448–455. [Google Scholar] [CrossRef]
- Chen, D.W.; Ospina, N.S.; Haymart, M.R. Social Determinants of Health and Disparities in Thyroid Care. J. Clin. Endocrinol. Metab. 2024, 109, e1309–e1313. [Google Scholar] [CrossRef]
- Gillis, A.; Chen, H.; Wang, T.S.; Dream, S. Racial and Ethnic Disparities in the Diagnosis and Treatment of Thyroid Disease. J. Clin. Endocrinol. Metab. 2024, 109, e1336–e1344. [Google Scholar] [CrossRef] [PubMed]
- Díez, J.J.; Iglesias, P. Prevalence of thyroid dysfunction and its relationship to income level and employment status: A nationwide population–based study in Spain. Hormones 2023, 22, 243–252. [Google Scholar] [CrossRef]
- St Sauver, J.L.; Kapoor, E.; Bielinski, S.J.; MacLaughlin, K.L.; Faubion, S.S.; Jiang, R.; Rocca, W.A. Health care concerns in women at midlife: Differences by race, ethnicity, and neighborhood socioeconomic status. Menopause 2025, 32, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Meisinger, C.; Ittermann, T.; Wallaschofski, H.; Heier, M.; Below, H.; Kramer, A.; Döring, A.; Nauck, M.; Völzke, H. Geographic variations in the frequency of thyroid disorders and thyroid peroxidase antibodies in persons without former thyroid disease within Germany. Eur. J. Endocrinol. 2012, 167, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Thvilum, M.; Brandt, F.; Brix, T.H.; Hegedüs, L. Month of birth is associated with the subsequent diagnosis of autoimmune hypothyroidism. A nationwide Danish register–based study. Clin. Endocrinol. 2017, 87, 832–837. [Google Scholar] [CrossRef]
- Ramos–Leví, A.M.; Collado, G.; Marazuela, M. Seasonality of month of birth in patients with autoimmune endocrine diseases: A systematic review. Endocrinol. Diabetes Nutr. 2022, 69, 779–790. [Google Scholar] [CrossRef]
- Kyrgios, I.; Giza, S.; Tsinopoulou, V.R.; Maggana, I.; Haidich, A.B.; Galli–Tsinopoulou, A. Seasonality of month of birth in children and adolescents with autoimmune thyroiditis: A continuing conundrum. J. Pediatr. Endocrinol. Metab. 2018, 31, 1123–1131. [Google Scholar] [CrossRef]
- Marcec, R.; Stjepanovic, J.; Likic, R. Seasonality of Hashimoto Thyroiditis: Infodemiology Study of Google Trends Data. JMIR Bioinform. Biotechnol. 2022, 3, e38976. [Google Scholar] [CrossRef]
- Lee, H.J.; Li, C.W.; Hammerstad, S.S.; Stefan, M.; Tomer, Y. Immunogenetics of autoimmune thyroid diseases: A comprehensive review. J. Autoimmunit. 2015, 64, 82–90. [Google Scholar] [CrossRef]
- McLeod, D.S.; Cooper, D.S.; Ladenson, P.W.; Whiteman, D.C.; Jordan, S.J. Race/Ethnicity and the prevalence of thyrotoxicosis in young americans. Thyroid 2015, 25, 621–628. [Google Scholar] [CrossRef]
- Li, Q.; Yang, W.; Li, J.; Shan, Z. Emerging trends and hot spots in autoimmune thyroiditis research from 2000 to 2022: A bibliometric analysis. Front. Immunol. 2022, 13, 953465. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, J.; Wu, Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct. Target. Ther. 2024, 9, 263. [Google Scholar] [CrossRef]
- Tripathi, P.; Bhushan, D.; Banerjee, A.; Mahto, M. The Kaleidoscope of Polyautoimmunity: An Odyssey of Diagnostic Dilemmas. Cureus 2024, 16, e57799. [Google Scholar] [CrossRef] [PubMed]
- Somers, E.C.; Thomas, S.L.; Smeeth, L.; Hall, A.J. Are individuals with an autoimmune disease at higher risk of a second autoimmune disorder? Am. J. Epidemiol. 2009, 169, 749–755. [Google Scholar] [CrossRef]
- Botello, A.; Herrán, M.; Salcedo, V.; Rodríguez, Y.; Anaya, J.M.; Rojas, M. Prevalence of latent and overt polyautoimmunity in autoimmune thyroid disease: A systematic review and meta–analysis. Clin. Endocrinol. 2020, 93, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Luo, Z.; Wang, X. The association of common autoimmune diseases with autoimmune thyroiditis: A two–sample Mendelian randomization study. Front. Endocrinol. 2024, 15, 1383221. [Google Scholar] [CrossRef]
- Duntas, L.H.; Biondi, B. The interconnections between obesity, thyroid function, and autoimmunity: The multifold role of leptin. Thyroid 2013, 23, 646–653. [Google Scholar] [CrossRef]
- Song, R.H.; Wang, B.; Yao, Q.M.; Li, Q.; Jia, X.; Zhang, J.A. The Impact of Obesity on Thyroid Autoimmunity and Dysfunction: A Systematic Review and Meta–Analysis. Front. Immunol. 2019, 10, 2349. [Google Scholar] [CrossRef]
- Huo, J.; Xu, Y.; Yu, J.; Guo, Y.; Hu, X.; Ou, D.; Qu, R.; Zhao, L. Causal association between body mass index and autoimmune thyroiditis: Evidence from Mendelian randomization. Eur. J. Med. Res. 2023, 28, 526. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 February 2025).
