Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer
Abstract
:1. Introduction
2. Repurposed Anticancer Agents
3. Pharmacology of Dichloroacetate
4. DCA as an Anticancer Agent and Its Synergy with Other Therapeutic Agents
Drug | Cell Line(s) | Target(s) | Key Findings | Refs. |
---|---|---|---|---|
DCA | A549, H1299 | Lactate production/ glucose consumption | DCA decreases lactate production and glucose consumption. | [42] |
DCA | HCT116 WT, HT29, PC3 | Autophagy (LC3B ll protein), mTOR, lactate excretion, tumor growth | DCA induces autophagy in colorectal cell lines via inducing ROS generation and inhibiting mTOR and lactate excretion. | [47] |
DCA, paclitaxel | A549, H1975 | Autophagy (LC3 and p62 proteins), tumor growth | DCA inhibits autophagy, decreases cell proliferation and tumor growth, and increases mice survival. | [48] |
DCA, paclitaxel | A549-R | PDK2 | DCA resensitizes paclitaxel-resistant cells through PDK2 inhibition and siRNA-mediated downregulation. | [52] |
DCA, cisplatin | HeLa | Glucose metabolism | DCA is able to shift glucose metabolism to sensitize HeLa cells and exert synergy with cisplatin. | [53] |
DCA, cisplatin, decetaxel | 54 NSCLC cells | - | Under hypoxic conditions, DCA and cisplatin (not docetaxel) combination enhances the sensitivity of a few NSCLC cell lines. | [54] |
DCA + cisplatin/ gefitinib or erlotinib | A549, LNM35 | Cell viability, angiogenesis, tumor growth | DCA decreases cell viability, disrupts angiogenesis, and reduces tumor growth. | [55] |
DCA, gefitinib, erlotinib | NCI-H1975, NCI-H1650, A549, NCI-H460 | EGFR, AKT, ERK1/2, PDH signaling | DCA in combination with gefitinib or erlotinib significantly inhibits the cell viability, promotes the apoptosis, and suppresses the activation of EGFR, AKT, and ERK1/2 signaling in EGFR-mutant NSCLC cell lines. | [58] |
DCA, doxorubicin | MDA-MB-231 | Autophagy | DCA sensitizes doxorubicin-induced cell death via autophagy inhibition, and its mechanism resensitizes doxorubicin-resistant cells and enhances the chemotherapeutic effect. | [59] |
DCA, capecitabine | A549, B-16 | Caspases/ apoptosis | DCA enhances the cytotoxic effects of capecitabine by promoting the release of caspases 3, 8, and 9. | [60] |
DCA, metformin | SKOV3, OVCAR3 | Mcl-1, Warburg effect, glycolysis, autophagy | DCA and metformin’s combination synergistically inhibits cell viability via inducing apoptosis, and reduces the growth of tumor xenografts. | [63] |
DCA, metformin DCA, PX-478 | MCF7, T47D MCF-7, MDA-MB-231, A549, H441, HEK-293, U251, HeLa, HEPG2, HT-29 | PDK1, glycolysis HIF-1α, PDK1 | DCA and metformin’s combination synergistically induces cell death and oxidative damage via PDK1 inhibition. DCA synergistically inhibits cancer cell growth with HIF-1α inhibitor PX-478 via inducing ROS-mediated apoptosis. | [64,65] |
DCA, ivermectin, omeprazole, tamoxifen | Clinical trial | Cancer progression symptoms | DCA in combination with ivermectin, omeprazole, and tamoxifen relieves metastatic cancer-induced pain in patients. | [66] |
5. Pharmacology of Salinomycin
6. SAL as an Anticancer Agent and Its Synergy with Other Therapeutic Agents
7. DCA and SAL as a Combination Therapy
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NSCLC | Non-small-cell lung cancer |
DCA | Dichloroacetate |
SAL | Salinomycin |
SCLC | Small-cell lung carcinoma |
AMPK | Adenosine monophosphate-activated protein kinase |
EGFR | Epidermal growth factor receptor |
TKIs | Tyrosine kinase inhibitors |
PDK | Pyruvate dehydrogenase kinase |
CSCs | Cancer stem cells |
PDC | Pyruvate dehydrogenase complex |
TCA | Tricarboxylic acid cycle |
OXPHOS | Oxidative phosphorylation |
PDHE1α | Pyruvate dehydrogenase E1 subunit 1 alpha |
HIF1α | Hypoxia-inducible factor 1 alpha |
MTCs | Mono-carboxylic transporter proteins |
