Immunomodulatory Potential of the Polysaccharide-Rich Extract from Edible Cyanobacterium Nostoc commune
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Chemicals, and Cell Lines
2.2. Preparation of Polysaccharide-Rich Extract
2.3. Cell Viability Assay
2.4. Superoxide Production Assay
2.5. Assay for Nitric Oxide (NO) Production
2.6. Cytokine Profiles
2.7. Assay for Phagocytosis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effects of MNC-CMs on Leukemia U937 Cells
3.2. Cytokine Levels of Various MNC-CMs
3.3. Stimulatory Effect of NCPS on Macrophage RAW264.7 Cells
4. Conclusions and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Helm, R.F.; Huang, Z.; Edwards, D.; Leeson, H.; Peery, W.; Potts, M. Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc commune DRH-1. J. Bacteriol. 2000, 182, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Shirkey, B.; Kovarcik, D.P.; Wright, D.J.; Wilmoth, G.; Prickett, T.F.; Gregory, E.M.; Potts, M. Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J. Bacteriol. 2000, 182, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Novis, P.M.; Whitebread, D.; Gregorich, E.G.; Hunt, J.E.; Sparrow, A.D.; Hopkin, D.W.; Elberling, B.; Greenfield, L.G. Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacterium) from an Antarctic dry valley is driven by temperature regime. Glob. Chang. Biol. 2007, 13, 1224–1237. [Google Scholar] [CrossRef]
- Holst, J.; Butterbach-Bahl, K.; Liy, C.Y.; Cheng, X.H.; Kaiser, A.J.; Schnitzler, J.P.; Zechmeister-Boltenstern, S.; Bryggemann, N. Dinitrogen fixation by biological soil crusts in an Inner Mongolian steppe. Biol. Fertil. Soils 2009, 45, 679–690. [Google Scholar] [CrossRef]
- Marsh, J.; Nouvet, S.; Sanborn, P.; Coxson, D. Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane). Can. J. Biol. 2006, 84, 717–736. [Google Scholar] [CrossRef]
- Aboal, M.; Cristobal, C.J.; Marin-Murcia, J.P. About the presence of N. commune var flagelliforme (Nostocaceae, Cyanophyceae) on clay soils from arid regions of south east Spain. Acta Bot. Malacit. 2010, 35, 156–161. [Google Scholar]
- Ramirez, M.; Hernandez-Marine, M.; Mateo, P.; Berrendeo, E.; Roldan, M. Polyplastic approach and adaptive strategies of Nostoc cf. commune (Nostocales, Nostocaceae) growing on Mayan monuments. Fottea 2011, 11, 73–86. [Google Scholar] [CrossRef]
- Scherer, S.; Ernst, A.; Chen, T.W.; Böger, P. Rewetting of drought resistant blue-green algae: Time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia 1984, 62, 418–423. [Google Scholar] [CrossRef]
- Satoh, K.; Hirai, M.; Nishio, J.; Yamaji, T.; Kashino, Y.; Koike, H. Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune. Plant Cell Physiol. 2002, 43, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Sand-Jensen, K.; Baastrup-Spohr, L.; Winkel, A.; Møller, C.L.; Borum, J.; Brodersen, K.; Lindell, T.; Staehr, P.A. Plant distribution patterns and adaptation in a limestone quarry on Øland. Sven. Bot. Tidsskr. 2010, 104, 22–31. [Google Scholar]
- Li, S.Z. Compendium of Materia Medica; People’s Medical Publishing House: Beijing, China, 1977. [Google Scholar]
- Chu, H.J.; Tsang, C.T. Research and utilization of cyanobacteria in China: A report. Archiv Hydrobiol. 1988, 80, 1–4. [Google Scholar]
- Baldwin, N.A.; Whitton, B.A. Cyanobacteria and eukaryotic algae occurring in sports turf and amenity grasslands: A review. J. Appl. Phycol. 1992, 4, 39–47. [Google Scholar] [CrossRef]