- Jing, M.; Shao, S.; Ma, S.; Gao, L.; Wang, Q.; Zhou, M. Exploring the link between obesity and hypothyroidism in autoimmune thyroid diseases: A metabolic perspective. Front. Mol. Biosci. 2024, 11, 1379124. [Google Scholar] [CrossRef]
- Tsigalou, C.; Vallianou, N.; Dalamaga, M. Autoantibody Production in Obesity: Is There Evidence for a Link Between Obesity and Autoimmunity? Curr. Obes. Rep. 2020, 9, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Baranowska–Bik, A.; Bik, W. The Association of Obesity with Autoimmune Thyroiditis and Thyroid Function–Possible Mechanisms of Bilateral Interaction. Int. J. Endocrinol. 2020, 2020, 8894792. [Google Scholar] [CrossRef] [PubMed]
- Street, M.E.; Shulhai, A.M.; Petraroli, M.; Patianna, V.; Donini, V.; Giudice, A.; Gnocchi, M.; Masetti, M.; Montani, A.G.; Rotondo, R.; et al. The impact of environmental factors and contaminants on thyroid function and disease from fetal to adult life: Current evidence and future directions. Front. Endocrinol. 2024, 15, 1429884. [Google Scholar] [CrossRef]
- Pearce, E.N. Endocrine Disruptors and Thyroid Health. Endocr. Pract. 2024, 30, 172–176. [Google Scholar] [CrossRef]
- Zeng, Y.; He, H.; Wang, X.; Zhang, M.; An, Z. Climate and air pollution exposure are associated with thyroid function parameters: A retrospective cross–sectional study. J. Endocrinol. Investig. 2021, 44, 1515–1523. [Google Scholar] [CrossRef]
- Valdés, S.; Doulatram–Gamgaram, V.; Maldonado–Araque, C.; Lago–Sampedro, A.; García–Escobar, E.; García–Serrano, S.; García–Vivanco, M.; Garrido Juan, L.; Theobald, M.R.; Gil, V.; et al. Ambient air pollution and thyroid function in Spanish adults. A nationwide population–based study (Di@bet.es study). Environ. Health 2022, 21, 76. [Google Scholar] [CrossRef] [PubMed]
- Benvenga, S.; Elia, G.; Ragusa, F.; Paparo, S.R.; Sturniolo, M.M.; Ferrari, S.M.; Antonelli, A.; Fallahi, P. Endocrine disruptors and thyroid autoimmunity. Best. Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101377. [Google Scholar] [CrossRef]
- He, J.; Xu, J.; Zheng, M.; Pan, K.; Yang, L.; Ma, L.; Wang, C.; Yu, J. Thyroid dysfunction caused by exposure to environmental endocrine disruptors and the underlying mechanism: A review. Chem. Biol. Interact. 2024, 391, 110909. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Bonfrate, L.; Noviello, M.; Portincasa, P. Thyroid Function: A Target for Endocrine Disruptors, Air Pollution and Radiofrequencies. Endocr. Metab. Immune Disord. Drug Targets. 2023, 23, 1032–1040. [Google Scholar] [CrossRef]
- Saint–André, V.; Charbit, B.; Biton, A.; Rouilly, V.; Possémé, C.; Bertrand, A.; Rotival, M.; Bergstedt, J.; Patin, E.; Albert, M.L.; et al. Smoking changes adaptive immunity with persistent effects. Nature 2024, 626, 827–835. [Google Scholar] [CrossRef]
- Harel–Meir, M.; Sherer, Y.; Shoenfeld, Y. Tobacco smoking and autoimmune rheumatic diseases. Nat. Clin. Pract. Rheumatol. 2007, 3, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Li, S.; Jia, C. Smoking and the risk of systemic lupus erythematosus: An updated systematic review and cumulative meta–analysis. Clin. Rheumatol. 2015, 34, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, P. Smoking and thyroid disorders–a meta–analysis. Eur. J. Endocrinol. 2002, 146, 153–161. [Google Scholar] [CrossRef]
- Bertelsen, J.B.; Hegedüs, L. Cigarette smoking and the thyroid. Thyroid 1994, 4, 327–331. [Google Scholar] [CrossRef]
- Pedersen, I.B.; Laurberg, P.; Knudsen, N.; Jørgensen, T.; Perrild, H.; Ovesen, L.; Rasmussen, L.B. Smoking is negatively associated with the presence of thyroglobulin autoantibody and to a lesser degree with thyroid peroxidase autoantibody in serum: A population study. Eur. J. Endocrinol. 2008, 158, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Effraimidis, G.; Tijssen, J.G.; Wiersinga, W.M. Discontinuation of smoking increases the risk for developing thyroid peroxidase antibodies and/or thyroglobulin antibodies: A prospective study. J. Clin. Endocrinol. Metab. 2009, 94, 1324–1328. [Google Scholar] [CrossRef]