ROS | Reactive oxygen species |
HUVEC | Human umbilical vein endothelial cells |
EMT | Epithelial–mesenchymal transition |
TGFs | Transforming growth factors |
TGFβ | Transforming growth factor β |
Cytc | Cytochrome c |
ER | Endoplasmic reticulum |
HNC | Head and neck cancer |
ERK1/2 | Extracellular signal-regulated kinase ½ |
HGG | High-grade glioma |
mTOR | Mammalian targets of rapamycin |
LC3 | Microtubule-associated protein 1 light chain 3 |
LC3B | LC3 isoform B |
p62 | Sequestosome-1 |
Wnt | Wingless-related integration site pathway |
AKT-CA | Ak strain transforming protein kinase B (Ca2+) |
TS | Thymidylate synthase |
SIRT1 | Sirtuin gene 1 |
NAG-1 | NSAID-activated gene |
ATF4 | Activating transcription factor 4 |
DDIT3 | DNA damage-inducible transcript 3 |
CHOP | C/EBP homologous protein |
TRIB3 | Tribbles pseudokinase 3 |
AKT1 | AKT serine/threonine kinase 1 |
DADA | Diisopropylamine dichloroacetate |
TME | Tumor microenvironment |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA A Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Bade, B.C.; Cruz, C.S.D. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Smith, R.A.; Glynn, T.J. Epidemiology of lung cancer. Radiol. Clin. N. Am. 2000, 38, 453–470. [Google Scholar] [CrossRef]
- Lung Cancer Statistics|How Common is Lung Cancer? (n.d.). American Cancer Society. Available online: https://www.cancer.org/cancer/types/lung-cancer/about/key-statistics.html (accessed on 1 April 2025).
- Molina, J.R.; Yang, P. Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Walker, S. Updates in non-small cell lung cancer. Clin. J. Oncol. Nurs. 2008, 12, 587–596. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, C.H.; Park, Y.S. Location of stage I-III non-small cell lung cancer and survival rate: Systematic review and meta-analysis. Thorac. Cancer 2018, 9, 1614–1622. [Google Scholar] [CrossRef]
- Li, Y.; Yan, B.; He, S. Advances and challenges in the treatment of lung cancer. Biomed. Pharmacother. 2023, 169, 115891. [Google Scholar] [CrossRef]
- Wu, J.; Lin, Z. Non-Small Cell Lung Cancer Targeted Therapy: Drugs and Mechanisms of Drug Resistance. Int. J. Mol. Sci. 2022, 23, 15056. [Google Scholar] [CrossRef]
- Kumar, M.; Sarkar, A. Current therapeutic strategies and challenges in nsclc treatment: A comprehensive review. Exp. Oncol. 2022, 44, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.F.; Zhu, M.L.; Liu, M.M.; Xu, Y.T.; Yuan, L.L.; Bian, J.; Xia, Y.Z.; Kong, L.Y. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol. Res. 2021, 167, 105583. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, E.; Feld, E.; Horn, L. Driven by Mutations: The Predictive Value of Mutation Subtype in EGFR-Mutated Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, 612–623. [Google Scholar] [CrossRef]
- Yoneda, K.; Imanishi, N.; Ichiki, Y.; Tanaka, F. Treatment of Non-small Cell Lung Cancer with EGFR-mutations. J. UOEH 2019, 41, 153–163. [Google Scholar] [CrossRef]
- Thomas, A.; Rajan, A.; Giaccone, G. Tyrosine kinase inhibitors in lung cancer. Hematol. Oncol. Clin. N. Am. 2012, 26, 589–605. [Google Scholar] [CrossRef]
- Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y.S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Tibes, R.; Trent, J.; Kurzrock, R. Tyrosine kinase inhibitors and the dawn of molecular cancer therapeutics. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 357–384. [Google Scholar] [CrossRef]
- Kang, H.; Kim, B.; Park, J.; Youn, H.; Youn, B. The Warburg effect on radioresistance: Survival beyond growth. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188988. [Google Scholar] [CrossRef]
- Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 2019, 95, 912–919. [Google Scholar] [CrossRef]
- Schwartz, L.; Supuran, C.T.; Alfarouk, K.O. The Warburg Effect and the Hallmarks of Cancer. Anticancer. Agents Med. Chem. 2017, 17, 164–170. [Google Scholar] [CrossRef]
