The Effects of Acute High-Intensity Interval Training on Hematological Parameters in Sedentary Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Exercise Tests
2.3. Blood Sampling and Hematological Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wardyn, G.G.; Rennard, S.I.; Brusnahan, S.K.; McGuire, T.R.; Carlson, M.L.; Smith, L.M.; McGranaghan, S.; Sharp, J.G. Effects of exercise on hematological parameters, circulating side population cells, and cytokines. Exp. Hematol. 2008, 36, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Ajmani, R.S.; Fleg, J.L.; Demehin, A.A.; Wright, J.G.; O’Connor, F.; Heim, J.M.; Tarien, E.; Rifkind, J.M. Oxidative stress and hemorheological changes induced by acute treadmill exercise. Clin. Hemorheol. Microcirc. 2003, 28, 29–40. [Google Scholar] [PubMed]
- Mairbäurl, H. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front. Physiol. 2013, 12, 332. [Google Scholar] [CrossRef] [PubMed]
- Brun, J.F. Exercise hemorheology as a three acts play with metabolic actors: is it of clinical relevance? Clin. Hemorheol. Microcirc. 2002, 26, 155–174. [Google Scholar] [PubMed]
- Haas, T.L.; Lloyd, P.G.; Yang, H.T.; Terjung, R.L. Exercise training and peripheral arterial disease. Compr. Physiol. 2012, 2, 2933–3017. [Google Scholar] [PubMed]
- Lambert, C.P.; Flynn, M.G.; Braun, W.A.; Mylona, E. Influence of acute submaximal exercise on T-lymphocyte suppressor cell function in healthy young men. Eur. J. Appl. Physiol. 2000, 82, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Atan, T.; Alacam, H. The Effects of acute aerobic and anaerobic exercise on blood Parameters. Anthropologist 2015, 19, 87–93. [Google Scholar]
- Rama, L.M.; Minuzzi, L.G.; Carvalho, H.M.; Costa, R.J.; Teixeira, A.M. Changes of hematological markers during a multi-stage ultra-marathon competition in the heat. Int. J. Sports Med. 2016, 37, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 1, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Wisløff, U.; Ellingsen, Ø.; Kemi, O.J. High-intensity interval training to maximize cardiac benefits of exercise training? Exerc. Sport Sci. Rev. 2009, 37, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Tjønna, A.E.; Stølen, T.O.; Bye, A.; Volden, M.; Slørdahl, S.A.; Odegård, R.; Skogvoll, E.; Wisløff, U. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin. Sci. (Lond.) 2009, 116, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.L.; Wu, Y.T.; Chou, C.H. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J. Cardiopulm. Rehabil. Prev. 2011, 31, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; McGee, S.L. Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exerc. Sport Sci. Rev. 2008, 36, 58–63. [Google Scholar] [CrossRef] [PubMed]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed]
- MacInnis, M.J.; Zacharewicz, E.; Martin, B.J.; Haikalis, M.E.; Skelly, L.E.; Tarnopolsky, M.A.; Murphy, R.M.; Gibala, M.J. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J. Physiol. 2017, 595, 2955–2968. [Google Scholar] [CrossRef] [PubMed]
- Knowles, A.M.; Herbert, P.; Easton, C.; Sculthorpe, N.; Grace, F.M. Impact of low-volume, high-intensity interval training on maximal aerobic capacity, health-related quality of life and motivation to exercise in ageing men. Age (Dordr) 2015, 37, 25. [Google Scholar] [CrossRef] [PubMed]