- Attard, C.C.; Sze, W.C.C.; Vella, S. Predictors of autoimmune thyroid disease. Proc. (Bayl. Univ. Med. Cent.) 2022, 35, 608–614. [Google Scholar] [CrossRef]
- Terracina, S.; Caronti, B.; Lucarelli, M.; Francati, S.; Piccioni, M.G.; Tarani, L.; Ceccanti, M.; Caserta, M.; Verdone, L.; Venditti, S.; et al. Alcohol Consumption and Autoimmune Diseases. Int. J. Mol. Sci. 2025, 26, 845. [Google Scholar] [CrossRef]
- Effraimidis, G.; Tijssen, J.G.; Wiersinga, W.M. Alcohol consumption as a risk factor for autoimmune thyroid disease: A prospective study. Eur. Thyroid. J. 2012, 1, 99–104. [Google Scholar] [CrossRef]
- Carlé, A.; Pedersen, I.B.; Knudsen, N.; Perrild, H.; Ovesen, L.; Rasmussen, L.B.; Laurberg, P. Moderate alcohol consumption may protect against overt autoimmune hypothyroidism: A population–based case–control study. Eur. J. Endocrinol. 2012, 167, 483–490. [Google Scholar] [CrossRef]
- World Health Organization. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers, 2nd ed.; World Health Organization: Geneva, Switzerland, 2001; Available online: https://apps.who.int/iris/handle/10665/61278 (accessed on 25 January 2025).
- Lisco, G.; De Tullio, A.; Triggiani, D.; Zupo, R.; Giagulli, V.A.; De Pergola, G.; Piazzolla, G.; Guastamacchia, E.; Sabbà, C.; Triggiani, V. Iodine Deficiency and Iodine Prophylaxis: An Overview and Update. Nutrients 2023, 15, 1004. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, R.; Yuan, X.; Kobayashi, S.; Sasaki, S. Effect of excess iodine intake on thyroid diseases in different populations: A systematic review and meta–analyses including observational studies. PLoS ONE 2017, 12, e0173722. [Google Scholar] [CrossRef]
- Teti, C.; Panciroli, M.; Nazzari, E.; Pesce, G.; Mariotti, S.; Olivieri, A.; Bagnasco, M. Iodoprophylaxis and thyroid autoimmunity: An update. Immunol. Res. 2021, 69, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Atapattu, N.; Jayatissa, R.; de Silva, H.; Adlan, M.A.; Obuobie, E.K.; Premawardhana, L.D. Thyroid Autoimmunity During Universal Salt Iodisation–Possible Short–Term Modulation with Longer–Term Stability. Nutrients 2024, 16, 4299. [Google Scholar] [CrossRef]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66 (Suppl. S2), 22–33. [Google Scholar] [CrossRef] [PubMed]
- Aktaş, H.Ş. Vitamin B12 and Vitamin D Levels in Patients with Autoimmune Hypothyroidism and Their Correlation with Anti–Thyroid Peroxidase Antibodies. Med. Princ. Pract. 2020, 29, 364–370. [Google Scholar] [CrossRef]
- Ihnatowicz, P.; Drywień, M.; Wątor, P.; Wojsiat, J. The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. Ann. Agric. Environ. Med. 2020, 27, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Shulhai, A.M.; Rotondo, R.; Petraroli, M.; Patianna, V.; Predieri, B.; Iughetti, L.; Esposito, S.; Street, M.E. The Role of Nutrition on Thyroid Function. Nutrients 2024, 16, 2496. [Google Scholar] [CrossRef]
- Benites–Zapata, V.A.; Ignacio–Cconchoy, F.L.; Ulloque–Badaracco, J.R.; Hernandez–Bustamante, E.A.; Alarcón–Braga, E.A.; Al–Kassab–Córdova, A.; Herrera–Añazco, P. Vitamin B12 levels in thyroid disorders: A systematic review and meta–analysis. Front. Endocrinol. 2023, 14, 1070592. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, Y.; Gu, X.; Lei, Z. The correlation between selenium levels and autoimmune thyroid disease: A systematic review and meta–analysis. Ann. Palliat. Med. 2021, 10, 4398–4408. [Google Scholar] [CrossRef]
- Osowiecka, K.; Myszkowska–Ryciak, J. The Influence of Nutritional Intervention in the Treatment of Hashimoto’s Thyroiditis—A Systematic Review. Nutrients 2023, 15, 1041. [Google Scholar] [CrossRef]