- Icard, P.; Shulman, S.; Farhat, D.; Steyaert, J.M.; Alifano, M.; Lincet, H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist. Updat. 2018, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef]
- Kankotia, S.; Stacpoole, P.W. Dichloroacetate and cancer: New home for an orphan drug? Biochem. Biophys. Acta 2014, 1846, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Koltai, T.; Fliegel, L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals 2024, 17, 744. [Google Scholar] [CrossRef]
- Naujokat, C.; Fuchs, D.; Opelz, G. Salinomycin in cancer: A new mission for an old agent. Mol. Med. Rep. 2010, 3, 555–559. [Google Scholar] [CrossRef]
- Naujokat, C.; Steinhart, R. Salinomycin as a drug for targeting human cancer stem cells. J. Biomed. Biotechnol. 2012, 2012, 950658. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, F.; Wong, E.T.; Fonkem, E.; Hsieh, T.C.; Wu, J.M.; Wu, E. Salinomycin: A novel anti-cancer agent with known anti-coccidial activities. Curr. Med. Chem. 2013, 20, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Zhu, Y.; Wu, Z.; Cui, C.; Cai, F. Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications. Front. Oncol. 2021, 11, 654428. [Google Scholar] [CrossRef]
- Huczynski, A. Salinomycin: A new cancer drug candidate. Chem. Biol. Drug Des. 2012, 79, 235–238. [Google Scholar] [CrossRef]
- Stacpoole, P.W.; Greene, Y.J. Dichloroacetate. Diabetes Care 1992, 15, 785–791. [Google Scholar] [CrossRef]
- Stacpoole, P.W. The pharmacology of dichloroacetate. Metabolism 1989, 38, 1124–1144. [Google Scholar] [CrossRef] [PubMed]
- Tataranni, T.; Piccoli, C. Dichloroacetate (DCA) and Cancer: An Overview towards Clinical Applications. Oxid. Med. Cell Longev. 2019, 2019, 8201079. [Google Scholar] [CrossRef]
- Romero, Y.; Castillejos-López, M.; Romero-García, S.; Aguayo, A.S.; Herrera, I.; Garcia-Martin, M.O.; Torres-Espíndola, L.M.; Negrete-García, M.C.; Olvera, A.C.; Huerta-Cruz, J.C.; et al. Antitumor Therapy under Hypoxic Microenvironment by the Combination of 2-Methoxyestradiol and Sodium Dichloroacetate on Human Non-Small-Cell Lung Cancer. Oxid. Med. Cell Longev. 2020, 2020, 3176375. [Google Scholar] [CrossRef] [PubMed]
- Michelakis, E.D.; Webster, L.; Mackey, J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer 2008, 99, 989–994. [Google Scholar] [CrossRef]
- Sutendra, G.; Dromparis, P.; Kinnaird, A.; Stenson, T.H.; Haromy, A.; Parker, J.M.; McMurtry, M.S.; Michelakis, E.D. Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 2013, 32, 1638–1650. [Google Scholar] [CrossRef]
- Dyrstad, S.E.; Lotsberg, M.L.; Tan, T.Z.; Pettersen, I.K.N.; Hjellbrekke, S.; Tusubira, D.; Engelsen, A.S.T.; Daubon, T.; Mourier, A.; Thiery, J.P.; et al. Blocking Aerobic Glycolysis by Targeting Pyruvate Dehydrogenase Kinase in Combination with EGFR TKI and Ionizing Radiation Increases Therapeutic Effect in Non-Small Cell Lung Cancer Cells. Cancers 2021, 13, 941. [Google Scholar] [CrossRef] [PubMed]
- Škorja Milić, N.; Dolinar, K.; Miš, K.; Matkovič, U.; Bizjak, M.; Pavlin, M.; Podbregar, M.; Pirkmajer, S. Suppression of Pyruvate Dehydrogenase Kinase by Dichloroacetate in Cancer and Skeletal Muscle Cells Is Isoform Specific and Partially Independent of HIF-1α. Int. J. Mol. Sci. 2021, 22, 8610. [Google Scholar] [CrossRef]
- Abdel-Wahab, A.F.; Mahmoud, W.; Al-Harizy, R.M. Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy. Pharmacol. Res. 2019, 150, 104511. [Google Scholar] [CrossRef]
- Sun, R.C.; Fadia, M.; Dahlstrom, J.E.; Parish, C.R.; Board, P.G.; Blackburn, A.C. Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res. Treat. 2010, 120, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Shavit, R.; Ilouze, M.; Feinberg, T.; Lawrence, Y.R.; Tzur, Y.; Peled, N. Mitochondrial induction as a potential radio-sensitizer in lung cancer cells—A short report. Cell. Oncol. 2015, 38, 247–252. [Google Scholar] [CrossRef]