- Ahmadizad, S.; Bassami, M.; Hadian, M.; Eslami, M. Influences of two high intensity interval exercise protocols on the main determinants of blood fluidity in overweight men. Clin. Hemorheol. Microcirc. 2016, 64, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Cardenosa, M.; Camacho-Cardenosa, A.; Martínez Guardado, I.; Marcos-Serrano, M.; Timon, R.; Olcina, G. A new dose of maximal-intensity interval training in hypoxia to improve body composition and hemoglobin and hematocrit levels: a pilot study. J. Sports Med. Phys. Fit. 2017, 57, 60–69. [Google Scholar]
- Little, J.P.; Safdar, A.; Bishop, D.; Tarnopolsky, M.A.; Gibala, M.J. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R1303–R1310. [Google Scholar] [CrossRef] [PubMed]
- Whittlesey, M.J.; Maresh, C.M.; Armstrong, L.E.; Morocco, T.S.; Hannon, D.R.; Gabaree, C.L.; Hoffman, J.R. Plasma volume responses to consecutive anaerobic exercise tests. Int. J. Sports Med. 1996, 17, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Kordie, M.R.; Chobineh, S.; Hematinafar, M.; Molaesmaeili, Z. The effect of acute anaerobic exercise on blood rheology agents’ response in active young women. Appl. Manag. Res. Life Sci. Sports 2012, 2012, 45–52. [Google Scholar]
- Ahmadizad, S.; El-Sayed, M.S.; MacLaren, D.P. Effects of time of day and acute resistance exercise on platelet activation and function. Clin. Hemorheol. Microcirc. 2010, 45, 391–399. [Google Scholar] [PubMed]
- Varlet-Marie, E.; Brun, J.F.; Raynaud de Mauverger, E.; Fédou, C. Exercise-induced changes in hematocrit and hematocrit/viscosity ratio in male rugby players. Clin. Hemorheol. Microcirc. 2016, 64, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Halson, S.L.; Lancaster, G.I.; Jeukendrup, A.E.; Gleeson, M. Immunological responses to overreaching in cyclists. Med. Sci. Sports Exerc. 2003, 35, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Green, H.J.; Sutton, J.R.; Coates, G.; Ali, M.; Jones, S. Response of red cell and plasma volume to prolonged training in humans. J. Appl. Physiol. 1991, 70, 1810–1815. [Google Scholar] [PubMed]
- Lippi, G.; Salvagno, G.L.; Danese, E.; Tarperi, C.; Guidi, G.C.; Schena, F. Variation of red blood cell distribution width and mean platelet volume after moderate endurance exercise. Adv. Hematol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Gnanou, J.; Caszo, B.; Khalin, I.; Leong, S.; Knight, V.F.; Bidin, M.Z.B. The Effect of 6-weeks military training on blood hematological parameters in untrained recruits in a military university. Med. Sci. 2014, 3, 1479–1490. [Google Scholar] [CrossRef]
- Heidari, N.; Dortaj, E.; Karimi, M.; Karami, S.; Kordi, N. The effects of acute high intensity interval exercise of judo on blood rheology factors. Turk. J. Kinesiol. 2016, 2, 6–10. [Google Scholar]