- Hu, S.; Rayman, M.P. Multiple Nutritional Factors and the Risk of Hashimoto’s Thyroiditis. Thyroid 2017, 27, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Beserra, J.B.; Morais, J.B.S.; Severo, J.S.; Cruz, K.J.C.; de Oliveira, A.R.S.; Henriques, G.S.; do Nascimento Marreiro, D. Relation Between Zinc and Thyroid Hormones in Humans: A Systematic Review. Biol. Trace Elem. Res. 2021, 199, 4092–4100. [Google Scholar] [CrossRef]
- Singh, A.K.; Chatterjee, S.; Singh, A.; Bhattacharjee, R. Diet in Thyroid Disorders: A Survey among Clinicians and a Review of the Current Perspective. Indian J. Endocrinol. Metab. 2024, 28, 378–384. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Liang, S.-S.; Ren, J.-J.; Wang, Z.-Y.; Deng, X.-X.; Liu, W.-D.; Yan, Y.-L.; Song, G.-H.; Li, X.-X. The Effects of Selenium Supplementation in the Treatment of Autoimmune Thyroiditis: An Overview of Systematic Reviews. Nutrients 2023, 15, 3194. [Google Scholar] [CrossRef] [PubMed]
- Galușca, D.; Popoviciu, M.S.; Babeș, E.E.; Vidican, M.; Zaha, A.A.; Babeș, V.V.; Jurca, A.D.; Zaha, D.C.; Bodog, F. Vitamin D Implications and Effect of Supplementation in Endocrine Disorders: Autoimmune Thyroid Disorders (Hashimoto’s Disease and Grave’s Disease), Diabetes Mellitus and Obesity. Medicina 2022, 58, 194. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Chen, X.; Qian, X.; Shao, S. Effects of vitamin D treatment on thyroid function and autoimmunity markers in patients with Hashimoto’s thyroiditis–A meta–analysis of randomized controlled trials. J. Clin. Pharm. Ther. 2022, 47, 767–775. [Google Scholar] [CrossRef]
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef]
- Warner, M.J.; Kamran, M.T. Iron Deficiency Anemia. [Updated 7 August 2023]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448065/ (accessed on 12 January 2025).
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch–Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Green, R.; Allen, L.H.; Bjørke–Monsen, A.L.; Brito, A.; Guéant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; et al. Vitamin B12 deficiency. Nat. Rev. Dis. Primers. 2017, 3, 17040. [Google Scholar] [CrossRef]
- Green, R.; Miller, J.W. Vitamin B12 deficiency. Vitam. Horm. 2022, 119, 405–439. [Google Scholar]
- Available online: https://www.fao.org/faostat/es/#data/FS (accessed on 21 January 2025).
- Acosta, G.J.; Singh Ospina, N.; Brito, J.P. Epidemiologic changes in thyroid disease. Curr. Opin. Endocrinol. Diabetes Obes. 2024, 31, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, Y.; He, Z.; Xu, S.; Liu, C.; Li, Y.; Shan, Z.; Teng, W. Age–specific thyrotropin references decrease over–diagnosis of hypothyroidism in elderly patients in iodine–excessive areas. Clin. Endocrinol. 2024, 101, 549–556. [Google Scholar] [CrossRef]
- Gottwald–Hostalek, U.; Schulte, B. Low awareness and under–diagnosis of hypothyroidism. Curr. Med. Res. Opin. 2022, 38, 59–64. [Google Scholar] [CrossRef]
- Tagoe, C.E.; Sheth, T.; Golub, E.; Sorensen, K. Rheumatic associations of autoimmune thyroid disease: A systematic review. Clin. Rheumatol. 2019, 38, 1801–1809. [Google Scholar] [CrossRef]
- Dukes, J.C.; Chakan, M.; Mills, A.; Marcaurd, M. Approach to Fatigue: Best Practice. Med. Clin. North. Am. 2021, 105, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.N.; Medici, M.M.; Hubalewska–Dydejczyk, A.; Boelaert, K. Hypothyroidism. Lancet 2024, 404, 1347–1364. [Google Scholar] [CrossRef] [PubMed]
- Wiles, K. Management for women with subclinical hypothyroidism in pregnancy. Drug Ther. Bull. 2019, 57, 22–26. [Google Scholar] [CrossRef]
- Maraka, S.; Dosiou, C. Subclinical Hypothyroidism and Thyroid Autoimmunity in Pregnancy: To Treat or Not to Treat. Endocrinol. Metab. Clin. N. Am. 2024, 53, 363–376. [Google Scholar] [CrossRef]