- Allen, K.T.; Chin-Sinex, H.; DeLuca, T.; Pomerening, J.R.; Sherer, J.; Watkins, J.B., 3rd; Foley, J.; Jesseph, J.M.; Mendonca, M.S. Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells. Free Radic. Biol. Med. 2015, 89, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.; Lee, H.; Park, J.; Kim, S.H.; Park, J. Targeting Cancer Metabolism—Revisiting the Warburg Effects. Toxicol. Res. 2016, 32, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer 2017, 36, 52. [Google Scholar] [CrossRef]
- Vempati, R.K.; Malla, R.R. Autophagy-Induced Drug Resistance in Liver Cancer. Crit. Rev. Oncog. 2020, 25, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef]
- Lin, G.; Hill, D.K.; Andrejeva, G.; Boult, J.K.; Troy, H.; Fong, A.C.; Orton, M.R.; Panek, R.; Parkes, H.G.; Jafar, M.; et al. Dichloroacetate induces autophagy in colorectal cancer cells and tumours. Br. J. Cancer 2014, 111, 375–385. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, D.; Hou, B.; Liu, Q.X.; Chen, Q.; Deng, X.F.; Yu, Z.B.; Dai, J.G.; Zheng, H. Dichloroacetate enhances the antitumor efficacy of chemotherapeutic agents via inhibiting autophagy in non-small-cell lung cancer. Cancer Manag. Res. 2018, 10, 1231–1241. [Google Scholar] [CrossRef]
- Stacpoole, P.W. The dichloroacetate dilemma: Environmental hazard versus therapeutic goldmine--both or neither? Environ. Health Perspect. 2011, 119, 155–158. [Google Scholar] [CrossRef]
- Stacpoole, P.W.; Martyniuk, C.J.; James, M.O.; Calcutt, N.A. Dichloroacetate-induced peripheral neuropathy. Int. Rev. Neurobiol. 2019, 145, 211–238. [Google Scholar] [CrossRef]
- Niimi, N.; Takaku, S.; Yako, H.; Sango, K. Drug-Induced Demyelinating Neuropathies. Adv. Exp. Med. Biol. 2019, 1190, 357–369. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, A.; Zhou, X.; Wang, F. Suppression of pyruvate dehydrogenase kinase-2 re-sensitizes paclitaxel-resistant human lung cancer cells to paclitaxel. Oncotarget 2017, 8, 52642–52650. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, B.S.; Yu, D.H.; Lu, Q.; Ma, J.; Qi, H.; Fang, C.; Chen, H.Z. Dichloroacetate shifts the metabolism from glycolysis to glucose oxidation and exhibits synergistic growth inhibition with cisplatin in HeLa cells. Int. J. Oncol. 2011, 38, 409–417. [Google Scholar] [CrossRef]
- Garon, E.B.; Christofk, H.R.; Hosmer, W.; Britten, C.D.; Bahng, A.; Crabtree, M.J.; Hong, C.S.; Kamranpour, N.; Pitts, S.; Kabbinavar, F.; et al. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2014, 140, 443–452. [Google Scholar] [CrossRef]
- Al-Azawi, A.; Sulaiman, S.; Arafat, K.; Yasin, J.; Nemmar, A.; Attoub, S. Impact of Sodium Dichloroacetate Alone and in Combination Therapies on Lung Tumor Growth and Metastasis. Int. J. Mol. Sci. 2021, 22, 12553. [Google Scholar] [CrossRef] [PubMed]
- Schoenmann, N.; Tannenbaum, N.; Hodgeman, R.M.; Raju, R.P. Regulating mitochondrial metabolism by targeting pyruvate dehydrogenase with dichloroacetate, a metabolic messenger. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166769. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, N.; Villalobos Solis, M.I.; Kara Murdoch, F.; Murdoch, R.W.; Xie, Y.; Swift, C.M.; Hettich, R.L.; Löffler, F.E. Anaerobic Microbial Metabolism of Dichloroacetate. Mbio 2021, 12, e00537-21. [Google Scholar] [CrossRef]
- Yang, Z.; Tam, K.Y. Anti-cancer synergy of dichloroacetate and EGFR tyrosine kinase inhibitors in NSCLC cell lines. Eur. J. Pharmacol. 2016, 789, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liao, C.; Hu, Y.; Qinwen, P.; Jiang, J. Sensitization of breast cancer cells to paclitaxel by dichloroacetate through inhibiting autophagy. Biochem. Biophys. Res. Commun. 2017, 489, 103–108. [Google Scholar] [CrossRef]