- El-Sayed, M.S. Effects of exercise and training on blood rheology. Sports Med. 1998, 26, 281–292. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.S.; Ali, N.; El-Sayed, A.Z. Haemorheology in exercise and training. Sports Med. 2005, 35, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, H.; Kindermann, W. The acute immune response to exercise: what does it mean? Int. J. Sports Med. 1997, 18 (Suppl. 1), S28–S45. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Neubauer, O.; Walsh, N.P.; Simpson, R.J. Recovery of the immune system after exercise. J. Appl. Physiol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Close, G.L.; Ashton, T.; Cable, T.; Doran, D.; MacLaren, D.P. Eccentric exercise, isokinetic muscle torque and delayed onset muscle soreness: the role of reactive oxygen species. Eur. J. Appl. Physiol. 2004, 91, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Kappel, M.; Poulsen, T.D.; Galbo, H.; Pedersen, B.K. Effects of elevated plasma noradrenaline concentration on the immune system in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 79, 93–98. [Google Scholar] [CrossRef] [PubMed]
Pre | Post | 3 h Rec | 6 h Rec | |
---|---|---|---|---|
Hematocrit (%) | 47.43 ± 2.91 | 52.74 ± 2.85 a | 46.27 ± 1.90 a,b | 44.69 ± 2.18 a,b |
Hemoglobin (g dL−1) | 15.75 ± 0.76 | 16.59 ± 0.81 a | 15.25 ± 0.85 b | 15.12 ± 0.65 b |
Red cell count (×1012 L−1) | 5.44 ± 0.22 | 5.92 ± 0.22 a | 5.30 ± 0.21 b | 5.23 ± 0.25 a,b |
Mean cell volume (fL) | 86.38 ± 2.26 | 87.50 ± 2.66 a | 85.66 ± 2.56 a,b | 85.96 ± 2.31 b |
Mean cell hemoglobin (pg) | 28.71 ± 1.22 | 29.16 ± 1.53 | 28.94 ± 1.61 | 29.17 ± 1.05 |
Platelet count (×109 L−1) | 239.20 ± 46.61 | 314.10 ± 68.22 a | 248.40 ± 48.39 b | 257.20 ± 46.48 b |
Pre | Post | 3 h Rec | 6 h Rec | |
---|---|---|---|---|
White cell count (×109 L−1) | 7.32 ± 1.83 | 12.84 ± 3.37 a | 11.22 ± 3.58 a | 9.99 ± 3.30 a,b |
Neutrophil count (×109 L−1) | 4.02 ± 1.23 | 5.05 ± 1.57 | 8.45 ± 3.50 a,b | 6.64 ± 2.93 a,c |
Neutrophils (%) | 49.83 ± 7.35 | 42.83 ± 6.27 | 72.76 ± 9.57 a,b | 64.52 ± 8.28 a,c |
Eosinophil count (×109 L−1) | 0.30 ± 0.23 | 0.35 ± 0.22 a | 0.16 ± 0.08 a,b | 0.19 ± 0.09 a,b |
Eosinophils (%) | 3.66 ± 2.38 | 3.20 ± 2.32 | 1.53 ± 0.83 | 2.16 ± 1.26 |
Basophil count (×109 L−1) | 0.09 ± 0.08 | 0.13 ± 0.06 a | 0.06 ± 0.03 b | 0.07 ± 0.03 b |
Basophils (%) | 1.03 ± 0.34 | 1.06 ± 0.46 | 0.58 ± 0.25 a,b | 0.75 ± 0.34 c |
Lymphocyte count (×109 L−1) | 3.11 ± 1.59 | 5.22 ± 1.99 a | 1.88 ± 0.30 a,b | 2.31 ± 0.41 a,b |
Lymphocytes (%) | 36.70 ± 5.25 | 43.09 ± 5.65 a | 18.55 ± 6.90 a,b | 24.55 ± 6.3 a,b |
Monocyte count (×109 L−1) | 0.74 ± 0.37 | 1.16 ± 0.37 | 0.68 ± 0.17 b | 0.79 ± 0.32 b |
Monocytes (%) | 8.79 ± 1.33 | 9.80 ± 1.67 a | 6.59 ± 2.27 a,b | 10.16 ± 7.59 c |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belviranli, M.; Okudan, N.; Kabak, B. The Effects of Acute High-Intensity Interval Training on Hematological Parameters in Sedentary Subjects. Med. Sci. 2017, 5, 15. https://doi.org/10.3390/medsci5030015
Belviranli M, Okudan N, Kabak B. The Effects of Acute High-Intensity Interval Training on Hematological Parameters in Sedentary Subjects. Medical Sciences. 2017; 5(3):15. https://doi.org/10.3390/medsci5030015
Chicago/Turabian StyleBelviranli, Muaz, Nilsel Okudan, and Banu Kabak. 2017. "The Effects of Acute High-Intensity Interval Training on Hematological Parameters in Sedentary Subjects" Medical Sciences 5, no. 3: 15. https://doi.org/10.3390/medsci5030015