- Aberle, L.; Nguyen, C.T. Subclinical hypothyroidism in pregnancy: An evolving and controversial landscape. Curr. Opin. Obstet. Gynecol. 2025, 37, 60–65. [Google Scholar] [CrossRef]
- Bilous, R.W.; Tunbridge, W.M. The epidemiology of hypothyroidism––An update. Baillieres Clin. Endocrinol. Metab. 1988, 2, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.; Stokes, B.; Otahal, P.; Owens, D.; Burgess, J.R. Temporal trends in thyroid–stimulating hormone (TSH) and thyroid peroxidase antibody (ATPO) testing across two phases of iodine fortification in Tasmania (1995–2013). Clin. Endocrinol. 2017, 87, 386–393. [Google Scholar] [CrossRef]
- Garmendia Madariaga, A.; Santos Palacios, S.; Guillén–Grima, F.; Galofré, J.C. The incidence and prevalence of thyroid dysfunction in Europe: A meta–analysis. J. Clin. Endocrinol. Metab. 2014, 99, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Kiel, S.; Ittermann, T.; Völzke, H.; Chenot, J.F.; Angelow, A. Frequency of thyroid function tests and examinations in participants of a population–based study. BMC Health Serv. Res. 2020, 20, 70. [Google Scholar] [CrossRef]
- Alaeddin, N.; Jongejan, R.M.S.; Stingl, J.C.; de Rijke, Y.B.; Peeters, R.P.; Breteler, M.M.B.; de Vries, F.M. Over– and Undertreatment with Levothyroxine. Dtsch. Arztebl. Int. 2023, 120, 711–718. [Google Scholar] [PubMed]
- Dalal, S.; Bhesania, S.; Silber, S.; Mehta, P. Use of Electronic Clinical Decision Support and Hard Stops to Decrease Unnecessary Thyroid Function Testing. BMJ Qual. Improv. Rep. 2017, 6, u223041.w8346. [Google Scholar] [CrossRef]
- Thiyagarajan, A.; Koenen, N.; Ittermann, T.; Völzke, H.; Haug, U. Trends in the use of thyroid diagnostics and treatments between 2008 and 2019 in Germany. Sci. Rep. 2024, 14, 26710. [Google Scholar] [CrossRef]
- Baskin, H.J.; Cobin, R.H.; Duick, D.S.; Gharib, H.; Guttler, R.B.; Kaplan, M.M.; Segal, R.L. American Association of Clinical Endocrinologists. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the evaluation and treatment of hyperthyroidism and hypothyroidism. Endocr. Pract. 2002, 8, 457–469. [Google Scholar] [CrossRef]
- US Preventive Services Task Force. Screening for thyroid disease: Recommendation statement. Am. Fam. Physician 2004, 69, 2415–2418. [Google Scholar]
- Garber, J.R.; Cobin, R.H.; Gharib, H.; Hennessey, J.V.; Klein, I.; Mechanick, J.I.; Pessah–Pollack, R.; Singer, P.A.; Woeber, K.A. American Association of Clinical Endocrinologists and American Thyroid Association Taskforce on Hypothyroidism in Adults. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr. Pract. 2012, 18, 988–1028. [Google Scholar]
- Okosieme, O.; Gilbert, J.; Abraham, P.; Boelaert, K.; Dayan, C.; Gurnell, M.; Leese, G.; McCabe, C.; Perros, P.; Smith, V.; et al. Management of primary hypothyroidism: Statement by the British Thyroid Association Executive Committee. Clin. Endocrinol. 2016, 84, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Chamot, S.; Al–Salameh, A.; Balcaen, T.; Petit, P.; Bonneterre, V.; Cancé, C.; Desailloud, R. Congenital and acquired hypothyroidism: Temporal and spatial trends in France from 2014 to 2019. Ann. Epidemiol. 2024, 98, 18–24. [Google Scholar] [CrossRef]
- Huang, K.; Huang, X.; Qian, S.; Cai, Y.; Wu, F.; Luo, D. Temporal trends of thyroid cancer in China and globally from 1990 to 2021: An analysis of the global burden of Disease Study 2021. Sci. Rep. 2024, 14, 25538. [Google Scholar] [CrossRef]
- Hu, S.; Wu, X.; Jiang, H. Trends and projections of the global burden of thyroid cancer from 1990 to 2030. J. Glob. Health 2024, 14, 04084. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Chen, M.; Fu, L.; Yang, Y.; Zhan, Y. Assessing and projecting the global burden of thyroid cancer, 1990–2030: Analysis of the Global Burden of Disease Study. J. Glob. Health 2024, 14, 04090. [Google Scholar] [CrossRef]