- Zheng, M.F.; Shen, S.Y.; Huang, W.D. DCA increases the antitumor effects of capecitabine in a mouse B16 melanoma allograft and a human non-small cell lung cancer A549 xenograft. Cancer Chemother. Pharmacol. 2013, 72, 1031–1041. [Google Scholar] [CrossRef]
- De Mey, S.; Dufait, I.; Jiang, H.; Corbet, C.; Wang, H.; Van De Gucht, M.; Kerkhove, L.; Law, K.L.; Vandenplas, H.; Gevaert, T.; et al. Dichloroacetate Radiosensitizes Hypoxic Breast Cancer Cells. Int. J. Mol. Sci. 2020, 21, 9367. [Google Scholar] [CrossRef]
- Cook, K.M.; Shen, H.; McKelvey, K.J.; Gee, H.E.; Hau, E. Targeting Glucose Metabolism of Cancer Cells with Dichloroacetate to Radiosensitize High-Grade Gliomas. Int. J. Mol. Sci. 2021, 22, 7265. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, X.; Ni, Z.; Zhang, Y.; Zeng, Y.; Yan, X.; Huang, Y.; He, J.; Lyu, X.; Wu, Y.; et al. Dichloroacetate and metformin synergistically suppress the growth of ovarian cancer cells. Oncotarget 2016, 7, 59458–59470. [Google Scholar] [CrossRef] [PubMed]
- Haugrud, A.B.; Zhuang, Y.; Coppock, J.D.; Miskimins, W.K. Dichloroacetate enhances apoptotic cell death via oxidative damage and attenuates lactate production in metformin-treated breast cancer cells. Breast Cancer Res. Treat. 2014, 147, 539–550. [Google Scholar] [CrossRef]
- Parczyk, J.; Ruhnau, J.; Pelz, C.; Schilling, M.; Wu, H.; Piaskowski, N.N.; Eickholt, B.; Kühn, H.; Danker, K.; Klein, A. Dichloroacetate and PX-478 exhibit strong synergistic effects in a various number of cancer cell lines. BMC Cancer 2021, 21, 481. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, T.; Ishiguro, R.H.; Ishiguro, M.; Toki, A.; Terunuma, H. Synergistic Anti-Tumor Effect of Dichloroacetate and Ivermectin. Cureus 2022, 14, e21884. [Google Scholar] [CrossRef]
- Salinomycin. Nih.gov; PubChem. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Salinomycin (accessed on 1 April 2025).
- SALINOMYCIN MYCELIA-Salinomycin Powder. DailyMed 2020. Nih.gov. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=76ecb04c-f8c3-4607-9681-1909a3ffb22e (accessed on 1 April 2025).
- Aleman, M.; Magdesian, K.G.; Peterson, T.S.; Galey, F.D. Salinomycin toxicosis in horses. J. Am. Vet. Med. Assoc. 2007, 230, 1822–1826. [Google Scholar] [CrossRef]
- Mehlhorn, H.; Ganster, H.J.; Raether, W. Effect of salinomycin-Na on malaria parasites (Plasmodium falciparum and P. berghei). Zentralbl Bakteriol. Mikrobiol. Hyg. A 1984, 256, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Peng, T.T.; Hsu, H.Y.; Lee, Y.Z.; Wu, S.H.; Lin, W.H.; Ke, Y.Y.; Hsu, T.A.; Yeh, T.K.; Huang, W.Z.; et al. Repurposing old drugs as antiviral agents for coronaviruses. Biomed. J. 2020, 43, 368–374. [Google Scholar] [CrossRef]
- Yuan, C.; Huang, X.; Zhai, R.; Ma, Y.; Xu, A.; Zhang, P.; Yang, Q. In Vitro Antiviral Activities of Salinomycin on Porcine Epidemic Diarrhea Virus. Viruses 2021, 13, 580. [Google Scholar] [CrossRef]
- Huczyński, A.; Janczak, J.; Stefańska, J.; Antoszczak, M.; Brzezinski, B. Synthesis and antimicrobial activity of amide derivatives of polyether antibiotic-salinomycin. Bioorg Med. Chem. Lett. 2012, 22, 4697–4702. [Google Scholar] [CrossRef]
- Ghonaim, A.H.; Hopo, M.G.; Ismail, A.K.; AboElnaga, T.R.; Elgawish, R.A.; Abdou, R.H.; Elhady, K.A. Hepatoprotective and renoprotective effects of silymarin against salinomycin-induced toxicity in adult rabbits. Vet. World 2022, 15, 2244–2252. [Google Scholar] [CrossRef]