- Wnorowski, A.U. Tastes and odours in the aquatic environment: A review. Water SA 1992, 18, 203–214. [Google Scholar]
- De Cano, M.S.; de Mulé, M.C.Z.; de Caire, G.Z.; de Halperin, D.R. Inhibition of Candida albicans and Staphylococcus aureus by phenolic compounds from the terrestrial cyanobacterium Nostoc muscorum. J. Appl. Phycol. 1990, 2, 79–81. [Google Scholar] [CrossRef]
- Smith, C.D.; Zhang, X.; Mooberry, S.L.; Patterson, G.M.; Moore, R.E. Cryptophycin: A new antimicrotuble agent active against drug-resistant cells. Cancer Res. 1994, 54, 3779–3784. [Google Scholar] [PubMed]
- Knubel, G.; Larsen, L.K.; Moore, R.E.; Levine, I.A.; Patterson, G.M. Cytotoxic, antiviral indolocarbazoles from a blue-green alga belonging to the Nostocacae. J. Antibiot. Tokyo 1990, 43, 1236–1239. [Google Scholar] [CrossRef] [PubMed]
- Esser, M.T.; Mori, T.; Mondor, I.; Sattentau, Q.J.; Dey, B.; Berger, E.A.; Boyd, M.R.; Lifson, J.D. Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus type I virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. J. Virol. 1999, 73, 4360–4371. [Google Scholar] [PubMed]
- Broniatowska, B.; Allmendinger, A.; Kaiser, M.; Montamat-Sicotte, D.; Hingley-Wilson, S.; Lalvani, A.; Guiry, M.; Blunden, G.; Tasdemir, D. Antiprotozoal, antitubercular and cytotoxic potential of cyanobacterial (blue-green algal) extracts from Ireland. Nat. Prod. Commun. 2011, 6, 689–694. [Google Scholar] [PubMed]
- Jaki, B.; Orjala, J.; Sticher, O. A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune. J. Nat. Prod. 1999, 62, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Hori, K.; Ishibashi, G.; Okita, T. Hypocholesterolemic effect of blue-green alga, ishikurage (Nostoc commune), in rats fed atherogenic diet. Plant Foods Hum. Nutr. 1994, 45, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, H.E.; Blobaum, K.R.; Jesch, E.D.; Ku, C.S.; Park, Y.K.; Lu, F.; Carr, T.P.; Lee, J.Y. Hypocholesterolemic effect of Nostoc commune var. sphaeroides Kützing, an edible blue-green alga. Eur. J. Nutr. 2009, 48, 387–394. [Google Scholar] [PubMed]
- Jensen, S.; Petersen, B.O.; Omarsdottir, S.; Paulsen, B.S.; Duus, J.Ø.; Olafsdottir, E.S. Structural characterization of a complex heteroglycan from the cyanobacterium Nostoc commune. Carbohydr. Polym. 2013, 91, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2001. [Google Scholar] [CrossRef]
- Baehner, R.L.; Nathan, D.G. Quantitative nitroblue tetrazolium test in chronic granulomatous disease. N. Engl. J. Med. 1968, 278, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.F.; Chen, Y.Y.; Yang, Y.C.; Wang, C.S.; Chen, Y.J. Rice (Oryza sativa L.) inhibits growth and induces differentiation of human leukemic U937 cells through activation of peripheral blood mononuclear cells. Food Chem. Toxicol. 2006, 44, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.F.; Chou, C.J.; Wu, S.H.; Khoo, K.H.; Chen, C.F.; Wang, S.Y. Isolation and characterization of an active compound from black soybean (Glycine max L. Merr.) and its effect on proliferation and differentiation of human leukemic U937 cells. Anticancer Drug 2001, 12, 841–846. [Google Scholar] [CrossRef]
- Potts, M. Etymology of the genus name Nostoc (Cyanobacterial). Int. J. Syst. Bacteriol. 1997, 47, 584. [Google Scholar] [CrossRef]