- Lui, D.T.W.; Lee, C.H.; Woo, Y.C.; Hung, I.F.N.; Lam, K.S.L. Thyroid dysfunction in COVID–19. Nat. Rev. Endocrinol. 2024, 20, 336–348. [Google Scholar] [CrossRef]
- Panesar, A.; Gharanei, P.; Khovanova, N.; Young, L.; Grammatopoulos, D. Thyroid function during COVID–19 and post–COVID complications in adults: A systematic review. Front. Endocrinol. 2025, 15, 1477389. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, X.; Li, B.; Liu, D.; Liu, Y.; Mo, R.; Lai, F.; Liu, R.; Peng, S.; Li, Y.; et al. Effect of Inactivated SARS–CoV–2 Vaccine on Thyroid Function and Autoimmunity Within 28 Days After the Second Dose. Thyroid 2022, 32, 1051–1058. [Google Scholar] [CrossRef]
- Weider, T.; Genoni, A.; Broccolo, F.; Paulsen, T.H.; Dahl–Jørgensen, K.; Toniolo, A.; Hammerstad, S.S. High Prevalence of Common Human Viruses in Thyroid Tissue. Front. Endocrinol. 2022, 13, 938633. [Google Scholar] [CrossRef]
- Duntas, L.H. Nutrition and thyroid disease. Curr. Opin. Endocrinol. Diabetes Obes. 2023, 30, 324–329. [Google Scholar] [CrossRef]
- Ralli, M.; Angeletti, D.; Fiore, M.; D’Aguanno, V.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun. Rev. 2020, 19, 102649. [Google Scholar] [CrossRef] [PubMed]
- Burch, H.B. Drug Effects on the Thyroid. N. Engl. J. Med. 2019, 381, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Cyna, W.; Wojciechowska, A.; Szybiak–Skora, W.; Lacka, K. The Impact of Environmental Factors on the Development of Autoimmune Thyroiditis–Review. Biomedicines 2024, 12, 1788. [Google Scholar] [CrossRef] [PubMed]
- Karaviti, D.; Kani, E.R.; Karaviti, E.; Gerontiti, E.; Michalopoulou, O.; Stefanaki, K.; Kazakou, P.; Vasileiou, V.; Psaltopoulou, T.; Paschou, S.A. Thyroid disorders induced by immune checkpoint inhibitors. Endocrine 2024, 85, 67–79. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, C.; Feng, S.; He, R.; Zhang, S. Intestinal microbiota regulates the gut–thyroid axis: The new dawn of improving Hashimoto thyroiditis. Clin. Exp. Med. 2024, 24, 39. [Google Scholar] [CrossRef]
- Cuan–Baltazar, Y.; Soto–Vega, E. Microorganisms associated to thyroid autoimmunity. Autoimmun. Rev. 2020, 19, 102614. [Google Scholar] [CrossRef]
Author (Year) [Ref.] | Country (Income Group) | Case/Total | Study Design | Diagnostic Criteria | % Prevalence of Hashimoto’s Thyroiditis (95% CI) |
---|---|---|---|---|---|
Dingle PR, et al. (1966) [15] | England (HI) | 52/469 | Cross-sectional (PBS) | Serum (Abs) | 11 (8.4–14.3) |
Jacobs A, et al. (1969) [16] | England (HI) | 99/989 | Cross-sectional (PBS) | Serum (Abs) | 10 (8.2–12.1) |
Tunbridge WM, et al. (1977) [18] | England (HI) | 56/2779 | Cross-sectional | Serum (Abs) | 2.0 (1.5–2.6) |
Prentice LM, et al. (1990) [17] | England (HI) | 124/698 | Cross-sectional (PBS) | Serum (Abs) | 17.8 (15–20.8) |
Aho K, et al. (1971) [19] | Finland (HI) | 89/1137 | Cross-sectional (CBS) | Serum (Abs) | 7.8 (6.3–9.5) |
Gordin A, et al. (1972) [20] | Finland (HI) | 282/2961 | Cross-sectional (PBS) | Serum (Abs) | 9.5 (8.5–10.6) |
Bjøro T, et al. (1984) [21] | Norway (HI) | 56/1643 | Cross-sectional (PBS) | Serum (Abs) | 3.4 (2.6–4.4) |
Bryhni B, et al. (1996) [22] | Norway (HI) | 176/2551 | Cross-sectional (PBS) | Serum (Abs) | 6.9 (5.9–8.0) |
Völzke H, et al. (2003) [23] | Germany (HI) | 47/3941 | Cross-sectional | Serum (Abs) | 1.2 (0.9–1.6) |
Döbert N, et al. (2008) [24] | Germany (HI) | 98/700 | Cross-sectional (PBS) | Serum (Abs + TU) | 14 (11.5–16.8) |
Khattak RM, et al. (2016) [25] | Germany (HI) | 358/4420 | Cohort | Serum (Abs) | 8.1 (7.3–8.9) |
Aghini-Lombardi F, et al. (1999) [26] | Italy (HI) | 50/1411 | Cross-sectional (PBS) | Serum (Abs) | 3.5 (2.6–4.6) |