- Ketola, K.; Hilvo, M.; Hyötyläinen, T.; Vuoristo, A.; Ruskeepää, A.L.; Orešič, M.; Kallioniemi, O.; Iljin, K. Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress. Br. J. Cancer 2012, 106, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhao, B.; Zhou, L.; Zhang, Z.; Shen, Y.; Lv, H.; AlQudsy, L.H.H.; Shang, P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 2020, 483, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Mai, T.T.; Hamaï, A.; Hienzsch, A.; Cañeque, T.; Müller, S.; Wicinski, J.; Cabaud, O.; Leroy, C.; David, A.; Acevedo, V.; et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 2017, 9, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Antoszczak, M.; Huczyński, A. Anticancer Activity of Polyether Ionophore-Salinomycin. Anticancer Agents Med. Chem. 2015, 15, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Nassar, D.; Blanpain, C. Cancer Stem Cells: Basic Concepts and Therapeutic Implications. Annu. Rev. Pathol. 2016, 11, 47–76. [Google Scholar] [CrossRef]
- Lei, X.; He, Q.; Li, Z.; Zou, Q.; Xu, P.; Yu, H.; Ding, Y.; Zhu, W. Cancer stem cells in colorectal cancer and the association with chemotherapy resistance. Med. Oncol. 2021, 38, 43. [Google Scholar] [CrossRef]
- Erkisa, M.; Karakas, D.; Ulukaya, E. Cancer Stem Cells: Root of the Evil. Crit. Rev. Oncog. 2019, 24, 69–87. [Google Scholar] [CrossRef]
- Makena, M.R.; Ranjan, A.; Thirumala, V.; Reddy, A.P. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165339. [Google Scholar] [CrossRef]
- Dewangan, J.; Srivastava, S.; Rath, S.K. Salinomycin: A new paradigm in cancer therapy. Tumour Biol. 2017, 39, 1010428317695035. [Google Scholar] [CrossRef]
- Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009, 138, 645–659. [Google Scholar] [CrossRef]
- Qi, D.; Liu, Y.; Li, J.; Huang, J.H.; Hu, X.; Wu, E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med. Res. Rev. 2022, 42, 1037–1063. [Google Scholar] [CrossRef]
- Xiao, Z.; Sperl, B.; Ullrich, A.; Knyazev, P. Metformin and salinomycin as the best combination for the eradication of NSCLC monolayer cells and their alveospheres (cancer stem cells) irrespective of EGFR, KRAS, EML4/ALK and LKB1 status. Oncotarget 2014, 5, 12877–12890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.F.; Li, C.X.; Liu, Z.Q.; Ma, S.; Chen, H.B. Cancer stem cell targets—A review. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 2045–2051. [Google Scholar] [PubMed]
- Tefas, L.R.; Barbălată, C.; Tefas, C.; Tomuță, I. Salinomycin-Based Drug Delivery Systems: Overcoming the Hurdles in Cancer Therapy. Pharmaceutics 2021, 13, 1120. [Google Scholar] [CrossRef] [PubMed]
- Antoszczak, M. A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Eur. J. Med. Chem. 2019, 166, 48–64. [Google Scholar] [CrossRef]
- Zhang, X.; Lou, Y.; Zheng, X.; Wang, H.; Sun, J.; Dong, Q.; Han, B. Wnt blockers inhibit the proliferation of lung cancer stem cells. Drug Des. Devel Ther. 2015, 9, 2399–2407. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, J.; Luo, Q.; Ju, Y.; Song, G. Salinomycin Suppresses Tumorigenicity of Liver Cancer Stem Cells and Wnt/Beta-catenin Signaling. Curr. Stem Cell Res. Ther. 2021, 16, 630–637. [Google Scholar] [CrossRef]
- Koeck, S.; Amann, A.; Huber, J.M.; Gamerith, G.; Hilbe, W.; Zwierzina, H. The impact of metformin and salinomycin on transforming growth factor β-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines. Oncol. Lett. 2016, 11, 2946–2952. [Google Scholar] [CrossRef]
- Hwang, K.E.; Kim, H.J.; Song, I.S.; Park, C.; Jung, J.W.; Park, D.S.; Oh, S.H.; Kim, Y.S.; Kim, H.R. Salinomycin suppresses TGF-β1-induced EMT by down-regulating MMP-2 and MMP-9 via the AMPK/SIRT1 pathway in non-small cell lung cancer. Int. J. Med. Sci. 2021, 18, 715–726. [Google Scholar] [CrossRef]
- Arafat, K.; Iratni, R.; Takahashi, T.; Parekh, K.; Al Dhaheri, Y.; Adrian, T.E.; Attoub, S. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1. PLoS ONE 2013, 8, e66931. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Yu, S.N.; Lee, S.Y.; Chun, S.S.; Choi, Y.L.; Park, Y.M.; Song, C.S.; Chatterjee, B.; Ahn, S.C. Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization. Biochem. Biophys. Res. Commun. 2011, 413, 80–86. [Google Scholar] [CrossRef]