- Yagisawa, M.; You, A.; Yonemaru, M.; Imajoh-ohmi, S.; Kanegasaki, S.; Yazaki, Y.; Takaku, F. Superoxide release and NADPH oxidase components in mature human phagocytes: Correlation between functional capacity and amount of functional proteins. Biochem. Biophys. Res. Commun. 1996, 228, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, C.; Das, S. Plant lectins as inhibitors of tumor growth and modulators of host immune response. Chemotherapy 1994, 40, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Guan, J.; Chen, X.J.; Zhao, J.; Li, S.P. Comparison of polysaccharides from different Dendrobium using saccharide mapping. J. Pharm. Biomed. Anal. 2011, 55, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Huang, B. The multi-differentiation potential of peripheral blood mononuclear cells. Stem Cell Res. Ther. 2012. [Google Scholar] [CrossRef] [PubMed]
- Liles, W.C.; van Voorhis, W.C. Nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. J. Infect. Dis. 1995, 172, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Armitage, J.O. Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood 1998, 92, 4491–4508. [Google Scholar] [PubMed]
- Smirnova, M.G.; Kiselev, S.L.; Gnuchev, N.V.; Birchall, J.P.; Pearson, J.P. Role of the pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin-1beta, interleukin-6 and interleukin-8 in the pathogenesis of the otitis media with effusion. Eur. Cytokine Netw. 2002, 13, 161–172. [Google Scholar] [PubMed]
- Onozaki, K.; Tamatani, T.; Hashimoto, T.; Matsushima, K. Growth inhibition and augmentation of mouse myeloid leukemic cell line differentiation by interleukin 1. Cancer Res. 1987, 47, 2397–2402. [Google Scholar] [PubMed]
- Wang, M.H.; Ronsin, C.; Gesnel, M.C.; Coupey, L.; Skeel, A.; Leonard, E.J.; Breathnach, R. Identification of the ron gene product as the receptor for the human macrophage stimulating protein. Science 1994, 266, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Hirano, T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002, 13, 357–368. [Google Scholar] [CrossRef]
- Aggarwal, S.; Gurney, A.L. IL-17: Prototype member of an emerging cytokine family. J. Leukoc. Biol. 2002, 71, 1–8. [Google Scholar] [PubMed]
- Smolen, J.S.; Maini, R.N. Interleukin-6: A new therapeutic target. Arthritis Res. Ther. 2006, 8, S5. [Google Scholar] [CrossRef] [PubMed]
- Swardfager, W.; Winer, D.A.; Herrmann, N.; Winer, S.; Lanctôt, K.L. Interleukin-17 in post-stroke neurodegeneration. Neurosci. Biobehav. Rev. 2013, 37, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Jutras, I.; Desjardins, M. Phagocytosis: At the crossroads of innate and adaptive immunity. Ann. Rev. Cell Dev. Biol. 2005, 21, 511–527. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, H.-F.; Wu, T.-J.; Tai, J.-L.; Chi, M.-C.; Lin, L.-L. Immunomodulatory Potential of the Polysaccharide-Rich Extract from Edible Cyanobacterium Nostoc commune. Med. Sci. 2015, 3, 112-123. https://doi.org/10.3390/medsci3040112
Liao H-F, Wu T-J, Tai J-L, Chi M-C, Lin L-L. Immunomodulatory Potential of the Polysaccharide-Rich Extract from Edible Cyanobacterium Nostoc commune. Medical Sciences. 2015; 3(4):112-123. https://doi.org/10.3390/medsci3040112
Chicago/Turabian StyleLiao, Hui-Fen, Tai-Jung Wu, Jia-Liang Tai, Meng-Chun Chi, and Long-Liu Lin. 2015. "Immunomodulatory Potential of the Polysaccharide-Rich Extract from Edible Cyanobacterium Nostoc commune" Medical Sciences 3, no. 4: 112-123. https://doi.org/10.3390/medsci3040112
APA StyleLiao, H.-F., Wu, T.-J., Tai, J.-L., Chi, M.-C., & Lin, L.-L. (2015). Immunomodulatory Potential of the Polysaccharide-Rich Extract from Edible Cyanobacterium Nostoc commune. Medical Sciences, 3(4), 112-123. https://doi.org/10.3390/medsci3040112