Benvenga S, et al. (2008) [27] | Italy (HI) | 4064/23,000 | Array research (CBS) | Serum, thyroid tissue (Abs + TU + FNA) | 17.7 (17.2–18.2) |
Sardu C, et al. (2012) [28] | Italy (HI) | 678/25,885 | Cross-sectional (PBS) | NR (NR) | 2.6 (2.4–2.8) |
Aghini–Lombardi F, et al. (2013) [29] | Italy (HI) | 224/1065 | Cross-sectional (PBS) | Thyroid tissue (Abs + TU) | 21 (18.6–23.6) |
Tammaro A, et al. (2016) [30] | Italy (HI) | 2828/7976 | Array research (PBS) | Serum (Abs) | 35.5 (34.4–36.5) |
Pilli T, et al. (2019) [31] | Italy (HI) | 9/142 | Cross-sectional | Serum (Abs) | 6.3 (2.9–11.7) |
Pedersen IB, et al. (2003) [32] | Denmark (HI) | 787/4184 | Cross-sectional (PBS) | Serum (Abs) | 18.0 (17.6–20.0) |
Pedersen IB, et al. (2011) [33] | Denmark (HI) | 778/3570 | Cross-sectional (PBS) | Serum (Abs) | 21.8 (20.4–23.1) |
Møllehave LT, et al. (2024) [34] | Denmark (HI) | 979/2465 | Cross-sectional (PBS) | Serum (Abs) | 39.7 (37.8–41.6) |
Valdés S, et al. (2017) [35] | Spain (HI) | 391/4554 | Cross-sectional (PBS) | Serum (Abs) | 8.6 (7.8–9.4) |
Józków P, et al. (2017) [36] | Poland (HI) | 29,375/586,703 | Cross-sectional (CBS) | Serum (Abs) | 5.0 (5.0–5.1) |
Troshina EA, et al. (2021) [37] | Russia (UMI) | 428/100,000 | Cross-sectional (PBS) | Serum (Abs) | 0.42 (0.38–0.46) |
Izic B, et al. (2021) [38] | Bosnia and Herzegovina (UMI) | 358/82,000 | Array research (PBS) | Serum (Abs) | 0.43 (0.39–0.48) |
Strikić Đula I, et al. (2022) [39] | Croatia (HI) | 1044/4402 | Cross-sectional (PBS) | Serum (Abs) | 23.7 (22.4–25.9) |
Author (Year) [Ref.] | Country (Income Group) | Case/Total | Study Design | Diagnostic Criteria | % Prevalence of Hashimoto’s Thyroiditis (95% CI) |
---|---|---|---|---|---|
Chabchoub G, et al. (2006) [40] | Tunisia (LMI) | 246/1079 | Array research (CBS) | Serum (Abs) | 22.8 (20.3–25.4) |
Okosieme OE, et al. (2007) [41] | Nigeria (LMI) | 7/104 | Cross-sectional (CBS) | Serum (Abs) | 6.7 (2.7–13.4) |
Sarfo-Kantanka O, et al. (2017) [42] | Ghana (LMI) | 583/8099 | Retrospective cohort (HBS) | Serum (Abs + TU) | 7.2 (6.6–7.8) |
Author (Year) [Ref.] | Country (Income Group) | Case/Total | Study Design | Diagnostic Criteria | % Prevalence of Hashimoto’s Thyroiditis (95% CI) |
---|---|---|---|---|---|
O’Leary PC, et al. (2006) [43] | Australia (HI) | 282/2115 | Cross-sectional health survey | Serum (Abs) | 13.3 (11.8–14.8) |
Deshpande P, et al. (2016) [44] | Australia (HI) | 17/198 | Cross-sectional (PBS) | Serum (Abs) | 8.6 (5.1–13.4) |
Author (Year) [Ref.] | Country (Income Group) | Case/Total | Study Design | Diagnostic Criteria | % Prevalence of Hashimoto’s Thyroiditis (95% CI) |
---|---|---|---|---|---|
Okayasu I, et al. (1991) [45] | Japan (HI) | 328/1826 | Cross-sectional | Thyroid tissue | 18 (0.16–0.19) |
Konno N, et al. (1993) [46] | Japan (HI) | 457/4110 | Cross-sectional (PBS) | Serum (Abs) | 11.1 (10.2–12.1) |
Morinaka S, et al. (1995) [47] | Japan (HI) | 61/6348 | Cross-sectional (CBS) | Serum (Abs) + TU + FNA) | 1.0 (0.7–1.2) |
Nagata K, et al. (1998) [48] | Japan (HI) | 142/1039 | Cross-sectional (PBS) | Serum (Abs) | 13.7 (11.6–15.9) |
Kurata S, et al. (2007) [49] | Japan (HI) | 25/1626 | Cross-sectional (CBS) | Serum, thyroid tissue (Abs + TU + FNA) | 1.5 (1.0–2.3) |
Teng W, et al. (2006) [50] | China (UMI) | 32/3761 | Cross-sectional study | Serum (Abs) | 0.9 (0.6–1.2) |
Teng X, et al. (2008) [51] | China (UMI) | 67/778 | Array research (PBS) | Serum (Abs + TU) | 8.6 (6.7–10.8) |
Li Y, et al. (2008) [52] | China (UMI) | 353/3018 | Cross-sectional (PBS) | Serum (Abs) + TU) | 11.7 (10.6–12.9) |
Teng X, et al. (2011) [53] | China (UMI) | 363/3813 | Cross-sectional | Serum (Abs) + TU | 9.5 (8.6–10.5) |
Wu Q, et al. (2015) [54] | China (UMI) | 172/6152 | Cross-sectional (PBS) | Serum (Abs) | 2.8 (2.4–3.2) |