- Li, T.; Su, L.; Zhong, N.; Hao, X.; Zhong, D.; Singhal, S.; Liu, X. Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells. Autophagy 2013, 9, 1057–1068. [Google Scholar] [CrossRef]
- Jangamreddy, J.R.; Ghavami, S.; Grabarek, J.; Kratz, G.; Wiechec, E.; Fredriksson, B.A.; Rao Pariti, R.K.; Cieślar-Pobuda, A.; Panigrahi, S.; Łos, M.J. Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: Differences between primary and cancer cells. Biochim. Biophys. Acta 2013, 1833, 2057–2069. [Google Scholar] [CrossRef]
- Jangamreddy, J.R.; Panigrahi, S.; Łos, M.J. Monitoring of autophagy is complicated--salinomycin as an example. Biochim. Biophys. Acta 2015, 1853, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, D.; Heinold, A.; Opelz, G.; Daniel, V.; Naujokat, C. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem. Biophys. Res. Commun. 2009, 390, 743–749. [Google Scholar] [CrossRef]
- Boehmerle, W.; Muenzfeld, H.; Springer, A.; Huehnchen, P.; Endres, M. Specific targeting of neurotoxic side effects and pharmacological profile of the novel cancer stem cell drug salinomycin in mice. J. Mol. Med. 2014, 92, 889–900. [Google Scholar] [CrossRef]
- Ojo, O.O.; Bhadauria, S.; Rath, S.K. Correction: Dose-dependent adverse effects of salinomycin on male reproductive organs and fertility in mice. PLoS ONE 2019, 14, e0226872. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.L.; Chen, J.C.; Wu, C.H.; Peng, Y.S.; Chen, W.C.; Zheng, H.Y.; Jian, Y.J.; Wei, C.L.; Cheng, Y.T.; Lin, Y.W. Salinomycin acts through reducing AKT-dependent thymidylate synthase expression to enhance erlotinib-induced cytotoxicity in human lung cancer cells. Exp. Cell Res. 2017, 357, 59–66. [Google Scholar] [CrossRef]
- Ko, J.C.; Zheng, H.Y.; Chen, W.C.; Peng, Y.S.; Wu, C.H.; Wei, C.L.; Chen, J.C.; Lin, Y.W. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression. Biochem. Pharmacol. 2016, 122, 90–98. [Google Scholar] [CrossRef]
- Abdelgalil, A.A.; Al-Kahtani, H.M.; Al-Jenoobi, F.I. Erlotinib. Profiles Drug Subst. Excip. Relat. Methodol. 2020, 45, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.C.; Kostyanovskaya, E.; Huang, R.S. Pharmacogenomics of cisplatin sensitivity in non-small cell lung cancer. Genom. Proteom. Bioinform. 2014, 12, 198–209. [Google Scholar] [CrossRef]
- Michalak, M.; Lach, M.S.; Antoszczak, M.; Huczyński, A.; Suchorska, W.M. Overcoming Resistance to Platinum-Based Drugs in Ovarian Cancer by Salinomycin and Its Derivatives-An In Vitro Study. Molecules 2020, 25, 537. [Google Scholar] [CrossRef]
- Zou, Z.Z.; Nie, P.P.; Li, Y.W.; Hou, B.X.; Shi, X.P.; Ma, Z.K.; Han, B.W.; Luo, X.Y. Synergistic induction of apoptosis by salinomycin and gefitinib through lysosomal and mitochondrial dependent pathway overcomes gefitinib resistance in colorectal cancer. Oncotarget 2017, 8, 22414–22432. [Google Scholar] [CrossRef]
- Skeberdytė, A.; Sarapinienė, I.; Aleksander-Krasko, J.; Stankevičius, V.; Sužiedėlis, K.; Jarmalaitė, S. Dichloroacetate and Salinomycin Exert a Synergistic Cytotoxic Effect in Colorectal Cancer Cell Lines. Sci. Rep. 2018, 8, 17744. [Google Scholar] [CrossRef] [PubMed]
- Skeberdytė, A.; Sarapinienė, I.; Krasko, J.A.; Barakauskienė, A.; Žilionytė, K.; Prokarenkaitė, R.; Sužiedėlis, K.; Bukelskienė, V.; Jarmalaitė, S. Salinomycin and dichloroacetate synergistically inhibit Lewis lung carcinoma cell proliferation, tumor growth and metastasis. Biochem. Biophys. Res. Commun. 2020, 523, 874–879. [Google Scholar] [CrossRef]