Gu F, et al. (2016) [55] | China (UMI) | 17/5293 | Cross-sectional (PBS) | Serum (Abs) + TU) | 0.3 (0.2–0.5) |
Li Y, et al. (2016) [56] | China (UMI) | 187/2856 | Array research | Serum (Abs) | 6.5 (5.7–7.5) |
Wan S, et al. (2020) [57] | China (UMI) | 198/1225 | Cross-sectional survey | Serum (Abs) | 16.1 (14.1–18.2) |
Chen Y, et al. (2021) [58] | China (UMI) | 298/2946 | Cross-sectional (PBS) | Serum (Abs) + TU) | 10.1 (9.0–11.3) |
Yu Z, et al. (2021) [59] | China (UMI) | 148/1159 | Cross-sectional (PBS) | Thyroid tissue | 12.8 (10.9–14.8) |
Fernando RF, et al. (2012) [60] | Sri Lanka (LMI) | 353/5200 | Cross-sectional (PBS) | Serum (Abs) | 6.8 (6.1–7.5) |
Amouzegar A, et al. (2017) [61] | Iran (LMI) | 742/5783 | Cross-sectional (PBS) | Serum (Abs) | 12.8 (12–13.7) |
Kim HJ, et al. (2021) [62] | South Korea (HI) | 29,429/21,705,883 | Array research (PBS) | NR (NR) | 0.1 (0.1–0.1) |
Ajlouni KM, et al. (2022) [63] | Jordan (UMI) | 567/3753 | Cross-sectional (PBS) | Serum (Abs) | 15.1 (13.9–16.2) |
Author (Year) [Ref.] | Country (Income Group) | Case/Total | Study Design | Diagnostic Criteria | % Prevalence of Hashimoto’s Thyroiditis (95% CI) |
---|---|---|---|---|---|
Okayasu I, et al. (1994) [64] | USA (HI) | 457/2040 | Cross-sectional (PBS) | Thyroid tissue (pathological section) | 22.4 (20.6–24.3) |
Flores-Rebollar A, et al. (2015) [65] | Mexico (UMI) | 36/427 | Cross-sectional (PBS) | Serum (Abs) + TU) | 8.4 (6.0–11.5) |
Caturegli G, et al. (2016) [66] | USA (HI) | 4/1075 | Cross-sectional (PBS) | NR (NR) | 0.4 (0.1–0.91) |
Zhang X, et al. (2024) [67] | USA (HI) | 4454/33,117 | Cross-sectional study | Serum (Abs) | 13.4 (13.1–13.8) |
Author (Year) [Ref.] | Country (Income Group) | Case/Total | Study Design | Diagnostic Criteria | % Prevalence of Hashimoto’s Thyroiditis (95% CI) |
---|---|---|---|---|---|
Tomimori E, et al. (1995) [68] | Brazil (UMI) | 72/547 | Cross-sectional (PBS) | TU | 13.2 (10.4–16.3) |
Camargo RY, et al. (2006) [69] | Brazil (UMI) | 82/420 | Cross-sectional | Serum (Abs) + TU | 19.5 (15.8–23.6) |
Camargo RY, et al. (2008) [70] | Brazil (UMI) | 183/1085 | Cross-sectional (PBS) | Serum (Abs) | 16.9 (14.7–19.2) |
Vecchiatti SM, et al. (2015) [71] | Brazil (UMI) | 106/4613 | Cross-sectional (CBS) | Thyroid tissue | 2.3 (1.9–2.8) |
Tolentino Júnior DS, et al. (2019) [72] | Brazil (UMI) | 85/60,413 | Cross-sectional | NR | 0.1 (0.1–0.2) |
Vargas-Uricoechea, H, et al. (2023) [73] | Colombia (UMI) | 2150/9638 | Cross-sectional (PBS) | Serum (Abs) | 22.3 (20.6–24.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Uricoechea, H.; Castellanos-Pinedo, A.; Urrego-Noguera, K.; Pinzón-Fernández, M.V.; Meza-Cabrera, I.A.; Vargas-Sierra, H. A Scoping Review on the Prevalence of Hashimoto’s Thyroiditis and the Possible Associated Factors. Med. Sci. 2025, 13, 43. https://doi.org/10.3390/medsci13020043
Vargas-Uricoechea H, Castellanos-Pinedo A, Urrego-Noguera K, Pinzón-Fernández MV, Meza-Cabrera IA, Vargas-Sierra H. A Scoping Review on the Prevalence of Hashimoto’s Thyroiditis and the Possible Associated Factors. Medical Sciences. 2025; 13(2):43. https://doi.org/10.3390/medsci13020043
Chicago/Turabian StyleVargas-Uricoechea, Hernando, Alejandro Castellanos-Pinedo, Karen Urrego-Noguera, María V. Pinzón-Fernández, Ivonne A. Meza-Cabrera, and Hernando Vargas-Sierra. 2025. "A Scoping Review on the Prevalence of Hashimoto’s Thyroiditis and the Possible Associated Factors" Medical Sciences 13, no. 2: 43. https://doi.org/10.3390/medsci13020043
APA StyleVargas-Uricoechea, H., Castellanos-Pinedo, A., Urrego-Noguera, K., Pinzón-Fernández, M. V., Meza-Cabrera, I. A., & Vargas-Sierra, H. (2025). A Scoping Review on the Prevalence of Hashimoto’s Thyroiditis and the Possible Associated Factors. Medical Sciences, 13(2), 43. https://doi.org/10.3390/medsci13020043