- Wei, M.; Shen, X.; Liu, Y.; Chen, X.; Su, S.; Lv, X.; Qian, X.; Yu, L.; Wang, L. The antitumor effect of diisopropylamine dichloroacetate on non-small cell lung cancer and its influence on the tumor immune microenvironment. Front. Oncol. 2024, 29, 1447828. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, W.; Yan, Z.; Jiang, X.; Gao, Y.; Jin, H.; Wu, Y.; Pang, L.; Yu, Z.; Xiao, S.; et al. Modulating autophagy in the tumor microenvironment with a salinomycin-loaded liposome hybrid nanovesicle system for tumor immunotherapy. Nanotoday 2025, 61, 102644. [Google Scholar] [CrossRef]
- Vaghari-Tabari, M.; Hassanpour, P.; Sadeghsoltani, F.; Malakoti, F.; Alemi, F.; Qujeq, D.; Asemi, Z.; Yousefi, B. CRISPR/Cas9 gene editing: A new approach for overcoming drug resistance in cancer. Cell Mol. Biol. Lett. 2022, 27, 49. [Google Scholar] [CrossRef]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef]
- Slovin, S.; Carissimo, A.; Panariello, F.; Grimaldi, A.; Bouché, V.; Gambardella, G.; Cacchiarelli, D. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview. Methods Mol. Biol. 2021, 2284, 343–365. [Google Scholar] [CrossRef] [PubMed]
Drug(s) | Cell Line(s) | Target(s) | Key Findings | Refs. |
---|---|---|---|---|
SAL | MHCC97H | Wnt/β-catenin | SAL suppresses the stemness of LCSCs via inhibiting Wnt/β-catenin signaling. | [91] |
SAL | A549, HCC4006 | TGFβ, EMT process | SAL interrupts EMT by inhibiting TGFβ signaling. | [92] |
SAL | A549, H460 | TGFβ, AMPK/SIRT1 | SAL inhibits TGFβ through AMPK/SIRT1 signaling pathways. | [93] |
SAL | A549, LNM35 | NAG-1, intracellular ROS | SAL inhibits growth, migration, and invasion via inducing apoptosis through targeting NAG-1. | [94] |
SAL | LNCaP, PC-3, DU-145, RWPE-1 | Bax protein, cytochrome-c, intracellular ROS | SAL induces apoptosis by elevating intracellular ROS, cytochrome-c release to cytoplasm, Bax protein translocation to mitochondria, and caspase-3 substrate activation. | [95] |
SAL | A549, Calu-1, H157 | Autophagy, ATF4-DDIT3/CHOP-TRIB3-AKT1-mTOR | SAL induces apoptosis in lung cancer cells via autophagic flux. | [96] |
SAL | PC-3, SKBR3, MDAMB468, MEF | Autophagy, mitophagy | SAL decreases cellular ARP, but induced autophagy can counteract its apoptotic mechanisms if not used in combination with autophagy inhibitors. | [97] |
SAL | Molt-4 CD4+ T-cells | Apoptosis | SAL is able to induce apoptosis in apoptotic-resistant leukemia cells. | [98] |
SAL, metformin | HCC4006, NCI-H1975, NCI-H2122, HCC95, NCI-H3122 | AKT, ERK1/2, mTOR, p70 s6K | In combination with metformin, SAL induces cell death and decreases cell density/viability. | [86] |
SAL, erlotinib | H1703, H1975 | AKT-CA, TS | In combination with erlotinib, SAL inhibits TS and AKT signaling. | [102] |
SAL, cisplatin | A549, H1703 | AKT-CA | SAL and cisplatin synergistically inhibit lung cancer cells via AKT inhibition. | [103] |
SAL, cisplatin, 5-fluorouracil, gemcitabine | A2780 CDDP, SK-OV-3 CDDP, A2780, SK-OV-3 | Cisplatin resistance | SAL reverses cisplatin resistance in ovarian cancer cells in combination with 5-flurouracil and gemcitabine. | [106] |
SAL, gefitinib | SW1116, LOVO, HCT-116, SW480, HT-29, NCM460 | AKT | SAL and gefitinib’s combination induces apoptosis in gefitinib-resistant cell lines and overcomes gefitinib resistance in Ras-overexpressing cells. | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunt, S.; Thyagarajan, A.; Sahu, R.P. Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer. Med. Sci. 2025, 13, 47. https://doi.org/10.3390/medsci13020047
Hunt S, Thyagarajan A, Sahu RP. Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer. Medical Sciences. 2025; 13(2):47. https://doi.org/10.3390/medsci13020047
Chicago/Turabian StyleHunt, Sunny, Anita Thyagarajan, and Ravi P. Sahu. 2025. "Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer" Medical Sciences 13, no. 2: 47. https://doi.org/10.3390/medsci13020047
APA StyleHunt, S., Thyagarajan, A., & Sahu, R. P. (2025). Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer. Medical Sciences, 13(2), 47. https://doi.org/10.3390/medsci13020047